Unitarity Bounds and Mass Generation Scale

Prepared by Hong-Jian He Tsinghua University, China

(postdoc at MSU, 1997-2000)

Beyond the Standard Model: Mass as a Clue

Hong-Jian He

University of Texas at Austin

Outline

- **★** Shape of the Standard Model (SM)
- **★** Scales of Mass Generations: Universal Limits
- **★** Higgs, Hierarchy Problem & "Little Higgs"
- Beyond 4 Dimensions?
- **★ Summary & Outlook**

Outline

★ Shape of the Standard Model (SM)

- Symmetries, Particles, Mass Spectrum & Exp Data
- Looking beyond: Lesson from Columbus ?
- Looking beyond: Two Essential Clues

★ Scales of Mass Generations: Universal Limits

- Scale of Mass Generation & Classic $2 \rightarrow 2$ Unitarity Limits
- $2 \rightarrow n$ Scattering: Puzzle, Resolution & Surprise
- Scales for Weak Bosons, Quarks/Leptons & Majorana Neutrinos

★ Higgs, Hierarchy Problem & "Little Higgs"

- Higgs Mechanism & Hierarchy Problem
- Little Higgs Solves Little Hierarchy
- Unitarity of Little Higgs vs UV Completion
- **Beyond 4 Dimensions?**
- ★ Summary & Outlook

Shape of the Standard Model

Classical Mechanics

- angular momentum $\gg \hbar$
- speed $\ll c$

Quantum Mechanics

- any angular momentum
- speed $\ll c$

Special Relativity

- angular momentum $\gg \hbar$
- any speed

Quantum field theory

- any angular momentum
- any speed

Standard Model

- local quantum gauge theory
- $SU(3)_C \otimes SU(2)_W \otimes U(1)_Y$
- valid down to $\sim 10^{-16}$ cm

Shape of the Standard Model

Elementary Particles discovered by experiments:

$$\begin{array}{c|c} \textbf{leptons} & \left\{ \begin{array}{c} \left(\begin{array}{c} \nu_L^e \\ e_L \end{array} \right) & \left(\begin{array}{c} \nu_L^\mu \\ \mu_L \end{array} \right) & \left(\begin{array}{c} \nu_L^\tau \\ \tau_L \end{array} \right) \\ e_R & \mu_R & \tau_R \end{array} \right. \\ \textbf{quarks} & \left\{ \begin{array}{c} \left(\begin{array}{c} u_L \\ d_L \end{array} \right) & \left(\begin{array}{c} c_L \\ s_L \end{array} \right) & \left(\begin{array}{c} t_L \\ b_L \end{array} \right) \\ u_R & c_R & t_R \\ d_R & s_R & b_R \end{array} \right. \end{array} \right. \end{array} \right.$$

$$SU(3)_C \times SU(2)_W \times U(1)_Y$$
 gauge bosons (spin 1) 8 gluons + W^\pm, Z, γ

longitudinal W^{\pm} , Z (spin 0)

 \oplus Higgs H^0 (spin 0) \Rightarrow not yet discovered!

"God Particle" gives masses to $W/Z\ \&\ Quarks/Leptons!$

► SM Mass Spectrum:

▶ Precision data fit SM well and favor a Light Higgs:

114.4 GeV (direct) $< M_H < 219$ GeV (precision) (95% C.L.)

Summer 2003

Looking Beyond: Lesson from Columbus?

▶ 1492-1504 A.D.: Columbus carried out heroic experimental probes to prove Pythagoras theory (~ 500 B.C.) that the Earth is round (and to search for Mainland China & Gold).....But, he discovered Something Else !!!

Voyage 1492-1504

CERN LHC 2007

Looking Beyond: Two Essential Clues

★ Clue-1:

What's Wrong with just Bare Mass terms for All particles ??

★ Clue-2:

What's Wrong with having a Fundamental Higgs Boson ??

Looking Beyond: Two Essential Clues

★ Clue-1:

What's Wrong with just Bare Mass terms for All particles ??

- **▶** Unitarity Violation ⇒ Limit on Scale of Mass Generation!
 - \Rightarrow e.g. $WW \rightarrow WW$ Scattering justifies TeV Scale for LHC Energy!

★ Clue-2:

What's Wrong with having a Fundamental Higgs Boson ??

► Hierarchy Problem | ⇒ Little Higgs, Extra Dim, DSB, SUSY...!

Looking Beyond: Two Essential Clues (1)

★ Clue-1:

What's Wrong with just Bare Mass terms for All particles ??

Scales of Mass Generations

Define Scale of Mass Generation

- ▶ In Standard Model (SM), Weak Bosons W/Z and all Fermions obtain masses from a Hypothetic Fundamental Higgs H^0 . But, the masses can of course be generated by Something Else! Without assuming H^0 , all masses must be put in by hand for SM, which can be gauge-invariant only under Nonlinear realization of SM gauge group. \Rightarrow Non-renormalizability! This causes a Unitarity Violation Scale Λ_U in High Energy Scatterings at which New Physics must enter to restore unitarity!
- ▶ Define scale Λ_x for generating a mass m_x to be the Minimal Energy above which the Bare Mass Term for m_x has to be replaced by a Renormalizable Interaction involving New State(s).
- ▶ Unitarity Violation Scale Λ_U provides a Model-Independent Universal Upper Limit on the Scale of Mass-Generation Λ_x (for mass m_x):

$$\Lambda_x \leqslant \Lambda_{\mathrm{U}}$$

Nonlinear Realization of SM Gauge Symmetry

▶ Without assuming Higgs H^0 , SM gauge symmetry must be nonlinearly realized, and 3 "eaten" Goldstones $\{\pi^a\}$ are formulated by

$$U = \exp\left[i\pi^a \tau^a/v\right], \qquad (v \simeq 250 \text{GeV} \Rightarrow \text{recall: } f_\pi^{\text{QCD}} \simeq 92 \text{MeV})$$

► Gauge Boson bare mass terms $M_W^2W^+W^- + \frac{1}{2}M_Z^2Z^2$ can be written as dim-2 gauge-invariant operator:

$$\mathcal{L}_{\text{mass}}^{V} = \frac{v^2}{4} |D_{\mu}U|^2,$$

► For Dirac Fermions (Quarks/Leptons) $F = (f, f')^T$, the bare mass terms $-m_f \overline{f} f - m_{f'} \overline{f'} f'$ can be written as gauge-invariant dim-3 operator:

$$\mathcal{L}_{\text{mass}}^f = -m_f \overline{F_L} U \begin{pmatrix} 1 \\ 0 \end{pmatrix} f_R - m_{f'} \overline{F_L} U \begin{pmatrix} 0 \\ 1 \end{pmatrix} f_R' + \text{H.c.}$$

▶ Light Neutrinos can form bare Majorana Mass term $-\frac{1}{2}m_{\nu}^{ij}\nu_{Li}^T\widehat{C}\nu_{Lj} + \text{H.c.}$ ⇒ Gauge-invariant form, with $\Phi = U(0,v/\sqrt{2})^T$, $F_{Lj} = L_j$,

$$\mathcal{L}_{\text{mass}}^{\nu} = -\frac{m_{\nu}^{ij}}{v^2} L_i^{\alpha T} \widehat{C} L_j^{\beta} \Phi^{\alpha'} \Phi^{\beta'} \epsilon^{\alpha \alpha'} \epsilon^{\beta \beta'} + \text{H.c.}$$

Classic Limits on Scales of Mass Generations

► Scattering $W_LW_L \rightarrow W_LW_L$ on Electroweak Symmetry Breaking Scale: (Dicus & Mathur, Phys.Rev.1973; Lee, Quigg, Thacker, Phys.Rev.1977)

$$\Lambda_{
m U} \simeq \sqrt{8\pi} \, v \simeq 1.2 \, {
m TeV} \quad \Rightarrow \quad {
m TeV \ Scale \ for \ LHC \ !!!}$$

► Scattering $f\overline{f} \rightarrow W_LW_L$ on Dirac Fermion Mass Generation: (Appelquist & Chanowitz, Phys.Rev.Lett.1987)

$$\Lambda_{
m U} \simeq rac{8\pi\,v^2}{\sqrt{2N_c}\,m_f} \simeq (3.6,\,2 imes 10^5;\,605,\,2 imes 10^6)\,{
m TeV} \qquad {
m for}\,\,f=(t,\,u;\, au,\,e)$$

Scattering $\nu_L \nu_L \rightarrow W_L W_L$ on Majorana Neutrino Mass Generation: (Willenbrock et al, Phys.Rev.Lett.2001)

$$\Lambda_{
m U} \simeq rac{2\pi\,v^2}{m_
u} \simeq 10^{16}\,{
m GeV} \qquad (m_
u \simeq 0.05{
m eV})$$
 \Rightarrow Seesaw/GUT Scale!

High Energy Scattering: $W_L W_L, f\overline{f} \to n W_L$ ($n \geqslant 2$)

★ Equivalence Theorem gives, (for review, He, et al, hep-ph/9704276)

$$T\left[W_L^{a_1}, \dots, W_L^{a_n}; \Phi_{\text{phys}}\right] = (-i)^n T\left[\pi^{a_1}, \dots, \pi^{a_n}; \Phi_{\text{phys}}\right] + \mathcal{O}\left(\frac{M_W}{E_j}\right)$$

★ Power Counting of high energy Scattering Amplitudes:

$$T[f\overline{f},\nu\nu\to nW_L^a] \simeq T[f\overline{f},\nu\nu\to n\pi^a] = \mathfrak{O}(1)\frac{m_{f,\nu}}{v^n}E,$$

$$T[W_L^{a_1}W_L^{a_2}\to nW_L^a] \simeq T[\pi^{a_1}\pi^{a_2}\to n\pi^a] = \mathfrak{O}(1)\frac{E^2}{v^n},$$

Puzzle: $2 \rightarrow n$ Scattering, E-Counting & Unitarity Limit

▶ General $2 \rightarrow n$ Unitarity Condition by requiring $SS^{\dagger} = S^{\dagger}S = 1$,

$$\sigma[2 \to n] < \frac{4\pi}{s}$$

Puzzle: Energy Power Counting shows: $(s = E^2)$

$$\frac{1}{g_{\rm in}} \int_{\mathsf{PS}_n} \sim s^{n-3},$$

$$\sigma[2 o n] \propto \frac{1}{s} \left(\frac{s}{v^2}\right)^{n-2+\delta} \left(\frac{m_f}{v}\right)^{2(2-\delta)}, \qquad (n \geqslant 2),$$

$$\Lambda_{\mathbf{U}} \sim v \left[c_0 \left(rac{v}{m_f}
ight)^{2(2-\delta)}
ight]^{rac{1}{2(n-2+\delta)}} \longrightarrow v \,, \qquad ext{(for $n o $ large),}$$

Here $\delta=1$ & 2 for $f\overline{f}/\nu\nu$ & W_LW_L scattering. \blacktriangleright No New Scale for m_f ?!

▶ BUT, we have Kinematic Condition:

$$\sqrt{s} > n M_W \simeq rac{n}{3} v \,, \qquad \longrightarrow \qquad \Lambda_{\mathbf{U}} > v rac{n}{3} \quad (\uparrow \text{ with } n \,)$$

Resolution and Surprise

★ Resolution

Dicus & He, 2003

► Computing Exact Phase Space: (recall: Fermi's Golden rule in QM···)

$$\frac{1}{\mathcal{J}_{\text{in}}} \int_{PS_n} = \frac{1}{\mathcal{J}_{\text{in}}} \int \frac{d^3k_1 \cdots d^3k_n}{2E_1 \cdots 2E_n} (2\pi)^{4-3n} \delta^{(4)} \left(p_1 + p_2 - \sum k_j \right) \\
= \frac{s^{n-3}}{2^{4(n-1)} \pi^{2n-3} \left[(n-1)!(n-2)! \right]}$$

▶ Improved Estimates: ($c_0 = O(1)$, $e = 2.718 \cdots$, $(n!)^{1/n} \rightarrow n/e$)

$$\Lambda_{\rm U} = v \left[c_0 2^{4n-2} \pi^{2(n-1)} \left[(n-1)! (n-2)! \right] \left(\frac{v}{m_f} \right)^{2(2-\delta)} \right]^{\frac{1}{2(n-2+\delta)}}$$

$$\Rightarrow v \frac{4\pi n}{e} > v \frac{n}{3} \qquad (\text{for } n \gg 1)$$

- ► Kinematic Condition $\Lambda_{\rm U} > v \frac{n}{3}$ is satisfied due to Exact Phase Space!
- ▶ As $n \uparrow$, limit Λ_U exhibits competition between factors $(\cdots)^{1/2n}$ and (n-1)!(n-2)!. \Rightarrow Minimal Bound Λ_U^{\min} occurs at a moderate value $n=n_s$.

Resolution and Surprise

Dicus & He, 2003

★ Surprise

▶ Improved Estimate of Unitarity Bound $\Lambda_{\rm U}$ from $\xi_1\xi_2 \to nW_L^a$.

Limits on Scales of Fermion Mass Generation

D. A. Dicus, H.-J. He, 2003

★ Surprise

- ▶ Unitarity Bound $\Lambda_{\rm U}^{\rm new}$ for Quarks/Leptons (right plot) and Majorana Neutrinos (left plot) from $f\overline{f} \to n\pi^a$. [In right plot, curves from bottom to top: $f = t, b, c, \tau, s, \mu, d, u, e$.]
- ▶ Best bounds $\Lambda_{\rm U}^{\rm min}$ always occur at n>2 for ALL light quarks/leptons and neutrinos. \Rightarrow A robust Upper Bound for ALL fermions:

$$\Lambda_{\rm U}^{min} \lesssim 170\,{\rm TeV}$$

Scales for Mass Generations: Summary

D. A. Dicus, H.-J. He, 2003

▶ Summary of Classic Unitarity Limits $\Lambda_{\rm U}^{\rm old}$ (n=2) vs New Unitarity Limits $\Lambda_{\rm U}^{\rm new}$ ($n=n_s$) for Scattering $\xi_1\xi_2\to n\pi^a\,(nW_L^a)$. ($\xi_1\xi_2=\pi^{a_1}\pi^{a_2}$, or, $f\overline{f}$, and n_s is # of final state π^a 's (W_L^a 's) corresponding to best limit $\Lambda_{\rm U}^{\rm new}$.)

$\xi_1 \xi_2$	$\pi^{a_1}\pi^{a_2}$	$t\overline{t}$	$b \overline{b}$	$c\overline{c}$	$s\overline{s}$	$dar{d}$	$u\overline{u}$	$\tau^- au^+$	$\mu^-\mu^+$	e^-e^+	νν
$\Lambda_{ m U}^{ m old}$ (TeV)	1.2	3.6	148	497	4×10 ³	10 ⁵	2×10 ⁵	605	10 ⁴	2×10 ⁶	10 ¹³
$\Lambda_{ m U}^{ m new}$ (TeV)	1.2	3.6	25	33	49	77	84	34	56	107	158
n_s	2	2	4	6	8	10	10	6	8	12	22

- **★** These limits are Universal & Independent of any detail of the Mechanism of Mass Generation.
- ★ Strong Non-Decoupling of Λ_U^{new} for fermions is essentially due to the Chiral Structure of fermion bare mass term all left-handed fermions are weak-doublet but right-handed chiral partners are singlet.

Looking Beyond: Two Essential Clues (2)

★ Clue-2:

What's Wrong with having a Fundamental Higgs Boson ??

Higgs Mechanism & Higgs Mass in SM

★ SM Higgs Potential & Theory/Exp Constraints:

$$V(H) = -\mu^2 H^2 + \lambda H^4,$$

 $M_H = \sqrt{2\lambda} v$

 $v \simeq 250 \, \mathrm{GeV}$

$$V(H) = -\mu^2 H^2 + \lambda H^4, \qquad \Longrightarrow \qquad \langle H \rangle = \frac{v}{\sqrt{2}} = \sqrt{\mu^2/2\lambda}$$

 \bigstar SM with a light Higgs ($M_H \sim 160~\text{GeV}$) could be an Effective Theory valid up to Ultraviolet (UV) Cutoff $\Lambda \sim M_{\text{Planck}} !! \Rightarrow \text{What's WRONG }??!$

Higgs Mass & Big Hierarchy Problem

▶ BUT, SM Quantum Corrections are quadratically sensitive to Λ^2 :

▶ Big Hierarchy Problem: $(M_{Planck} \simeq 10^{19} \text{GeV})$

 $\Lambda \sim M_{\text{Planck}}$ would require a fine-tuned cancellation down to 10^{-30} !!

Higgs Mass & Little Hierarchy Problem

$$(200 \,\text{GeV})^2 = M_{H0}^2 + \left[-(2 \,\text{TeV})^2 + (700 \,\text{GeV})^2 + (500 \,\text{GeV})^2\right] \left(\frac{\Lambda}{10 \,\text{TeV}}\right)^2$$

► Little Hierarchy Problem:

Demanding the fine-tuning $\gtrsim 10\%$ in M_H^2 gives

$$\Lambda_t \lesssim$$
 3 TeV, $\Lambda_W \lesssim$ 9 TeV, $\Lambda_H \lesssim$ 12 TeV

 \Rightarrow New Phys below \sim 3TeV for SM holding up to \sim 10TeV !!!

"Little Higgs" solves "Little Hierarchy"

► "Little Higgs" (LH) opens up a New Avenue for

Natural Electroweak Symmetry Breaking!

Arkani-Hamed, Cohen, Georgi, hep-ph/0105239 Arkani-Hamed, et al, hep-ph/0206020 Arkani-Hamed, et al, hep-ph/0206021

followed up by O(100) papers since 2002-2003..... (cf. Spires)

▶ "Little Higgs" is an Effective Theory:

No Fine-tuning & Weakly Coupled up to $\sim 10 \text{TeV}$

► Today I'll discuss something new about this direction ...

"Little Higgs" solves "Little Hierarchy"

- ► Higgs is a pseudo-Goldstone boson due to Global Symmetry Breaking, $\mathcal{G} \to \mathcal{H}$, at Ultraviolet (UV) Scale $\Lambda \sim 4\pi f$. (Georgi & Pais, 1974)
- ► Higgs is naturally Light as protected by Goldstone theorem; Higgs acquires small mass radiatively. Quadradic Divergence cancelled at 1-Loop by New States with Same Spin: (Arkani-Hamed, et al, 2001,2002)

$$W, Z, B \leftrightarrow W', Z', B', \quad t \leftrightarrow t', \quad H \leftrightarrow \chi, \Phi.$$

Unitarity of Little Higgs vs UV Completion

S. Chang, H.-J. He, hep-ph/0311177

- ▶ Unitarity of S-matrix: $S^{\dagger}S = 1$, (S = 1 + iT), $\Rightarrow T^{\dagger}T = 2 \text{Im}T$
- ▶ Partial Wave Expansion: $T = 16\pi \sum (2j+1)P_j(\cos\theta) a_j$
- ▶ Unitarity Condition on Partial Wave: $|\text{Re}\,a_j| < 1/2$
- ► Coupled Channel Analysis for All Goldstones in each LH model:
- ★ Our observation is that Global Symmetry Breaking of LH Model results in a Large Multiplet of Many Goldstones (including SM H^0). The collective effect of Goldstone Scatterings will much enhance S-matrix via Coupled channels, and thus strengthen Unitarity Limit Λ_U to be significantly below naive cutoff scale $\Lambda \sim 4\pi f$, ie, $\Lambda_U \ll \Lambda$.
- ▶ Roughly, Λ_U scales like: (cf. also GDA, Chivukula et al, 1992, Georgi, 1993)

$$\sqrt{s}$$
 < $\Lambda_{
m U}$ \propto $4\pi f rac{O(1)}{\mathcal{N}^{1/4}} < 4\pi f$

where N is the number of Goldstones.

Unitarity of Little Higgs vs UV Completion

S. Chang, H.-J. He, hep-ph/0311177

▶ We found Unitarity Violation Scale
$$\left| \Lambda_{\mathrm{U}} \sim (3-4)f \right| \ll \Lambda \sim 4\pi f \sim 10\,\mathrm{TeV}$$
.

- $\blacktriangleright \Lambda_{\rm II}$ is comparable with W' mass $M_{W'} \Rightarrow$ Crucial to do UV completion additional New States must be included in Multi-TeV range to restore Unitarity! ⇒ More New Signals for LHC!!
- ▶ New States reflect Little Higgs UV dynamics, and should be included in a way consistent with Λ^2 -Cancellation in Higgs Mass at 1-Loop.
- ▶ Summary of Unitarity Bounds in various Models. (Note: $N \gg 1$)

Little Higgs Model	G	Н	N	$\Lambda_{ m U}/f$	$M_{W'}/f$
Minimal Moose	$SU(3)^2$	<i>SU</i> (3)	8	2.89	2.29
Littlest Higgs	SU(5)	<i>SO</i> (5)	14	3.17	1.62
Antisymm Condensate	<i>SU</i> (6)	<i>Sp</i> (6)	14	3.68	1.62
SO(5) Moose	$SO(5)^2$	<i>SO</i> (5)	10	4.09	3.24
SO(9) Littlest Higgs	SO(9)	$SO(5)\otimes SO(4)$	20	3.79	2.29

Little Higgs Collider Signals

- ▶ Typical Collider Signals of heavy New States in the Littlest Higgs Model SU(5)/SO(5). (cf. Han et al, hep-ph/0301040, Peskin et al, hep-ph/0310039,...)
- ightharpoonup LC can test anomalous ZZH coupling... More studies are upcoming!....

Summary and Outlook ...

- ★ The Standard Model (SM) is a Local Quantum Gauge Theory, successfully describing the Nature down to $\sim 10^{-16}$ cm. SM contains 19 free parameters; but 16 are due to our lack of knowledgment about the Origin of Mass Generations.
- **★** With all Bare Masses putting in by hand, SM is plauged with Unitarity Violation, which puts Upper Limits on Scale of Mass Generation.
- \bigstar By assuming a single fundamental Higgs H^0 for giving masses to ALL particles, SM is then plauged with Hierarchy Problem.
- \bigstar Unitarity provides Universal Upper Limits on the Scales of Mass Generation for ALL SM particles. Our limit $\Lambda_{\rm U}^{\rm new}$ from $2 \to n \ (n > 2)$ Scatterings revealed strong Non-Decoupling nature:

$$\Lambda_{\mathrm{U}}^{\mathrm{new}} < (3.6, 84, 107, 170) \, \mathrm{TeV}$$
 (for $f = t, u, e, \nu$) $\Lambda_{\mathrm{U}}^{\mathrm{old}} < (3.6, 2 \times 10^5, 2 \times 10^6, 10^{13}) \, \mathrm{TeV}$ (for $f = t, u, e, \nu$)

★ "Little Higgs" is an elegant idea, realizing Higgs as a Pseudo-Goldstone boson (-naturally light). It solves a Little Hierarchy Problem, but we showed the UV Completion is crucial and additional New States in Multi-TeV Range are forced by Unitarity.

Looking back ... The Past ...

- ▶ During 1492-1504, Columbus carried out heroic EXPERIMENTAL probes to prove Pythagoras Theory (\sim 500 B.C.) that the Earth is Round (and to search for Mainland China & Gold).....
- ▶ He had the Correct Theory in mind, but he had not finally proven it before his death....instead, he discovered Something Else!!!

★ Lessons: (1) A Good Theory! (2) Vigorous Experiments!!

Outlook ... The Future ...

► HEP does have vigorous EXPs upcoming...The Future is bright...

- ► CERN Large Hadron Collider (LHC) will turn on by 2007. Particle physicists are looking forward to upcoming Original Discoveries.....
- ► Next International Linear Collider (LC) will make Complementary Precision Probes and establish New Physics Beyond the Standard Model!
- ★ Many more in addition to LHC & LC cf. my Friday Seminar:

Structure of Cosmological CP Violation via Neutrino Seesaw