A NLO Calculation of pQCD: Total Cross Section of W Boson at Hadron Colliders

> C.-P. Yuan Michigan State University

> > July 17, 2007 @ AS

Goal: Learn how to carry out a next-to-leading order QCD calculation in which there are typically collinear and soft singularities (in addition to ultraviolet singularity), needed to be cancel to yield finite experimental observables.

Outline

- 1. Parton Model
- ⇒ Born Cross Section
- 2. Factorization Theorem
- ⇒ How to organize a NLO calculation of pQCD
- 3. Feynman rules and Feynman diagrams
- ⇒ "Cut diagram" notation
- 4. Immediate Problems (Singularities)
- ⇒ Dimensional Regularization
- 5. Virtual Corrections
- 6. Real Emission Contribuation
- 7. Perturbative Parton Distribution Functions
- 8. Summary of NLO $[O(\alpha_s)]$ Corrections

Appendices:

- A. γ -matrices in n dimensions
- **B.** Some integrals and "special functions"
- C. Angular integrals in n dimensions
- **D.** Two-particle phase space in n dimensions
- **E.** Explicit Calculations

(Typesetting: prepared by Qing-Hong Cao at MSU.)

A few references can be found in

"Handbook of pQCD"

on CTEQ website

http://www.phys.psu.edu/~ cteq/

Parton Model

$$\sigma_{hh' \to W^+X} = \sum_{f,f'=q,\bar{q}} \int_0^1 dx_1 dx_2 \left\{ \phi_{f/h}(x_1) \ \hat{\sigma}_{ff'} \phi_{\bar{f}'/h'}(x_2) + (x_1 \leftrightarrow x_2) \right\}$$
Partonic "Born"
Cross Section of $f\bar{f}' \to W^+$
The probablility of finding a "parton" f with
fraction x_1 of the hadron h momentum

Born Cross Section

$$\hat{\sigma}_{q\bar{q}'} = \frac{1}{2\hat{s}} \int \frac{d^3q}{(2\pi)^3 \, 2q_0} \, (2\pi)^4 \, \delta^4 \, (p_1 + p_2 - q) \cdot \overline{|\mathcal{M}|^2}$$

where

$$\frac{|\mathcal{M}|^2}{|\mathcal{M}|^2} = \underbrace{\left(\frac{1}{3} \cdot \frac{1}{3}\right)\left(\frac{1}{2} \cdot \frac{1}{2}\right)}_{color} \sum_{\substack{spin \\ color}} \left| \underbrace{\sum_{p_2}^{p_1} \frac{q}{p_2} \right|^2}_{p_2}$$

average color and spin

$$Tr \left[\not p_{1} \gamma_{\mu} P_{L} \not p_{2} \gamma^{\mu} P_{L} \right] (-1)$$

$$= Tr \left[\not p_{1} \gamma_{\mu} \not p_{2} \gamma^{\mu} P_{L} \right] (-1)$$

$$= (-2) Tr \left[\not p_{1} \not p_{2} P_{L} \right] (-1)$$

$$= (-2) \cdot \frac{1}{2} \cdot 4 (p_{1} \cdot p_{2}) (-1)$$

$$= +2\hat{s}$$

$$P_{L} P_{L} = P_{L} = \frac{1}{2} (1 - \gamma_{5})$$

$$\gamma_{\mu} \not p_{2} \gamma^{\mu} = -2 \not p_{2}$$

$$Tr (\not p_{1} \not p_{2}) = 4 (p_{1} \cdot p_{2})$$

$$Tr (\not p_{1} \not p_{2} \gamma_{5}) = 0$$

$$Tr[I_{3\times 3}] = 3$$
 $(\hat{s} \equiv (p_1 + p_2)^2 = q^2 \text{ and } p_1^2 = p_2^2 = 0)$

$$\Rightarrow \boxed{\qquad} = \left(\frac{g_w}{\sqrt{2}}\right)^2 \cdot (+2\hat{s}) (3) = 3 g_w^2 \hat{s}$$

$$\int \frac{d^3q}{2q_0} \delta^4 (p_1 + p_2 - q) = \int d^4q \delta^4 (p_1 + p_2 - q) \,\delta^+ \left(q^2 - M^2\right)$$
$$= \delta \left(q^2 - M^2\right)$$

where M is the mass of W-boson.

Thus,

$$\hat{\sigma}_{q\bar{q}'} = \frac{1}{2\hat{s}} (2\pi) \cdot \delta \left(\hat{s} - M^2\right) \cdot \left(\frac{1}{3}\right) \left(\frac{1}{2} \cdot \frac{1}{2}\right) \cdot g_w^2 \hat{s}$$

$$= \frac{\pi}{12} g_w^2 \delta \left(\hat{s} - M^2\right)$$

$$= \frac{\pi}{12\hat{s}} g_w^2 \delta \left(1 - \hat{\tau}\right)$$

$$\left(\begin{array}{c} \hat{\tau} = M^2/\hat{s} , \ \hat{s} = x_1 x_2 S \quad \text{for} \\ S = (P_1 + P_2)^2 \quad \text{and} \ P_1^2 = P_2^2 = 0 \end{array}\right)$$

Factorization Theorem

$$\sigma_{hh'} = \sum_{i,j} \int_0^1 dx_1 dx_2 \,\phi_{i/h}(x, Q^2) \,H_{ij}\left(\frac{Q^2}{x_1 x_2 S}\right) \phi_{j/h'}(x_2, Q^2)$$
Nonperturbative,
but universal,
hence, measurable
IRS, Calculable
in pQCD

Procedure:

(1) Compute σ_{kl} in pQCD with k, l partons (not h, h' hadron)

$$\sigma_{kl} = \sum_{i,j} \int_0^1 dx_1 dx_2 \,\phi_{i/k} \left(x_1, Q^2 \right) H_{ij} \left(\frac{Q^2}{x_1 x_2 S} \right) \phi_{j/l} \left(x_2, Q^2 \right)$$

- (2) Compute $\phi_{i/k}, \phi_{j/l}$ in pQCD
- (3) Extract H_{ij} in pQCD

 $\begin{array}{l} H_{ij} \text{ IRS} \Rightarrow H_{ij} \text{ indepent of } k,l \\ \Rightarrow \text{ same } H_{ij} \text{ with } (k \rightarrow h, l \rightarrow h') \end{array}$

(4) Use H_{ij} in the above equation with $\phi_{i/h}, \phi_{j/h'}$

Extracting H_{ij} in pQCD

• Expansions in α_s :

Consequences:

 $H_{ij}^{(0)} = \sigma_{ij}^{(0)} = \text{"Born"} \qquad \text{suppress "^" from now on}$ $H_{ij}^{(1)} = \sigma_{ij}^{(1)} - \left[\sigma_{il}^{(0)} \phi_{l/j}^{(1)} + \phi_{k/i}^{(1)} \sigma_{kj}^{(0)}\right]$ $Computed from Feynman diagrams (process dependent) \qquad Computed from the definition of perturbative parton$

the definition of perturbative parton distribution function (process independent, scheme dependent)

Feynman Rules

• Quark Propagator

our calculation

Take m=0 in

• Gluon Propagator

$$\nu, a$$
 ν, b

• Quark-W Vertex

 $rac{i(p\!\!\!/+m)_{etalpha}}{p^2-m^2+i\epsilon}\delta_{ij}$ (i,j=1,2,3)

$$\frac{i(-g_{\mu\nu})}{k^2 + i\epsilon} \delta_{ab}$$
(a,b=1,2...,8)

$$irac{g_W}{\sqrt{2}}(\gamma_\mu)_{etalpha}rac{(1-\gamma_5)}{2}\delta_{ij}$$

 $g_w=rac{e}{\sin heta_w}$, weak coupling

• Quark-Gluon Vertex

• Quark Color Generators

$$[t_a, t_b] = i f_{abc} t_c$$
$$\sum_c t_c^2 = C_F I_{N \times N}$$
$$Tr(\sum_c t_c^2) = N C_F$$

 t_c is the $SU(N)_{N \times N}$ generator

$$C_F = \frac{N^2 - 1}{2N} = \frac{4}{3}$$
, (N = 3)

Feynman Diagrams

In "Cut-diagram" notation

• $(q\overline{q'})_{Born}$

• $(q\overline{q'})_{virt}$

• $(q\overline{q'})_{real}$

• $(qG)_{real}$

• $(G\overline{q'})_{real}$

Same as $(qG)_{real}$ after replacing q by $\overline{q'}$.

Feynman rules for cut-diagrams

quark line

Immediate problems (Singularities)

• Ultraviolet singularity

• Infrared singularities

(IR)

as $k^{\mu} \to 0$ (soft divergence) or $k^{\mu} \parallel p^{\mu}$ (collinear divergence) $\frac{1}{(p-k)^2 - m^2} = \frac{1}{-2p \cdot k}$ (for m = 0 or $m \neq 0$) $p \cdot k \to 0$ as $k \to 0$ or $k^{\mu} \parallel p^{\mu}$ (for m = 0) $k \to 0$ (for $m \neq 0$)

(Similar singularities also exist in virtual diagrams.)

• Solutions

Compute H_{ij} in pQCD in $n = 4 - 2\varepsilon$ dimensions (dimensional regularization)

 n ≠ 4 ⇒ UV & IR divergences appear as ¹/_ε poles in σ⁽¹⁾_{ij} (Feynman diagram calculation)
 H_{ij} is IR safe ⇒ no ¹/_ε in H_{ij} (H_{ij} is UV safe after "renormalization".)

Dimensional Regularization (Revisit the Born Cross Section in *n* dimensions)

$$Tr [p_{1}\gamma_{\mu}P_{L} p_{2}\gamma^{\mu}P_{L}] (-1)$$

$$= Tr [p_{1}\gamma_{\mu} p_{2}\gamma^{\mu}P_{L}] (-1) \qquad \gamma_{\mu} p_{2}\gamma^{\mu} = -2 (1-\varepsilon) p_{2}$$

$$= (-2) (1-\varepsilon) Tr [p_{1} p_{2}P_{L}] (-1)$$

$$= (-2) (1-\varepsilon) \cdot \frac{1}{2} \cdot 4 (p_{1} \cdot p_{2}) (-1)$$

$$= 2 (1-\varepsilon) \hat{s}$$

• In *n* dimensions

$$\hat{\sigma}_{q\bar{q}'}^{(0)} = \frac{\pi}{12\hat{s}} g_w^2 \cdot (1-\varepsilon) \cdot \delta (1-\hat{\tau}) \equiv \sigma^{(0)} \cdot \delta (1-\hat{\tau})$$

Strong Coupling g in n dimensions

• In *n* dimensions

$$\int d^{n}x\mathcal{L}$$
$$\longrightarrow \int d^{n}x \left\{ \bar{\psi}i \ \partial \!\!\!/ \psi - \frac{1}{4}G_{\mu\nu}G^{\mu\nu} + gt^{a}\bar{\psi}\gamma^{\mu}G_{\mu}\psi + \cdots \right\}$$

The dimension in mass unit (μ)

$$\begin{split} [\psi] &\sim \mu^{\frac{n-1}{2}} \\ [G] &\sim \mu^{\frac{n-2}{2}} \\ \left[\bar{\psi}G\psi\right] &\sim \mu^{\frac{n-1}{2}\times 2 + \frac{n-2}{2}} = \mu^{\frac{3n}{2}-2} \end{split}$$
 Since $\left[g\bar{\psi}G\psi\right] &\sim \mu^n$, so
 $[g] &\sim \mu^{\frac{-n}{2}+2} \qquad n = 4 - 2\varepsilon \\ &= \mu^{\varepsilon} \end{split}$

 \Rightarrow g has a dimension in mass when $\varepsilon \neq 0$

 \Rightarrow Feynman rules should read $g \rightarrow g \mu^{arepsilon}$

Calculations

• Tools needed for a NLO calculation are collected in Appendices A-D

• The detailed calculation for each subprocess can be found in Appendices E

• In the following, I shall summarize the result for each subprocess

Virtual Corrections $(q\overline{q}')_{virt}$ (in Feynman Gauge)

 $\sigma_{virt}^{(1)}$ is free of ultraviolent singularity.

$$\sigma_{virt}^{(1)} = \sigma^{(0)} \frac{\alpha_s}{2\pi} \delta \left(1 - \hat{\tau}\right) \left(\frac{4\pi\mu^2}{M^2}\right)^{\varepsilon} \frac{\Gamma\left(1 - \varepsilon\right)}{\Gamma\left(1 - 2\varepsilon\right)} \\ \cdot \left\{-\frac{2}{\varepsilon^2} - \frac{3}{\varepsilon} - 8 + \frac{2\pi^2}{3}\right\} \cdot (C_F)$$

 $-\frac{2}{\varepsilon^2}: \text{ soft and collinear singularities}$ $-\frac{3}{\varepsilon}: \text{ soft or collinear singularities}$ $C_F: \text{ color factor}$ $\sigma^{(0)} \equiv \frac{\pi}{12\hat{s}}g_w^2 \cdot (1-\varepsilon)$

Real Emission Contribution $(q\overline{q}')_{real}$

$\sigma_{\text{real}}^{(1)}\left(q\bar{q}'\right) = \sigma^{(0)}\frac{\alpha_s}{2\pi} \left(\frac{4\pi\mu^2}{M^2}\right)^{\varepsilon} \frac{\Gamma\left(1-\varepsilon\right)}{\Gamma\left(1-2\varepsilon\right)} \cdot C_F$ $\cdot \left\{\frac{2}{\varepsilon^2}\delta\left(1-\hat{\tau}\right) - \frac{2}{\varepsilon}\frac{1+\hat{\tau}^2}{(1-\hat{\tau})_+} + 4\left(1+\hat{\tau}^2\right)\left(\frac{\ln\left(1-\hat{\tau}\right)}{1-\hat{\tau}}\right)_+ - 2\frac{1+\hat{\tau}^2}{1-\hat{\tau}}\ln\hat{\tau}\right\}$

Note: $[\cdots]_+$ is a distribution,

$$\int_{0}^{1} dz f(z) \left[\frac{1}{1-z} \right]_{+} = \int_{0}^{1} dz \frac{f(z) - f(1)}{1-z}, \text{ which is finite.}$$

• In the soft limit, $\hat{\tau} \to 1$ $\left(\hat{\tau} = \frac{M^2}{\hat{s}}\right)$,

$$\sigma_{\text{real}}^{(1)}\left(q\bar{q}'\right) \longrightarrow \sigma^{(0)}\frac{\alpha_s}{2\pi} \left(\frac{4\pi\mu^2}{M^2}\right)^{\varepsilon} \frac{\Gamma\left(1-\varepsilon\right)}{\Gamma\left(1-2\varepsilon\right)} \cdot C_F$$
$$\cdot \left\{\frac{2}{\varepsilon^2}\delta\left(1-\hat{\tau}\right) - \frac{4}{\varepsilon}\frac{1}{\left(1-\hat{\tau}\right)_+} + 8\left(\frac{\ln\left(1-\hat{\tau}\right)}{1-\hat{\tau}}\right)_+\right\}$$

$(q\bar{q}')_{virt} + (q\bar{q}')_{real}$ at NLO

$$\begin{split} \sigma_{q\bar{q}'}^{(1)} &= \sigma_{virt}^{(1)} \left(q\bar{q}' \right) + \sigma_{real}^{(1)} \left(q\bar{q}' \right) \\ &= \sigma^{(0)} \frac{\alpha_s}{2\pi} \left(\frac{4\pi\mu^2}{M^2} \right)^{\varepsilon} \frac{\Gamma \left(1 - \varepsilon \right)}{\Gamma \left(1 - 2\varepsilon \right)} \cdot C_F \\ &\cdot \left\{ \frac{-2}{\varepsilon} \left(\frac{1 + \hat{\tau}^2}{1 - \hat{\tau}} \right)_+ - 2 \frac{1 + \hat{\tau}^2}{1 - \hat{\tau}} \ln \hat{\tau} + 4 \left(1 + \hat{\tau}^2 \right) \left(\frac{\ln \left(1 - \hat{\tau} \right)}{1 - \hat{\tau}} \right)_+ \right. \\ &+ \left(\frac{2\pi^2}{3} - 8 \right) \delta \left(1 - \hat{\tau} \right) \right\} \end{split}$$

Where we have used

$$\frac{-2}{\varepsilon} \left[\frac{1+\hat{\tau}^2}{(1-\hat{\tau})_+} + \frac{3}{2}\delta\left(1-\hat{\tau}\right) \right] = \frac{-2}{\varepsilon} \left(\frac{1+\hat{\tau}^2}{1-\hat{\tau}} \right)_+$$

All the soft singularities $\left(\frac{1}{\varepsilon^2},\frac{1}{\varepsilon}\right)$ cancel in $\sigma^{(1)}_{q \overline{q'}}$

 $\Rightarrow KLN$ theorem

(Kinoshita-Lee-Navenberg)

$$\sigma_{q\bar{q}'}^{(1)} \sim \frac{1}{\varepsilon} (\text{term}) + \text{finite (terms)}$$

 \uparrow

Collinear Singularity

Factorization Theorem

• Perturbative PDF

 $\phi_{i/k}^{(0)} = \delta_{ik}\delta\left(1-x\right)$

 $\frac{\alpha_s}{\pi}\phi_{i/k}^{(1)}$ can be calculated from the definition of PDF.

(Process independent, but factorization scheme dependent)

Perturbative PDF

• In \overline{MS} -scheme (modified minimal subtraction)

$$\phi_{q/q}^{(1)}(z) = \phi_{\bar{q}/\bar{q}}^{(1)}(z) = \frac{-1}{\varepsilon} \frac{1}{2} \left(4\pi e^{-\gamma_E} \right)^{\varepsilon} P_{q \leftarrow q}^{(1)}(z)$$

$$\phi_{q/g}^{(1)}(z) = \phi_{\bar{q}/g}^{(1)}(z) = \frac{-1}{\varepsilon} \frac{1}{2} \left(4\pi e^{-\gamma_E} \right)^{\varepsilon} P_{q \leftarrow g}^{(1)}(z)$$

where the splitting kernel for q_{q-q}^{r} is

$$P_{q \leftarrow q}^{(1)}(z) = C_F \left(\frac{1+z^2}{1-z}\right)_+ \\ = C_F \left(\frac{1+z^2}{(1-z)_+} + \frac{3}{2}\delta(1-z)\right) ,$$

and for $\phi_{q \leftarrow g}^{(1)}$ is

 $P_{q\leftarrow g}^{(1)}\left(z\right)=T_R\left(z^2+(1-z)^2\right)\,,$ where $C_F=\frac{4}{3}$ and $T_R=\frac{1}{2}.$

(Note: The Pole part in the \overline{MS} scheme is $\frac{1}{\widehat{\varepsilon}} = \frac{1}{\varepsilon} (4\pi e^{-\gamma_E})^{\varepsilon} = \frac{1}{\varepsilon} + \ln 4\pi - \gamma_E$ In the MS scheme, the pole part is just $\frac{1}{\varepsilon}$)

Find $H_{q\overline{q}'}^{(1)}$ (in the \overline{MS} scheme)

• Take off the factor $\left(\frac{\alpha_s}{\pi}\right)$ $\sigma_{q\bar{q}'}^{(1)} = \sigma^{(0)} \left\{ P_{q\leftarrow q}^{(1)}(\hat{\tau}) \left[\ln\left(\frac{M^2}{\mu^2}\right) - \frac{1}{\varepsilon} + \gamma_E - \ln 4\pi \right] + C_F \left[-\frac{1+\hat{\tau}^2}{1-\hat{\tau}} \ln \hat{\tau} + 2\left(1+\tau^2\right) \left(\frac{\ln(1-\hat{\tau})}{1-\hat{\tau}}\right)_+ + \left(\frac{\pi^2}{3} - 4\right) \delta\left(1-\hat{\tau}\right) \right] \right\}$

$$H_{q\bar{q}'}^{(1)}(\hat{\tau}) = \sigma_{q\bar{q}'}^{(1)} - \left[2\phi_{q\leftarrow q}^{(1)}\sigma_{q\bar{q}'}^{(0)}\right] \\= \hat{\sigma}^{(0)} \cdot \left\{P_{q\leftarrow q}^{(1)}(\hat{\tau})\ln\left(\frac{M^2}{\mu^2}\right) + C_F\left[-\frac{1+\hat{\tau}^2}{1-\hat{\tau}}\ln\hat{\tau} + 2\left(1+\tau^2\right)\left(\frac{\ln\left(1-\hat{\tau}\right)}{1-\hat{\tau}}\right)_+ + \left(\frac{\pi^2}{3}-4\right)\delta\left(1-\hat{\tau}\right)\right]\right\}$$

where

$$\hat{\tau} = \frac{M^2}{\hat{s}} = \frac{M^2}{x_1 x_2 S}, \qquad \sigma^{(0)} = \hat{\sigma}^{(0)} \cdot (1 - \varepsilon),$$
$$\hat{\sigma}^{(0)} = \frac{\pi}{12\hat{s}} g_w^2 = \frac{\pi g_w^2}{12S} \frac{1}{x_1 x_2}.$$

pQCD prediction

$$\begin{aligned} \sigma_{hh'} &= \left\{ \sum_{f=q,\bar{q}'} \int dx_1 dx_2 \phi_{f/h} \left(x_1, \mu^2 \right) \left[\sigma^{(0)} \delta \left(1 - \hat{\tau} \right) \right] \phi_{\bar{f}/h'} \left(x_2, \mu^2 \right) \right. \\ &+ \sum_{f=q,\bar{q}'} \int dx_1 dx_2 \phi_{f/h} \left(x_1, \mu^2 \right) \left[\frac{\alpha_s \left(\mu^2 \right)}{\pi} H_{f\bar{f}}^{(1)} \left(\hat{\tau} \right) \right] \phi_{\bar{f}/h'} \left(x_2, \mu^2 \right) \\ &+ \left. \sum_{f=q,\bar{q}'} \int dx_1 dx_2 \phi_{f/h} \left(x_1, \mu^2 \right) \left[\frac{\alpha_s \left(\mu^2 \right)}{\pi} H_{fG}^{(1)} \left(\hat{\tau} \right) \right] \phi_{G/h'} \left(x_2, \mu^2 \right) + \left(x_1 \leftrightarrow x_2 \right) \right\} \end{aligned}$$

Find $H_{qG}^{(1)}$ (in the \overline{MS} scheme)

• Take off the factor $\left(\frac{\alpha_s}{\pi}\right)$ $\sigma_{qG}^{(1)} = \sigma^{(0)} \cdot \frac{1}{4} \cdot \left\{ 2P_{q \leftarrow g}^{(1)}(\hat{\tau}) \left[\frac{-1}{\varepsilon} \frac{\Gamma(1-\varepsilon)}{\Gamma(1-2\varepsilon)} + \ln \frac{M^2(1-\hat{\tau})^2}{4\pi\mu^2\hat{\tau}} \right] + \frac{1}{2} + 3\hat{\tau} - \frac{7}{2}\hat{\tau}^2 \right\}$

$$\begin{split} H_{qG}^{(1)}(\hat{\tau}) &= \sigma_{qG}^{(1)} - \left[\sigma_{q\bar{q}'}^{(0)}\phi_{\bar{q}'\leftarrow G}^{(1)}\right] \\ &= \frac{\hat{\sigma}^{(0)}}{2} \cdot \left\{ P_{q\leftarrow g}^{(1)}(\hat{\tau}) \left[\ln\left(\frac{M^2}{\mu^2}\right) + \ln\left(\frac{(1-\hat{\tau})^2}{\hat{\tau}}\right) \right] \right. \\ &\left. + \frac{1}{4} + \frac{3}{2}\hat{\tau} - \frac{7}{4}\hat{\tau}^2 \right\} \end{split}$$

• Similarly,

$$H_{G\bar{q}'}^{(1)} = \sigma_{G\bar{q}'}^{(1)} - \left[\phi_{q\leftarrow G}^{(1)}\sigma_{q\bar{q}'}^{(0)}\right]$$
$$= H_{qG}^{(1)}$$

(Note: If we choose the renormalization scale $\mu^2 = M^2$, then $\ln\left(\frac{M^2}{\mu^2}\right) = 0$

W and Z production

- * CDF and D0 would like to use their W and Z cross sections for luminosity determination
- D0 cross sections close to center of PDF prediction ellipse; not the case with CDF

J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk, H.L. Lai, W.K. Tung: hep-ph/0101051

Summary

• $\phi_{f/h}(x,\mu^2)$ depends on scheme (\overline{MS} ,DIS,...) $\Rightarrow H_{ij}$ scheme dependent

• Evolution equations allow us to perdict q^2 -dependent of $\phi(x,q^2)$

 Essentially identical procedure for hh' → jets, inclusive QQ,... But, when the Born level process involves strong interaction (eg. qq → tt), it is also necessary to renormalize the strong coupling α_s, etc, to eliminate ultraviolate singularities

Appendix A γ -matrices in *n* dimensions

• Dirac algebra

$$\begin{split} \{\gamma^{\mu}, \gamma^{\nu}\}_{+} &\equiv \gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu} \\ \mu, \nu &= 1, 2, \cdots, n \qquad g^{\mu\nu} = diag \ (1, -1, \cdots, -1) \\ g^{\mu\nu}g_{\mu\nu} &= n \\ \{\gamma^{\mu}, \gamma^{5}\}_{+} &= 0 \qquad \text{(Naive-}\gamma^{5}\text{prescription)} \end{split}$$

This works in calculating the inclusive rate of W-boson, but fails in the differential distributions of the leptons from the W-boson decay.

• Matrix identities

 $n = 4 - 2\varepsilon$

$$\begin{array}{l} \gamma_{\mu} \not a \gamma^{\mu} = -2 \left(1 - \varepsilon\right) \not a \\ \gamma_{\mu} \not a \not b \gamma^{\mu} = 4a \cdot b - 2\varepsilon \not a \not b \\ \gamma_{\mu} \not a \not b \not e \gamma^{\mu} = -2 \not e \not b \not a + 2\varepsilon \not a \not b \not e \end{array}$$

Traces

 $Tr [\not a \ \not b] = 4 (a \cdot b)$ $Tr [\not a \ \not b \ \not c \ d] = 4 \{(a \cdot b) (c \cdot d) - (a \cdot c) (b \cdot d) + (a \cdot d) (b \cdot c)\}$ $Tr [\gamma_5 \ \not a \ \not b] = 0$

Appendix B Some integrals and "special functions"

• The "Gamma function"

 $\Gamma(z) = \int_{0}^{\infty} dx x^{z-1} e^{-x} \quad (\operatorname{Re}(z) > 0)$ $\Gamma(z-1) = \frac{\Gamma(z)}{z-1} \quad (\text{for all } z)$ $\Rightarrow \operatorname{Poles in} \Gamma(z)$ $\xrightarrow{2}{-1} \qquad 0$ $(n-1) = \Gamma(1) = \sqrt{z}$

$$\Gamma(n) = (n-1)! \qquad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\Gamma(\varepsilon) = \frac{1}{\varepsilon} - \gamma_{\scriptscriptstyle E} + \frac{\varepsilon}{2}\left(\gamma_{\scriptscriptstyle E}^2 + \frac{\pi^2}{6}\right) + \cdots$$

 $(\gamma_E = 0.5772 \cdots, \text{ Euler constant})$

$$\Gamma(1-\varepsilon) = -\varepsilon\Gamma(\varepsilon) = 1 + \varepsilon\gamma_{\scriptscriptstyle E} + \frac{1}{2}\varepsilon^2\left(\frac{\pi^2}{6} + \gamma_{\scriptscriptstyle E}^2\right) + O\left(\varepsilon^3\right)$$

$$\Gamma(1-\varepsilon)\Gamma(1+\varepsilon) = 1 + \varepsilon^2\frac{\pi^2}{6} + O\left(\varepsilon^4\right)$$

$$z^{\varepsilon} = e^{\ln z^{\varepsilon}} = e^{\varepsilon\ln z} = 1 + \varepsilon\ln z + \cdots$$

The "Beta function"

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$
$$B(\alpha,\beta) = \int_0^1 dy \ y^{\alpha-1} (1-y)^{\beta-1} = \int_0^\infty dy \ y^{\alpha-1} (1+y)^{-\alpha-\beta}$$
$$= 2 \int_0^{\frac{\pi}{2}} d\theta \ (\sin\theta)^{2\alpha-1} (\cos\theta)^{2\beta-1}$$

• Feynman trick

$$\frac{1}{ab} = \int_0^1 dx \frac{1}{\left[ax + b\left(1 - x\right)\right]^2}$$
$$\frac{1}{a^{\alpha}b^{\beta}} = \frac{\Gamma\left(\alpha + \beta\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)} \int_0^1 dx \frac{x^{\alpha - 1}\left(1 - x\right)^{\beta - 1}}{\left[ax + b\left(1 - x\right)\right]^{\alpha + \beta}}$$

• n-dimension integrals

$$\int d^{n}l \frac{l_{\mu}}{(l^{2} - M^{2})^{\alpha}} = 0$$

$$\int d^{n}l \frac{l_{\mu}l_{\nu}}{(l^{2} - M^{2})^{\alpha}} = \int d^{n}l \frac{\left(\frac{l^{2}g_{\mu\nu}}{n}\right)}{(l^{2} - M^{2})^{\alpha}}$$

$$\int \frac{d^{n}l}{(2\pi)^{n}} \frac{1}{(l^{2} - M^{2})^{\alpha}} = i \frac{(-1)^{\alpha}}{(4\pi)^{n/2}} \frac{\Gamma\left(\alpha - \frac{n}{2}\right)}{\Gamma\left(\alpha\right)} \left(\frac{1}{M^{2}}\right)^{\alpha} - \frac{n}{2}$$

$$\int d^{n}l \frac{l^{2}}{(l^{2} - M^{2})^{\alpha}} = \int d^{n}l \frac{(l^{2} - M^{2}) + M^{2}}{(l^{2} - M^{2})^{\alpha}}$$

$$\operatorname{Re}\left[(-1)^{\varepsilon}\right] = 1 - \varepsilon^{2} \frac{\pi^{2}}{2} + O\left(\varepsilon^{4}\right)$$

• "plus distribution" — to isolate $\frac{1}{\varepsilon}$ poles

Consider
$$\frac{1}{(1-z)^{1+2\varepsilon}}$$
$$= \frac{1}{(1-z)^{1+2\varepsilon}} - \left[\delta(1-z)\int_{0}^{1} \frac{dz'}{(1-z')^{1+2\varepsilon}} + \frac{1}{2\varepsilon}\delta(1-z)\right]$$
$$(ance)$$
$$because \int_{0}^{1} \frac{dz'}{(1-z')^{1+2\varepsilon}} = \frac{-1}{2\varepsilon} \text{ for } \varepsilon \to 0^{-1}$$
$$\equiv \left[\frac{1}{(1-z)^{1+2\varepsilon}}\right]_{+} - \frac{1}{2\varepsilon}\delta(1-z)$$
$$= \frac{1}{(1-z)_{+}} - 2\varepsilon \left[\frac{\ln(1-z)}{1-z}\right]_{+} + O\left(\varepsilon^{2}\right) - \frac{1}{2\varepsilon}\delta(1-z)$$
$$because \quad \frac{1}{(1-z)^{2\varepsilon}} = (1-z)^{-2\varepsilon}$$
$$= 1 - 2\varepsilon \ln(1-z) + \cdots$$

• $[\cdots]_+$ is a distribution

$$\int_{0}^{1} dz f(z) \left[\frac{1}{1-z} \right]_{+}$$

$$\equiv \int_{0}^{1} dz \frac{f(z)}{1-z} - \int_{0}^{1} dz f(z) \delta(1-z) \int_{0}^{1} \frac{dz'}{(1-z')}$$

$$= \int_{0}^{1} dz \frac{f(z) - f(1)}{1-z}, \text{ which is finite.}$$

Appendix C Angular integrals in *n* **dimensions**

• In *n* dimensions

$$\int d^n x = \int r^{n-1} d\Omega_{n-1}$$

•

$$\int d\Omega_n = \int_0^{\pi} d\theta_{n-1} \sin^{n-1} \theta_{n-1} \int_0^{\pi} d\theta_{n-2} \sin^{n-2} \theta_{n-2} \cdots \int_0^{\pi} d\theta_1 \sin \theta_1 \int_0^{2\pi} d\phi$$

$$\Rightarrow \int d\Omega_1 = \int_0^{2\pi} d\phi \qquad \longrightarrow \Omega_1 = 2\pi$$

$$\int d\Omega_2 = \int_0^{\pi} d\theta_1 \sin \theta_1 \int d\Omega_1 \qquad \longrightarrow \Omega_2 = 4\pi$$
:

$$\int d\Omega_n = \int_0^{\pi} d\theta_{n-1} \sin^{n-1} \theta_{n-1} \int d\Omega_{n-1}$$

$$\Rightarrow \qquad \Omega_n = \frac{2^n \pi^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)}{\Gamma(n)} \qquad \text{from repeated use of } B\left(\alpha, \beta\right)$$

$$= \frac{2\pi^{\frac{n+1}{2}}}{\Gamma\left(\frac{n+1}{2}\right)} \qquad \text{because } \Gamma\left(n\right) = \frac{2^{n-1} \Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}$$

Appendix D Two-particle phase space in *n* **dimensions**

$$\int_{PS_{2}(p)} dk \, dq = \int \frac{d^{n-1}\vec{k}}{(2\pi)^{n-1} 2k_{0}} \frac{d^{n-1}\vec{q}}{(2\pi)^{n-1} 2q_{0}} \cdot (2\pi)^{n} \,\delta^{n} \,(p-q-k)$$
with $k^{\mu} = \left(k_{0}, \vec{k}\right)$, etc.
Use $\frac{d^{n-1}\vec{q}}{2q_{0}} = \int d^{n}q \,\delta^{+} \left(q^{2} - Q^{2}\right)$, we get

$$\begin{split} \int_{PS_2(p)} dk \, dq &= \frac{1}{(2\pi)^{n-2}} \int \frac{d^{n-1}\vec{k}}{2k_0} \delta^+ \left((p-k)^2 - Q^2 \right) \\ &= \frac{1}{(2\pi)^{n-2}} \int \frac{dk \, k^{n-3}}{2} \int d\Omega_{n-2} \delta \left(\hat{s} - 2k\sqrt{\hat{s}} - Q^2 \right) \\ &\left(p^2 \equiv \hat{s}, k^2 = 0, k = \left| \vec{k} \right| \right) \\ \end{split}$$
Use $n = 4 - 2\varepsilon$, then in the c.m. frame $\left(p^\mu = \left(\sqrt{\hat{s}}, \vec{0} \right) \right)$,

$$\int_{PS_2(p)} dk \, dq = \frac{\Omega_{n-3}}{(2\pi)^{2(1-\varepsilon)}} \int \frac{dk \, k^{1-2\varepsilon}}{4\sqrt{\widehat{s}}} \int_0^\pi d\theta \, (\sin\theta)^{1-2\varepsilon} \cdot \delta\left(k - \frac{\widehat{s} - Q^2}{2\sqrt{\widehat{s}}}\right)$$

Use new variables:

$$z = \frac{Q^2}{\hat{s}}, y = \frac{1}{2}(1 + \cos\theta) \Rightarrow k = \frac{\sqrt{\hat{s}}}{2}(1 - z),$$

$$\int_{PS_2(p)} dk \, dq = \frac{1}{8\pi} \left(\frac{4\pi}{Q^2}\right)^{\varepsilon} \frac{z^{\varepsilon} \left(1-z\right)^{1-2\varepsilon}}{\Gamma\left(1-\varepsilon\right)} \int_0^1 dy \left[y \left(1-y\right)\right]^{-\varepsilon}$$

Appendix E Explicit Calculations

Consider 6000 $\int \frac{d^n k}{(2\pi)^n} \frac{\gamma_\mu \left(\not p - \not k\right) \gamma^\mu}{\left(k^2 + i\epsilon\right) \left((n-k)^2 + i\epsilon\right)}$ $\rightarrow \int \frac{d^n k}{(2\pi)^n} \int_0^1 dx \frac{(2-n)\left(\not p - \not k\right)}{\left[k^2 - 2k \cdot xp\right]^2}$ $(l \equiv k - xp)$ $= \int \frac{d^{n}l}{(2\pi)^{n}} \int_{0}^{1} dx \frac{(2-n)\left[(1-x)\not p - \not l\right]}{\left[l^{2} + i\epsilon\right]^{2}}$ $= \left[\left(1 - \frac{n}{2}\right) \not p \right] \cdot \int \frac{d^n l}{\left(2\pi\right)^n} \frac{1}{\left[l^2 + i\epsilon\right]^2}$ $\stackrel{\downarrow}{=} 0 \left(\begin{array}{c} \text{Because there is} \\ \text{no mass scale} \end{array} \right)$ $\left(\begin{array}{c} \text{of } \frac{1}{\varepsilon_{UV}} \text{ and } \frac{1}{\varepsilon_{IR}} \\ \text{Trick}: A = A - B + B \end{array}\right)$ $= \int \frac{d^{n}l}{(2\pi)^{n}} \left\{ \left[\frac{1}{(l^{2})^{2}} - \frac{1}{(l^{2} - \Lambda^{2})^{2}} \right] + \left[\frac{1}{(l^{2} - \Lambda^{2})^{2}} \right] \right\}$ IR div UV div. $=\frac{i}{16\pi^2}\left(\frac{1}{\varepsilon_{IR}}\right)+\frac{i}{16\pi}\left(\frac{1}{\varepsilon_{III}}\right),\qquad \left(\begin{array}{c}n-4=2\varepsilon_{IR}\\4-n=2\varepsilon_{IIV}\end{array}\right)$

consider the real emission process

Define the Mandelstam variables

$$\hat{s} = (p_1 + p_2)^2 = 2p_1 \cdot p_2$$
$$\hat{t} = (p_1 - p_3)^2 = -2p_1 \cdot p_3$$
$$\hat{u} = (p_2 - p_3)^2 = -2p_2 \cdot p_3$$

After averaging over colors and spins

$$\overline{|\mathcal{M}|^2} = \underbrace{\left(\frac{1}{2(1-\varepsilon)2}\right)}_{\text{Spin}} \cdot \underbrace{\left(\frac{1}{3} \cdot \frac{1}{8}\right) \cdot Tr\left(t^a t^a\right)}_{\text{Color}} \cdot (g\mu^{\varepsilon})^2}_{\left(1-\varepsilon\right)}$$
$$\cdot \left[\left(1-\varepsilon\right)\left(-\frac{\widehat{s}}{\widehat{t}} - \frac{\widehat{t}}{\widehat{s}}\right) - \frac{2\widehat{u}M^2}{\widehat{t}\widehat{s}} + 2\varepsilon\right]$$

Note: The d.o.f. of gluon polarization is $2(1 - \varepsilon)$, and that of quark polarization is 2. • In the parton c.m. frame, the constituent cross section $\hat{\sigma} = \frac{1}{2\hat{s}} \overline{|\mathcal{M}|^2} \cdot (PS_2)$ $= \frac{1}{2\hat{s}} \cdot \left\{ \frac{1}{4} \cdot \frac{1}{6} \cdot 2g_s^2 \mu^{2\varepsilon} g_w^2 (1-\varepsilon) \cdot \left[(1-\varepsilon) \left(-\frac{\hat{s}}{\hat{t}} - \frac{\hat{t}}{\hat{s}} \right) - \frac{2\hat{u}M^2}{\hat{t}\hat{s}} + 2\varepsilon \right] \right\}$ $\cdot \left\{ \frac{1}{8\pi} \left(\frac{4\pi}{M^2} \right)^{\varepsilon} \frac{1}{\Gamma(1-\varepsilon)} \hat{\tau}^{\varepsilon} (1-\hat{\tau})^{1-2\varepsilon} \int_0^1 dy \left[y (1-y) \right]^{-\varepsilon} \right\}$

where
$$y \equiv \frac{1}{2}(1 + \cos \theta)$$

Using $\hat{t} = -\hat{s}\left(1 - \frac{M^2}{\hat{s}}\right)(1 - y)$
 $\hat{u} = -\hat{s}\left(1 - \frac{M^2}{\hat{s}}\right)y$

and

$$\int_0^1 dy \, y^\alpha \, (1-y)^\beta = \frac{\Gamma \left(1+\alpha\right) \Gamma \left(1+\beta\right)}{\Gamma \left(2+\alpha+\beta\right)} \,,$$

we get

$$\hat{\sigma}_{qG} = \hat{\sigma}^{(0)} \frac{\alpha_s}{4\pi} \cdot \left\{ 2P_{q\leftarrow g}^{(1)}(\hat{\tau}) \left[\frac{-1}{\varepsilon} \frac{\Gamma(1-\varepsilon)}{\Gamma(1-2\varepsilon)} + \ln \frac{M^2(1-\hat{\tau})^2}{4\pi\mu^2\hat{\tau}} \right] + \frac{3}{2} + \hat{\tau} - \frac{3}{2}\hat{\tau}^2 \right\},\$$

with

$$P_{q \leftarrow g}^{(1)}(\hat{\tau}) = \frac{1}{2} \left[\hat{\tau}^2 + (1 - \hat{\tau})^2 \right]$$
$$\hat{\sigma}^{(0)} \equiv \frac{\pi}{12} g_w^2 \frac{1}{\hat{s}}$$