Lepton-hadron Collider

C.–P. Yuan

Michigan State University

Typesetting: prepared by Jianghao Yu at MSU

PHY905-004

C.–P. Yuan (MSU)

Project 3

1. Use CalcHEP or MadGraph to calculate the total cross section of DIS process

$$\nu_{\mu} + P \to \mu^{-} + X, \tag{1}$$

where the energy of ν_{μ} is 100 GeV, and the proton is at rest. (You only need to consider $u, d, s, \bar{u}, \bar{d}, \bar{s}$ quarks inside proton.)

2. Repeat the above calculation for

$$\bar{\nu}_{\mu} + P \to \mu^+ + X,$$
 (2)

and compare their cross sections. Again, $E_{\nu_{\mu}} = 100$ GeV.

3. If the target is a neutron (at rest), we can invoke

PHY905-004 C.–P. Yuan (MSU)

2

(flavor) isospin symmetry

$$u^P = d^N$$
 and $d^P = u^N$. (3)

Compare $\sigma(\bar{\nu}_{\mu}P \to \mu^+ X)$ with $\sigma(\nu_{\mu}N \to \mu^- X)$.

4. Try to explain all the above results qualitatively using the quark parton model.

C.–P. Yuan (MSU)