Probing Electroweak Symmetry Breaking in the TeV region
 C．－P．Yuan
 袁簡鵬

Michigan State University \＆
Center for High Energy Physics，PKU
October I8，201I＠ITP，PKU

EW Effective Lagrangian \＆
 WW Scattering＠LHC

Jianghao Yu于江浩

September 09， 2010
Michigan State University

The Road Map

Energy				
Scale:	preSpS	SpS	LEP	Tevatron
Effective	4-fermi Lag. below WZ	Chiral Lag. Theory:	below Higgs	Chiral Lag prefer light higgs

\bigcirc

Energy

Scale:

Observable \& Parametrization

- LEP I \& II, SLD, Tevatron Data:

Atomic parity	$Q_{W}(C s)$	-72.62 ± 0.46	-73.17 ± 0.03
violation	$Q_{W}(T l)$	-116.6 ± 3.7	-116.78 ± 0.05
Muon $g-2$	$\frac{1}{2}\left(g_{\mu}-2-\frac{\alpha}{\tau}\right)\left[10^{-9}\right]$	4511.07 ± 0.82	4509.82 ± 0.10
--nucleon scattering	g_{L}^{2}	0.30005 ± 0.00137	0.30378 ± 0.00021
	g_{R}^{2}	0.03076 ± 0.00110	0.03006 ± 0.00003
$\nu-e$ scattering	$g_{V}^{\nu e}$	-0.040 ± 0.015	-0.0396 ± 0.0003
	$g_{A}^{\nu e}$	-0.507 ± 0.014	-0.5064 ± 0.0001
$e^{+} e^{-} \rightarrow f \bar{f}$	$\Gamma_{Z}[\mathrm{GeV}]$	2.4952 ± 0.0023	2.4968 ± 0.0011
at Z-pole	$\sigma_{h}^{0}[\mathrm{nb}]$	41.541 ± 0.037	41.467 ± 0.009
	R_{e}^{0}	20.804 ± 0.050	20.756 ± 0.011
	R_{μ}^{0}	20.785 ± 0.033	20.756 ± 0.011
	R_{τ}^{0}	20.764 ± 0.045	20.801 ± 0.011
	R_{b}	0.21629 ± 0.00066	0.21578 ± 0.00010
	R_{c}	0.1721 ± 0.0030	0.17230 ± 0.00004
	$A_{f b}^{0, e}$	0.0145 ± 0.0025	0.01622 ± 0.00025
	$A_{f b}^{0, \mu}$	0.0169 ± 0.0025	0.01622 ± 0.00025
	$A_{f b}^{0, \tau}$	0.0188 ± 0.0017	0.01622 ± 0.00025
	$A_{f b}^{0, b}$	0.0992 ± 0.0016	0.1031 ± 0.0008
	$A_{f b}^{0, c}$	0.0707 ± 0.0035	0.0737 ± 0.0006
	$\sin ^{2} \theta_{e f f}^{l e p t}\left(Q_{f b}\right)$	0.2319 ± 0.0012	0.23152 ± 0.00014
	A_{e}	0.1514 ± 0.0019	0.1471 ± 0.0011
	A_{μ}	0.142 ± 0.015	0.1471 ± 0.0011
	A_{τ}	0.1433 ± 0.0041	0.1471 ± 0.0011
Fermion pair	$\sigma_{f}(f=q, \mu, \tau)$	Ref. 3	Ref. 3
production at	$A_{f b}^{f}(f=\mu, \tau)$	Ref. 3	Ref. 3
LEP 2	$d \sigma_{e} / d \cos \theta$	Ref. 26	Ref. 27
W pair	$d \sigma_{W} / d \cos \theta$	Ref. 28	Ref. 28
IV m-as	$M_{W_{V}}[\mathrm{GeV}]$	$80.410+n \mathrm{n} 2 \times$	$76+n \times 17$

- Parametrization: bosonic sector

Oblique 2-point function:

Peskin, Takeuchi

$$
\begin{aligned}
\frac{\alpha}{4 s^{2} c^{2}} S & =\Pi_{Z Z}^{\prime}-\frac{c^{2}-s^{2}}{c s} \Pi_{Z \gamma}^{\prime}-\Pi_{\gamma \gamma}^{\prime} \\
\alpha T & =\frac{\Pi_{W W}(0)}{M_{W}^{2}}-\frac{\Pi_{Z Z}(0)}{M_{Z}^{2}} \\
\frac{\alpha}{4 s^{2}}(S+U) & =\Pi_{W W}^{\prime}-\frac{c}{s} \Pi_{Z \gamma}^{\prime}-\Pi_{\gamma \gamma}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
S & =-0.13 \pm 0.10 \\
T & =-0.17 \pm 0.12 \\
U & =0.22 \pm 0.13 \\
\left(m_{h}\right. & =117 \mathrm{GeV})
\end{aligned}
$$

Triple GB Coupling 3-point function:

$$
\begin{aligned}
\mathcal{L}_{T G C}= & \mathrm{i} e\left[g_{1}^{\gamma} A_{\mu}\left(W_{\nu}^{-} W^{+\mu \nu}-W_{\nu}^{+} W^{-\mu \nu}\right)+\kappa^{\gamma} W_{\mu}^{-} W_{\nu}^{+} A^{\mu \nu}+\frac{\lambda^{\gamma}}{M_{W}^{2}} W_{\mu}^{-\nu} W_{\nu \rho}^{+} A^{\rho \mu}\right] \\
& +\mathrm{i} e \frac{c_{w}}{s_{w}}\left[g_{1}^{Z} Z_{\mu}\left(W_{\nu}^{-} W^{+\mu \nu}-W_{\nu}^{+} W^{-\mu \nu}\right)+\kappa^{Z} W_{\mu}^{-} W_{\nu}^{+} Z^{\mu \nu}+\frac{\lambda^{Z}}{M_{W}^{2}} W_{\mu}^{-\nu} W_{\nu \rho}^{+} Z\right.
\end{aligned}
$$

couplings	PDG bounds	indirect limits	Unit. $W^{+} W^{-}$	Unit. $W^{ \pm} Z$
Δg_{1}^{Z}	$-0.016_{-0.019}^{+0.022}$	$[-0.051,0.0092]$	2.7	0.22
$\Delta \kappa_{Z}$	$-0.076_{-0.056}^{+0.059}$	$[-0.050,0.0039]$	0.22	3.5
λ_{Z}	$-0.088_{-0.057}^{+0.060}$	$[-0.061,0.10]$	0.15	0.14
g_{5}^{Z}	-0.07 ± 0.09	$[-0.085,0.049]$	2.7	1.7
g_{4}^{Z}	-0.30 ± 0.17	-	2.7	0.22
$\tilde{\kappa}_{Z}$	$-0.12_{-0.04}^{+0.06}$	-	2.7	3.5
$\tilde{\lambda}_{Z}$	-0.09 ± 0.07	-	0.15	0.14

New-Physics Resonance

- Model independent new physics:

- Low-energy effects (integrate out resonances):

$$
\mathcal{L}_{\Phi}=\frac{z}{2}\left[\Phi\left(M^{2}+A\right) \Phi+2 \Phi J\right]
$$

$$
\mathcal{L}_{\Phi}^{\mathrm{efff}}=-\frac{z}{2 M^{2}} J J+\frac{z}{2 M^{4}} J A J+O\left(M^{-6}\right) .
$$

Usually, the effects from heavy resonance are either suppressed by inverse Appelquist, C M, or renormalize parameters of the low-energy theory. (Decoupling Theorem)
Special case: Non-decoupling effects! (example: oblique(chiral fermion), zbb, K/B-mixing...)

WW Scattering (Non-decoupling Chamnel)

$W_{L}^{+}\left(p_{+}\right)+W_{L}^{-}\left(p_{-}\right) \rightarrow W_{L}^{+}\left(q_{+}\right)+W_{L}^{-}\left(q_{-}\right)$Scattering in COM frame

(a)
(e)

(b)

(c)

(f)

(d)

(g)

$$
\varepsilon_{L}\left(p_{ \pm}\right)=\left(\frac{p}{M_{W}}, 0,0, \pm \frac{E}{M_{W}}\right)
$$

$$
\varepsilon_{L}\left(q_{ \pm}\right)=\left(\frac{p}{M_{W}}, 0, \pm \frac{E}{M_{W}} \sin \theta, \pm \frac{E}{M_{W}} \cos \theta\right)
$$

$$
\mathcal{T}^{a-d}=g_{W}^{2}\left\{\frac{p^{4}}{M_{W}^{4}}\left[3-6 \cos \theta-\cos ^{2} \theta\right]+\frac{p^{2}}{M_{W}^{2}}\left[\frac{9}{2}-\frac{11}{2} \cos \theta-2 \cos ^{2} \theta\right]\right\},
$$

$$
\mathcal{T}^{e}=g_{W}^{2}\left\{\frac{p^{4}}{M_{W}^{4}}\left[-3+6 \cos \theta+\cos ^{2} \theta\right]+\frac{p^{2}}{M_{W}^{2}}\left[-4+6 \cos \theta+2 \cos ^{2} \theta\right]\right\}
$$

$$
\mathcal{T}^{f-g}=g_{W}^{2}\{\quad 0
$$

$$
+\frac{p^{2}}{M_{W}^{2}}\left[-\frac{1}{2}-\frac{1}{2} \cos \theta\right]
$$

$$
\left.-\frac{M_{H}^{2}}{4 M_{W}^{2}}\left[\frac{s}{s-M_{H}^{2}}+\frac{t}{t-M_{H}^{2}}\right]\right\} .
$$

The differential cross section (neglecting particle masses)

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|\mathcal{T}|^{2}
$$

Performing a partial wave expansion

$$
\mathcal{T}(s, t)=16 \pi \sum_{J}(2 J+1) a_{J}(s) P_{J}(\cos \theta),
$$

The total cross section is

$$
\sigma=16 \pi \sum_{J}(2 J+1)\left|a_{J}(s)\right|^{2}
$$

Using the optical theorem

$$
\sigma=\frac{1}{s} \operatorname{Im} \mathcal{T}(s, t=0)
$$

the unitarity bound is

$$
\left|a_{J}(s)\right|^{2}=\operatorname{Im}\left(a_{J}(s)\right), \quad \text { or } \quad,\left|\operatorname{Re} a_{J}(s)\right| \leq 1 / 2 .
$$

Nondecoupling: In the $M_{H} \rightarrow \infty$ limit, $\mathcal{T}^{t o t}=-g_{W}^{2} \frac{M_{H}^{2}}{4 M_{W}^{2}}\left[\frac{s}{s-M_{H}^{2}}+\frac{t}{t-M_{H}^{2}}\right] \rightarrow \frac{u}{v^{2}}+\mathcal{O}\left(1 / M_{H}^{2}\right)$.

The Partial wave amplitude, without Higgs or other new physics, violate unitarity @ TeV scale.

Goldstone Boson Scattering

- To simplify our calculation, use the equivalent theorem:

$$
\times\left(1+O\left(\frac{m_{W}^{2}}{E^{2}}\right)\right) \cdot \frac{\text { Lee, Quigg and Thacker }}{\substack{\mathcal{T}\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right) \simeq \mathcal{T}\left(\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}\right)}}
$$

- Goldstone boson scattering process:

$$
\begin{aligned}
\mathcal{L}_{\text {Goldstone }}= & \frac{1}{2} \partial_{\mu} H \partial^{\mu} H+\frac{1}{2} \partial_{\mu} \pi^{0} \partial^{\mu} \pi^{0}+\partial_{\mu} \pi^{+} \partial^{\mu} \pi^{-}-\frac{m_{H}^{2}}{2} H^{2} \\
& -\frac{m_{H}^{2}}{2 v} H\left(H^{2}+\left(\pi^{0}\right)^{2}+2 \pi^{+} \pi^{-}\right)-\frac{m_{H}^{2}}{8 v^{2}}\left(H^{2}+\left(\pi^{0}\right)^{2}+2 \pi^{+} \pi^{-}\right)^{2}
\end{aligned}
$$

Low-energy Theorem (LET) (integrate out Higgs)
In the $m_{H} \rightarrow \infty$ limit, still $\mathcal{T}(\pi \pi \rightarrow \pi \pi) \rightarrow \frac{u}{v^{2}} \simeq \frac{s}{v^{2}}$

$$
\mathcal{T}\left(\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}\right)=-\frac{m_{H}^{2}}{v^{2}}\left(2+\frac{m_{H}^{2}}{s-m_{H}^{2}}+\frac{m_{H}^{2}}{t-m_{H}^{2}}\right)
$$

Similar to Pi-Pi Scattering in low-energy QCD (Understand chiral symmetry breaking)
Study WW scattering in EW chiral Lag. (Understand EW symmetry breaking)

EW Effective Theories

EW Chiral Lagrangian

- The SM Higgsless Lagrangian below the EW scale

$$
\mathcal{L}_{S M}=\mathcal{L}_{\text {kin }}(A, W, Z)+\mathcal{L}_{\text {kin }}\left(f, D_{\mu} f\right)+\mathcal{L}_{\text {mass }}(f)+\mathcal{L}_{\text {mass }}(G B)
$$

\square How to build an EW effective theory below EW scale with EW gauge symmetry?

- Introduce extra field to parametrize ignorance on EWSB

$$
\begin{aligned}
\Sigma(x)=e^{-i \pi^{a}(x) \tau^{a} / v} & \rightarrow g_{L}(x) \Sigma(x) g_{R}(x)^{\dagger}, \quad \text { with } S U(2)_{L} \otimes U(1)_{Y} \text { trans. } \\
V_{\mu}=\Sigma\left(D_{\mu} \Sigma\right)^{\dagger} & \rightarrow g_{L}(x) V_{\mu} g_{L}(x)^{\dagger}, \quad D_{\mu}=\partial_{\mu} \Sigma+i g W_{\mu} T^{a} \Sigma-\frac{i}{2} g^{\prime} \Sigma \tau^{3} B_{\mu}, \\
T=\Sigma \tau^{3} \Sigma^{\dagger} & \rightarrow g_{L}(x) T g_{L}(x)^{\dagger}, \quad \text { violate } S U(2)_{C} \text { symmetry. }
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {mass }}(f) & =-Q_{L} \Sigma M_{Q} Q_{R}-L_{L} \Sigma M_{L} L_{R}+\text { h.c. } . \\
\mathcal{L}_{\text {mass }}(G B) & =-\frac{v^{2}}{4} \operatorname{Tr}\left[V_{\mu} V^{\mu}\right] . \longleftarrow
\end{aligned}
$$

Anomalous Couplings (Bosonic Sector)

Appelquist, Bernard $\beta_{1}=l_{0} \frac{v^{2}}{\Lambda^{2}}$,
Longhitano $\quad \alpha_{i}=l_{i} \frac{v^{2}}{\Lambda^{2}}$,
$\Lambda=\operatorname{Min}\left(M_{S B}, 4 \pi f\right)$.

$$
\begin{aligned}
S & \equiv-\left.16 \pi \frac{d}{d q^{2}} \Pi_{3 B}\left(q^{2}\right)\right|_{q^{2}=0}=-16 \pi \alpha_{1} \\
\alpha T & \equiv \frac{e^{2}}{c^{2} s^{2} m_{Z}^{2}}\left(\Pi_{11}(0)-\Pi_{33}(0)\right)=2 g^{2} \beta_{1} \\
U & \left.\equiv 16 \pi \frac{d}{d q^{2}}\left[\Pi_{11}\left(q^{2}\right)-\Pi_{33}\left(q^{2}\right)\right]\right|_{q^{2}=0}=-16 \pi \alpha_{8}
\end{aligned}
$$

\mathcal{L}_{6}	$\equiv l_{6} \frac{v^{2}}{\Lambda^{2}} \operatorname{Tr}\left(V_{\mu} V_{\nu}\right) \operatorname{Tr}\left(T V^{\mu}\right) \operatorname{Tr}\left(T V^{\nu}\right)$,
\mathcal{L}_{7}	$\equiv l_{7} \frac{v^{2}}{\Lambda^{2}} \operatorname{Tr}\left(V_{\mu} V^{\mu}\right) \operatorname{Tr}\left(T V_{\nu}\right) \operatorname{Tr}\left(T V^{\nu}\right)$,

$\mathcal{L}_{8} \equiv l_{8} \frac{v^{2}}{\Lambda^{2}} \frac{g^{2}}{4}\left[\operatorname{Tr}\left(T W_{\mu \nu}\right)\right]^{2}, \quad S U(2)_{C}$-violation, U-parameter, TGC
$\mathcal{L}_{9} \equiv l_{9} \frac{}{\Lambda^{2}} \frac{g}{2} \operatorname{Tr}\left(T W_{\mu \nu}\right) \operatorname{Tr}\left(T\left[V^{\mu}, V^{\nu}\right]\right), \quad S U(2)_{C}$-violation, TGC
$\mathcal{L}_{10} \equiv l_{10} \frac{v^{2}}{\Lambda^{2}} \frac{1}{2}\left[\operatorname{Tr}\left(T V_{\mu}\right) \operatorname{Tr}\left(T V_{\nu}\right)\right]^{2}, \quad S U(2)_{C}$-violation, QGC
$\mathcal{L}_{11} \equiv l_{11} \frac{v^{2}}{\Lambda^{2}} g \epsilon{ }^{\mu \nu \rho \lambda} \operatorname{Tr}\left(T V_{\mu}\right) \operatorname{Tr}\left(V_{\nu} W_{\rho \lambda}\right), \quad$ P-vilation, TGC
$\mathcal{L}_{12} \equiv l_{12} \frac{v^{2}}{\Lambda^{2}} 2 g \operatorname{Tr}\left(T V_{\mu}\right) \operatorname{Tr}\left(V^{\nu} W^{\mu \nu}\right), \quad$ CP-vioaltion, TGC
$\mathcal{L}_{13} \equiv l_{13} \frac{v^{2}}{\Lambda^{2}} \frac{g g^{\prime}}{4} \epsilon{ }^{\mu \nu \rho \lambda} B_{\mu \nu} \operatorname{Tr}\left(T W_{\rho \lambda}\right), \quad$ CP-vioaltion, TGC
$\mathcal{L}_{14} \equiv l_{14} \frac{v^{2}}{\Lambda^{2}} \frac{g^{2}}{8} \epsilon{ }^{\mu \nu \rho \lambda} \operatorname{Tr}\left(T W_{\mu \nu}\right) \operatorname{Tr}\left(T W_{\rho \lambda}\right)$,
CP-vioaltion, TGC

$$
\begin{aligned}
\Delta \kappa_{\gamma} & =g^{2} \alpha_{2}+g^{2} \alpha_{3}+g^{2} \alpha_{9}, \\
\Delta \kappa_{Z} & =-g^{\prime 2} \alpha_{2}+g^{2} \alpha_{3}+g^{2} \alpha_{9}, \\
\Delta g_{1}^{Z} & =\frac{1}{c_{w}^{2}} g^{2} \alpha_{3}, \\
\Delta g_{5}^{Z} & =\frac{1}{c_{w}^{2}} g^{2} \alpha_{11}, \\
\Delta g_{1}^{\gamma} & =\Delta g_{5}^{\gamma}=0, \\
\Delta \lambda_{\gamma} & =\Delta \lambda_{Z}=0 .
\end{aligned}
$$

VVVV (with custodial sym):

$$
\begin{aligned}
\mathcal{L}_{4}= & \alpha_{4}\left[\frac{g^{4}}{2}\left[\left(W_{\mu}^{+} W^{-\mu}\right)^{2}+\left(W_{\mu}^{+} W^{+\mu}\right)\left(W_{\nu}^{-} W^{-\nu}\right)\right]\right. \\
& \left.+\frac{g^{4}}{c_{w}^{2}}\left(W_{\mu}^{+} Z^{\mu}\right)\left(W_{\nu}^{-} Z^{\nu}\right)+\frac{g^{4}}{4 c_{w}^{4}}\left(Z_{\mu} Z^{\mu}\right)^{2}\right] \\
\mathcal{L}_{5}= & \alpha_{5}\left[g^{4}\left(W_{\mu}^{+} W^{-\mu}\right)^{2}+\frac{g^{4}}{c_{w}^{2}}\left(W_{\mu}^{+} W^{-\mu}\right)\left(Z_{\nu} Z^{\nu}\right)+\frac{g^{4}}{4 c_{w}^{4}}\left(Z_{\mu} Z^{\mu}\right)^{2}\right]
\end{aligned}
$$

WW Scattering in Chiral Lag.

- WW scattering at LO

$$
\begin{aligned}
A\left(W_{L}^{-} W_{L}^{-} \rightarrow W_{L}^{-} W_{L}^{-}\right) & =-s / v^{2} \\
A\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right) & =-u / v^{2} \\
A\left(W_{L}^{+} W_{L}^{-} \rightarrow Z_{L} Z_{L}\right) & =s / v^{2} \\
A\left(Z_{L} Z_{L} \rightarrow Z_{L} Z_{L}\right) & =0
\end{aligned}
$$

Low-energy Theorem

Custodial Symmetry Relations:

$$
\begin{aligned}
& A\left(W_{L}^{-} W_{L}^{-} \rightarrow W_{L}^{-} W_{L}^{-}\right)=A(t, s, u)+A(u, t, s) \\
& A\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right)=A(s, t, u)+A(t, s, u) \\
& A\left(W_{L}^{+} W_{L}^{-} \rightarrow Z_{L} Z_{L}\right)=A(s, t, u) \\
& A\left(W_{L}^{-} Z_{L} \rightarrow W_{L}^{-} Z_{L}\right)=A(t, s, u) \\
& A\left(Z_{L} Z_{L} \rightarrow Z_{L} Z_{L}\right)=A(s, t, u)+A(t, s, u)+A(u, t, s) \\
& A^{(0)}=3 A(s, t, u)+A(t, s, u)+A(u, t, s) \\
& A^{(1)}=A(t, s, u)-A(u, t, s) \\
& A^{(2)}=A(t, s, u)+A(u, t, s)
\end{aligned}
$$

- Unitarity Constraints

Unitarization Models: K-matrix / Pade / IAM

S wave:

$$
\begin{aligned}
& a_{0}^{0}=\frac{1}{64 \pi}\left[+\frac{4 s}{v^{2}}+\frac{16}{3}\left(7 \alpha_{4}+11 \alpha_{5}\right) \frac{s^{2}}{v^{4}}\right] \\
& a_{0}^{2}=\frac{1}{64 \pi}\left[-\frac{2 s}{v^{2}}+\frac{32}{3}\left(2 \alpha_{4}+\alpha_{5}\right) \frac{s^{2}}{v^{4}}\right] \\
& a_{1}^{1}=\frac{1}{64 \pi}\left[+\frac{2 s}{3 v^{2}}+\frac{8}{3}\left(\alpha_{4}-2 \alpha_{5}\right) \frac{s^{2}}{v^{4}}\right] \\
& a_{2}^{0}=\frac{1}{64 \pi}\left[0+\frac{16}{15}\left(2 \alpha_{4}+\alpha_{5}\right) \frac{s^{2}}{v^{4}}\right] \\
& a_{2}^{2}=\frac{1}{64 \pi}\left[0+\frac{8}{15}\left(\alpha_{4}+2 \alpha_{5}\right) \frac{s^{2}}{v^{4}}\right]
\end{aligned}
$$

P wave:

New Vector Resonance?

- Adding Vector Triplet to delay unitarity violation:

$$
\begin{aligned}
& \mathcal{L}_{\rho}=\frac{1}{4} \operatorname{tr}\left\{\boldsymbol{\rho}_{\mu}\left(M_{\rho}^{2} g^{\mu \nu}+\mathbf{D}^{2} g^{\mu \nu}-\mathbf{D}^{\nu} \mathbf{D}^{\mu}+2 \mathrm{i} \mu_{\rho} g \mathbf{W}^{\mu \nu}+2 \mathrm{i} \mu_{\rho}^{\prime} g^{\prime} \mathbf{B}^{\mu \nu}\right) \boldsymbol{\rho}_{\nu}+2 \boldsymbol{\rho}_{\mu} \mathrm{J}^{\mu}\right\} \\
& \mathrm{j}_{\mu}=\mathrm{i} g_{\rho} v^{2} \mathbf{V}_{\mu}+\mathrm{i} g_{\rho}^{\prime} \nu^{2} \mathbf{T} \operatorname{tr}\left\{\mathbf{T} \mathbf{V}_{\mu}\right\}
\end{aligned}
$$

CCWZ Reparametrization of Vector Triplet:

$$
\begin{aligned}
\beta_{1} & =4 h_{\rho}\left(g_{\rho}+h_{\rho}\right) \frac{v^{2}}{2 M_{\rho}^{2}} \\
\alpha_{i} & =\mathcal{O}\left(\frac{v^{4}}{M_{\rho}^{4}}\right) \text { or } 0
\end{aligned}
$$

$$
A^{\rho}(s, t, u)=-g_{\rho}^{2}\left(\frac{s-u}{t-M^{2}}+\frac{s-t}{u-M^{2}}+3 \frac{s}{M^{2}}\right)
$$

Still need UV cancellation

$$
\begin{aligned}
& \xi \tilde{\xi}^{\dagger}=\xi^{2}=\Sigma=e^{i \pi^{a} \tau^{a} / v} \\
& \mathcal{V}_{\mu}=\frac{i}{2}\left(\xi^{\dagger} D_{\mu} \xi+\xi D_{\mu} \xi^{\dagger}\right) \quad \text { and } \quad \mathcal{A}_{\mu}=\frac{i}{2}\left(\xi^{\dagger} D_{\mu} \xi-\xi D_{\mu} \xi^{\dagger}\right) \\
& \mathcal{V} \rightarrow U_{C} \mathcal{V} U_{C}^{\dagger}-\left(D_{\mu} U_{C}\right) U_{C}^{\dagger} \quad \text { and } \quad \mathcal{A} \rightarrow U_{C} \mathcal{A} U_{C}^{\dagger} \text {. }
\end{aligned}
$$

Gauge Field
$\boldsymbol{\rho} \rightarrow U_{C} \boldsymbol{\rho} U_{C}^{\dagger}-i \frac{2 g_{\rho} v}{M}\left(D_{\mu} U_{C}\right) U_{\rho}^{\dagger}$
$\mathcal{L}_{\text {int }}=-g_{\rho}^{2} v^{2} \operatorname{tr}\left[\left(\mathcal{V}+i \frac{M}{2 g_{\rho} v} \rho\right)^{2}\right]=-g_{\rho}^{2} \nu^{2} \operatorname{tr}[\mathcal{V}]-i g_{\rho} \nu M \operatorname{tr}[\mathcal{V} \rho]+\frac{M^{2}}{4} \operatorname{tr}[\rho \rho]$
Higgsless, BESS, Three Site...

Matter Field
$\boldsymbol{\rho}_{\mu} \rightarrow \xi^{\dagger} \boldsymbol{\rho}_{\mu} \xi$

$$
\mathcal{L}_{\text {kin }}=-2 v^{2} \operatorname{tr}\left[\mathcal{A}_{\mu} \mathcal{A}^{\mu}\right] \quad \text { and } \quad \mathcal{L}_{\text {int }}=-g_{\rho} v^{2} \operatorname{tr}\left[\rho_{\mu} \mathcal{A}^{\mu}\right.
$$

Technicolor, HLS..

Adding a Vector Singlet:

$$
\mathcal{L}_{\omega}=\frac{1}{2}\left[\omega_{\mu}\left(\left(M^{2}+\partial^{2}\right) g^{\mu \nu}-\partial^{\nu} \partial^{\mu}\right) \omega_{\nu}+2 \omega_{\mu} j^{\mu}\right]
$$

$$
j_{\mu}=\mathrm{i} \frac{h_{\omega} v^{2}}{2} \operatorname{tr}\left\{\mathrm{TV}_{\mu}\right\}-
$$

New Scalar Resonance?

Scalar Singlet

$$
\begin{gathered}
\mathcal{L}_{\sigma}=-\frac{1}{2}\left[\sigma\left(M_{\sigma}^{2}+\partial^{2}\right) \sigma+2 \sigma j\right] \\
j=-\frac{g_{\sigma} v}{2} \operatorname{tr}\left\{\mathbf{V}_{\mu} \mathbf{V}^{\mu}\right\}-\frac{h_{\sigma} v}{2}\left(\operatorname{tr}\left\{\mathbf{T} \mathbf{V}_{\mu}\right\}\right)^{2}
\end{gathered}
$$

$$
\left\{\begin{aligned}
\alpha_{4}=0 & \alpha_{6}=0 \\
\alpha_{5}=g_{\sigma}^{2}\left(\frac{v^{2}}{8 M_{\sigma}^{2}}\right) & \alpha_{7}=2 g_{\sigma} h_{\sigma}\left(\frac{v^{2}}{8 M_{\sigma}^{2}}\right) \\
A^{\sigma}(s, t, u)=-\frac{g_{\sigma}^{2}}{v^{2}} \frac{s^{2}}{s-M^{2}} & \alpha_{10}=2 h_{\sigma}^{2}\left(\frac{v^{2}}{8 M_{\sigma}^{2}}\right)
\end{aligned}\right.
$$

$g=I$, strong cancellation for s term

The effective theory with Higgs mechanism is called Linearized EW Lagrangiantiggs Mechanism

Extra dimension

Scalar Triplet

$$
\begin{gathered}
\mathcal{L}_{\pi}=-\frac{1}{4} \operatorname{tr}\left\{\boldsymbol{\pi}\left(M_{\pi}^{2}+\mathbf{D}^{2}\right) \boldsymbol{\pi}+2 \boldsymbol{\pi} \mathbf{j}\right\} \\
\mathbf{j}=\frac{h_{\pi} v}{2} \mathbf{V}_{\mu} \operatorname{tr}\left\{\mathbf{T} \mathbf{V}^{\mu}\right\}+\frac{h_{\pi}^{\prime} v}{2} \mathbf{T} \operatorname{tr}\left\{\mathbf{V}_{\mu} \mathbf{V}^{\mu}\right\}+\frac{k_{\pi} v}{2} \mathbf{T}\left(\operatorname{tr}\left\{\mathbf{T} \mathbf{V}_{\mu}\right\}\right)^{2}
\end{gathered}
$$

(Higgs mechanism offers $g=1$)

Cheung, Chiang, Yuan $v_{s_{w w}}$ (Gev)

$$
\begin{array}{ll}
\alpha_{4}=0 & \alpha_{6}=h_{\pi}^{2}\left(\frac{v^{2}}{16 M_{\pi}^{2}}\right) \\
\alpha_{5}=2 h_{\pi}^{\prime 2}\left(\frac{v^{2}}{16 M_{\pi}^{2}}\right) & \alpha_{7}=2 h_{\pi}^{\prime}\left(h_{\pi}+2 k_{\pi}\right)\left(\frac{v^{2}}{16 M_{\pi}^{2}}\right)
\end{array}
$$

$$
\alpha_{10}=4 k_{\pi}\left(h_{\pi}+k_{\pi}\right)\left(\frac{v^{2}}{16 M_{\pi}^{2}}\right)
$$

Linearized EW Lagrangian

- Effective theory with Higgs mechanism above EW scale:
- Its gauge group contains $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})$ symmetry;
- All the SM particles are incorporated as fund. or composite fields;
- At low energy, it reduces to SM via decoupling heavy particles;
- More global and local symmetries can be imposed.
- The linearized EW effective Lagrangian

Dimension-6 Operators

	Operator	Notation	Operator	Notation	Buchmuller,Wyler
S	$\partial_{\mu}\left(\phi^{\dagger} \phi\right) \partial^{\mu}\left(\phi^{\dagger} \phi\right)$	$\mathcal{O}_{\partial \phi}$	$\frac{1}{3}\left(\phi^{\dagger} \phi\right)^{3}$	$\mathcal{O}_{\phi 6}$	
V	$\epsilon^{a b c} W_{\mu}^{a \nu} W_{\nu}^{b \lambda} W_{\lambda}^{c \mu}$	$\mathcal{O}_{W 3}$	$\epsilon^{a b c} G_{\mu}^{a \nu} G_{\nu}^{b \lambda} G_{\lambda}^{c \mu}$	$\mathcal{O}_{G 3}$	
	$\phi^{\dagger} \phi\left(D^{\mu} \phi\right)^{\dagger} D_{\mu} \phi$	$\mathcal{O}_{\phi}^{(1)}$	$\left(\phi^{\dagger} D_{\mu} \phi\right)\left(\left(D^{\mu} \phi\right)^{\dagger} \phi\right)$	$\mathcal{O}_{\phi}^{(3)}$	
Oblique	$\phi^{\dagger} \sigma_{a} \phi W_{\mu \nu}^{a} B^{\mu \nu}$	$\mathcal{O}_{W B}$			
Obique	$\frac{1}{2} \phi^{\dagger} \phi W_{\mu \nu}^{a} W_{\mu \nu}^{a}$ $\frac{1}{2} \phi^{\dagger} \phi G_{\mu \nu}^{A} G_{\mu \nu}^{A}$	$\mathcal{O}_{W W}{ }^{\text {a }}$ $\mathcal{O}_{G G}$	$\frac{1}{2} \phi^{\dagger} \phi B^{\mu \nu} B^{\mu \nu}$	$\mathcal{O}_{B B}$	
	${ }_{2}{ }_{2} \phi^{\prime} \phi G_{\mu \nu} G_{\mu \nu}$				
	$\begin{aligned} & \left(\phi^{\top} i D_{\mu} \phi\right)\left(l_{L} \gamma^{\mu} l_{L}\right) \\ & \left(\phi^{\dagger} i D_{\mu} \phi\right)\left(\overline{e_{R}} \gamma^{\mu} e_{R}\right) \end{aligned}$	$\begin{aligned} & \mathcal{O}_{\phi l}^{(1)} \\ & \mathcal{O}_{\phi \rho}^{(1)} \end{aligned}$	$\left(\phi^{\top} \sigma_{a} i D_{\mu} \phi\right)\left(l_{L} \gamma^{\mu} \sigma_{a} l_{L}\right)$	$\mathcal{O}_{\phi l}^{(0)}$	
SVF	$\left(\phi^{\dagger} i D_{\mu} \phi\right)\left(\overline{q_{L}} \gamma^{\mu} q_{L}\right)$	$\mathcal{O}_{\phi q}^{(1)}$	$\left(\phi^{\dagger} \sigma_{a} i D_{\mu} \phi\right)\left(\overline{q_{L}} \gamma^{\mu} \sigma_{a} q_{L}\right)$	$\mathcal{O}_{\phi q}^{(3)}$	
	$\left(\phi^{\dagger} i D_{\mu} \phi\right)\left(\overline{u_{R}} \gamma^{\mu} u_{R}\right)$	$\mathcal{O}_{\text {¢u }}$	$\left(\phi^{\dagger} i D_{\mu} \phi\right)\left(\overline{d_{R}} \gamma^{\mu} d_{R}\right)$	$\mathcal{O}_{\phi d}^{(1)}$	
	$\left(\phi^{T} i \sigma_{2} i D_{\mu} \phi\right)\left(\overline{u_{R}} \gamma^{\mu} d_{R}\right)$	$\mathcal{O}_{\text {¢ud }}$			
	$\frac{1}{2}\left(\overline{l_{L}} \gamma_{\mu} l_{L}\right)\left(\overline{l_{L}} \gamma^{\mu} l_{L}\right)$	$\mathcal{O}_{l l}^{(1)}$	$\frac{1}{2}\left(\overline{l_{L}} \gamma_{\mu} \sigma_{a} l_{L}\right)\left(\overline{l_{L}} \gamma^{\mu} \sigma_{a} l_{L}\right)$	$\mathcal{O}_{l l}^{(3)}$	
LLLL	$\frac{1}{2}\left(\overline{q_{L}} \gamma_{\mu} q_{L}\right)\left(\overline{q_{L}} \gamma^{\mu} q_{L}\right)$	$\mathcal{O}_{q q}^{(1,1)}$	$\frac{1}{2}\left(\overline{q_{L}} \gamma_{\mu} \sigma_{a} q_{L}\right)\left(\overline{q_{L}} \gamma^{\mu} \sigma_{a} q_{L}\right)$	$\mathcal{O}_{q q}^{(1,3)}$	
	$\left(\overline{l_{L}} \gamma_{\mu} l_{L}\right)\left(\overline{q_{L}} \gamma^{\mu} q_{L}\right)$	$\mathcal{O}_{l q}^{(1)}$	$\left(\overline{l_{L}} \gamma_{\mu} \sigma_{a} l_{L}\right)\left(\overline{q_{L}} \gamma^{\mu} \sigma_{a} q_{L}\right)$	$\mathcal{O}_{l q}^{(3)}$	
	$\frac{1}{2}\left(\overline{q_{L}} \gamma_{\mu} \lambda_{A} q_{L}\right)\left(\overline{q_{L}} \gamma^{\mu} \lambda_{A} q_{L}\right)$	$\mathcal{O}_{q q}^{(8,1)}$	$\frac{1}{2}\left(\overline{q_{L}} \gamma_{\mu} \sigma_{a} \lambda_{A} q_{L}\right)\left(\overline{q_{L}} \gamma^{\mu} \sigma_{a} \lambda_{A} q_{L}\right)$	$\mathcal{O}_{q q}^{(8,3)}$	
			$\frac{1}{2}\left(\overline{e_{R}} \gamma_{\mu} e_{R}\right)\left(\overline{e_{R}} \gamma^{\mu} e_{R}\right)$	$\mathcal{O}_{e e}$	
	$\frac{1}{2}\left(\overline{u_{R}} \gamma_{\mu} u_{R}\right)\left(\overline{u_{R}} \gamma^{\mu} u_{R}\right)$	$\mathcal{O}_{u u_{u}}{ }^{1}$	$\frac{1}{2}\left(\overline{d_{R}} \gamma_{\mu} d_{R}\right)\left(\overline{d_{R}} \gamma^{\mu} d_{R}\right)$	$\mathcal{O}_{\text {dd }}{ }^{(1)}$	
RRRR	$\left(\overline{e_{R}} \gamma_{\mu} e_{R}\right)\left(\overline{u_{R}} \gamma^{\mu} u_{R}\right)$	$\mathcal{O}_{\text {eu }}$	$\left(\overline{e_{R}} \gamma_{\mu} e_{R}\right)\left(\overline{d_{R}} \gamma^{\mu} d_{R}\right)$	$\mathcal{O}_{\text {ed }}$	
	$\left(\overline{u_{R}} \gamma_{\mu} u_{R}\right)\left(\overline{d_{R}} \gamma^{\mu} d_{R}\right)$	$\mathcal{O}_{u d}^{(1)}$			
	$\frac{1}{2}\left(\overline{u_{R}} \gamma_{\mu} \lambda_{A} u_{R}\right)\left(\overline{u_{R}} \gamma^{\mu} \lambda_{A} u_{R}\right)$	$\mathcal{O}_{u u}^{(8)}$	$\frac{1}{2}\left(\overline{d_{R}} \gamma_{\mu} \lambda_{A} d_{R}\right)\left(\overline{d_{R}} \gamma^{\mu} \lambda_{A} d_{R}\right)$	$\mathcal{O}_{d d}^{(8)}$	
	$\left(\overline{u_{R}} \gamma_{\mu} \lambda_{A} u_{R}\right)\left(\overline{d_{R}} \gamma^{\mu} \lambda_{A} d_{R}\right)$	$\mathcal{O}_{u d}^{(8)}$			
	$\left(\overline{l_{L}} e_{R}\right)\left(\overline{e_{R}} l_{L}\right)$	$\mathcal{O}_{l e}$	$\left(\overline{q_{L}} e_{R}\right)\left(\overline{e_{R}} q_{L}\right)$	$\mathcal{O}_{q e}$	
	$\left(\overline{l_{L}} u_{R}\right)\left(\overline{u_{R}} l_{L}\right)$	$\mathcal{O}_{l u}$	$\left(\overline{l_{L}} d_{R}\right)\left(\overline{d_{R}} l_{L}\right)$	$\mathcal{O}_{l d}$	
LRRL	$\left(\overline{q_{L}} u_{R}\right)\left(\overline{u_{R}} q_{L}\right)$	$\mathcal{O}_{q u}^{(1)}$	$\left(\overline{q_{L}} d_{R}\right)\left(\overline{d_{R}} q_{L}\right)$	$\mathcal{O}_{q d}^{(1)}$	
	$\left(\overline{l_{L}} e_{R}\right)\left(\overline{d_{R}} q_{L}\right)$	$\mathcal{O}_{\text {qde }}$			
	$\left(\overline{q_{L}} \lambda_{A} u_{R}\right)\left(\overline{u_{R}} \lambda_{A} q_{L}\right)$	$\mathcal{O}_{q u}^{(8)}$	$\left(\overline{q_{L}} \lambda_{A} d_{R}\right)\left(\overline{d_{R}} \lambda_{A} q_{L}\right)$	$\mathcal{O}_{q d}{ }^{(8)}$	

B-L $\epsilon_{A B C}\left(\overline{l_{I}} i \sigma_{\Omega} a_{I}^{c} A\right)\left(\overline{d_{n}^{B}} u_{D}^{c} C\right) \quad \mathcal{O}_{1 A_{A C}}\left(\overline{a_{I}^{B}} i \sigma_{\Omega} a_{I}^{c} C\right)\left(\overline{\bar{e}_{D}} u_{\infty}^{c} A\right) \mathcal{O}$

Dim-6 Operators (Bsosonic Sector)

Connections between linear and chiral Lag.

	ed Lag.
$-\frac{4 \beta_{1}}{v^{2}} \mathcal{O}_{\Phi, 1}$	$\mathcal{O}_{\Phi, 1}=\left[\left(D_{\mu} \Phi\right)^{\dagger} \Phi\right]\left[\Phi^{\dagger}\left(D^{\mu} \Phi\right)\right]$
$\frac{4 a_{1}}{v^{2}} \mathcal{O}_{B W}$	$\mathcal{O}_{B W}=\Phi^{\dagger} \hat{B}_{\mu \nu} \hat{W}^{\mu \nu} \Phi$,
$\frac{8 c^{2}}{v^{2}} \mathcal{O}_{B}$	$\mathcal{O}_{B}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{B}^{\mu \nu}\left(D_{\nu} \Phi\right)$,
$\frac{8_{\text {saz }}}{v^{2}} \mathcal{O}_{W}$	$\mathcal{O}_{W}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}^{\mu \nu}\left(D_{\nu} \Phi\right)$,
	$\mathcal{O}_{4}^{(8)}=\left[\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\nu} \Phi\right)+\left(D_{\nu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)\right]^{2}$,
$\frac{16 a c^{*}}{\sigma^{4}} \mathcal{O}_{5}^{(8)}$	$\mathcal{O}_{5}^{(8)}=\left[\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)\right]^{2}$,
- $-\frac{64 a^{\circ}}{0^{\circ}} \mathcal{O}_{6}^{(10)}$	$\mathcal{O}_{6}^{(10)}=\left[\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\nu} \Phi\right)\right]\left[\Phi^{\dagger}\left(D^{\mu} \Phi\right)\right]\left[\Phi^{\dagger}\left(D^{\nu} \Phi\right)\right],$
$-\frac{64 a}{v^{0}} O_{7}^{(10)}$	$\mathcal{O}_{7}^{(10)}=\left[\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)\right]\left[\Phi^{\dagger}\left(D_{\nu} \Phi\right)\right]\left[\Phi^{\dagger}\left(D^{\nu} \Phi\right)\right],$
$-\frac{4 a s}{v^{*}} \mathcal{O}_{8}^{(8)}$	$\mathcal{O}_{8}^{(8)}=\left[\Phi^{\dagger} \hat{W}_{\mu \nu} \Phi\right]^{2},$
$-\frac{16 a 0}{v^{4}} O_{9}^{(8)}$	$\mathcal{O}_{9}^{(8)}=\left[\Phi^{\dagger} \hat{W}_{\mu \nu} \Phi\right]\left[\left(D^{\mu} \Phi\right)^{\dagger}\left(D^{\nu} \Phi\right)\right]$
$\frac{128 \times 1}{v^{*}} \mathcal{O}_{10}^{(12)}$	$\mathcal{O}_{10}^{(12)}=\left(\left[\Phi^{\dagger}\left(D_{\mu} \Phi\right)\right]\left[\Phi^{\dagger}\left(D_{\nu} \Phi\right)\right]\right)^{2} .$
$\frac{89 y}{v^{+}} \mathcal{O}_{11}^{(8)}$	$\mathcal{O}_{11}^{(8)}=i \epsilon^{\mu \nu \rho \sigma}\left[\Phi^{\dagger}\left(D_{\mu} \Phi\right)\right]\left[\Phi^{\dagger} \hat{W}_{\rho \sigma}\left(D_{\nu} \Phi\right)\right]+$ h.c.

$\begin{aligned} 2\left(D_{\mu} \Phi\right)^{+} \Phi & =\partial_{\mu} h^{2}+h^{2} \operatorname{Tr}\left(T V_{\mu}\right) \\ 2 \Phi^{+} W_{\mu \nu} \Phi & =h^{2} \operatorname{Tr}\left(T W_{\mu \nu}\right) \quad \text { Hagiwara } \\ 2\left(D_{\mu} \Phi\right)^{+}\left(D_{\nu} \Phi\right) & =h^{2}\left[\operatorname{Tr}\left(T V_{\mu} V_{\nu}\right)-\operatorname{Tr}\left(V_{\mu} V_{\nu}\right)\right]+2\left(\partial_{\mu} h\right)\left(\partial_{\nu} h\right) \\ 2\left(D_{\mu} \Phi\right)^{+} W^{\mu \nu}\left(D_{\nu} \Phi\right) & =h^{2} \operatorname{Tr}\left(W^{\mu \nu} V_{\mu} V_{\nu}\right)-\left(\partial_{\mu} h^{2}\right) \operatorname{Tr}\left(W^{\mu \nu} V_{\nu}\right) \\ 2 \Phi^{+} W^{\nu \rho}\left(D^{\mu} \Phi\right) & =h^{2}\left[\operatorname{Tr}\left(T V^{\mu} W^{\nu \rho}\right)+\operatorname{Tr}\left(V^{\mu} W^{\nu \rho}\right)\right] \\ 2\left(D^{\mu} \Phi\right)^{+} W^{\nu \rho} \Phi & =h^{2}\left[\operatorname{Tr}\left(T V^{\mu} W^{\nu \rho}\right)-\operatorname{Tr}\left(V^{\mu} W^{\nu \rho}\right)\right] . \end{aligned}$	Edaival Chiral Lag.
	$\mathcal{L}_{1}^{\prime}=\frac{\beta_{1} v^{2}}{4}\left[\operatorname{Tr}\left(T V_{\mu}\right)\right]^{2}$
	$\mathcal{L}_{1}=\frac{\alpha_{1} g g^{\prime}}{2} B_{\mu \nu} \operatorname{Tr}\left(T W^{\mu \nu}\right)$
	$\mathcal{L}_{2}=\frac{i \alpha_{2} g^{\prime}}{2} B_{\mu \nu} \operatorname{Tr}\left(T\left[V^{\mu}, V^{\nu}\right]\right)$
	$\mathcal{L}_{3}=i \alpha_{3} g \operatorname{Tr}\left(W_{\mu \nu}\left[V^{\mu}, V^{\nu}\right]\right)$
	$\mathcal{L}_{4}=\alpha_{4}\left[\operatorname{Tr}\left(V_{\mu} V_{\nu}\right)\right]^{2}$
	$\mathcal{L}_{5}=\alpha_{5}\left[\operatorname{Tr}\left(V_{\mu} V^{\mu}\right)\right]^{2}$
	$\mathcal{L}_{6}=\alpha_{6} \operatorname{Tr}\left(V_{\mu} V_{\nu}\right) \operatorname{Tr}\left(T V^{\mu}\right) \operatorname{Tr}\left(T V^{\nu}\right)$
	$\mathcal{L}_{7}=\alpha_{7} \operatorname{Tr}\left(V_{\mu} V^{\mu}\right) \operatorname{Tr}\left(T V_{\nu}\right) \operatorname{Tr}\left(T V^{\nu}\right)$
	$\mathcal{L}_{8}=\frac{\alpha_{8} g^{2}}{4}\left[\operatorname{Tr}\left(T W_{\mu \nu}\right)\right]^{2}$
	$\mathcal{L}_{9}=\frac{i \alpha_{9} g}{2} \operatorname{Tr}\left(T W_{\mu \nu}\right) \operatorname{Tr}\left(T\left[V^{\mu}, V^{\nu}\right]\right)$
	$\mathcal{L}_{10}=\frac{\alpha_{10}}{2}\left[\operatorname{Tr}\left(T V_{\mu}\right) \operatorname{Tr}\left(T V_{\nu}\right)\right]^{2}$
	$\mathcal{L}_{11}=\alpha_{11} g \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left(T V_{\mu}\right) \operatorname{Tr}\left(V_{\nu} W_{\rho \sigma}\right)$

TeV Chiral Lagrangian

Non-Standard Higgs Lag. Chivukula, Koulovassilopoulos

Higgs singlet + nonlinear triplet
$\therefore \mathcal{L}=\frac{1}{2} \partial_{\mu} \rho \partial^{\mu} \rho+\frac{\rho^{2}}{4} A\left(\frac{\rho^{2}}{f^{2}}\right) \operatorname{Tr}\left(\partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma\right)-\Lambda^{2} f^{2} B\left(\frac{\rho^{2}}{f^{2}}\right):$

TeV Unknown Dynamics?? (TeV Chiral Lag.)

Strongly-interacting light Higgs

$$
\begin{aligned}
0 & \mathcal{L}_{\text {SILH }}= \\
& \frac{c_{H}}{2 f^{2}} \partial^{\mu}\left(H^{\dagger} H\right) \partial_{\mu}\left(H^{\dagger} H\right)+\frac{c_{T}}{2 f^{2}}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right)\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right) \\
& -\frac{c_{6} \lambda}{f^{2}}\left(H^{\dagger} H\right)^{3}+\left(\frac{c_{y} y_{f}}{f^{2}} H^{\dagger} H \bar{f}_{L} H f_{R}+\text { h.c. }\right) \\
& +\frac{i c_{W} g}{2 m_{\rho}^{2}}\left(H^{\dagger} \sigma^{i} \overleftrightarrow{D^{\mu}} H\right)\left(D^{\nu} W_{\mu \nu}\right)^{i}+\frac{i c_{B} g^{\prime}}{2 m_{\rho}^{2}}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right)\left(\partial^{\nu} B_{\mu \nu}\right) \\
& +\frac{i c_{H W} g}{16 \pi^{2} f^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}+\frac{i c_{H B} g^{\prime}}{16 \pi^{2} f^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu} \\
: & \\
& +\frac{c_{\gamma} g^{\prime 2}}{16 \pi^{2} f^{2}} \frac{g^{2}}{g_{\rho}^{2}} H^{\dagger} H B_{\mu \nu} B^{\mu \nu}+\frac{c_{g} g_{S}^{2}}{16 \pi^{2} f^{2}} \frac{y_{t}^{2}}{g_{\rho}^{2}} H^{\dagger} H G_{\mu \nu}^{a} G^{a \mu \nu} \\
: & \frac{c_{t} y_{t}}{f^{2}} H^{\dagger} H \bar{q}_{L} \tilde{H} t_{R}+h . c .+\frac{i c_{R}}{f^{2}} H^{\dagger} D_{\mu} H \bar{t}_{R} \gamma^{\mu} t_{R}+\frac{c_{4 t}}{f^{2}}\left(\bar{t}_{R} \gamma^{\mu} t_{R}\right)\left(\bar{t}_{R} \gamma_{\mu} t_{R}\right)
\end{aligned}
$$

$$
\begin{gathered}
U=e^{i \Pi} \quad \Pi \equiv \Pi^{A} T^{A} \\
U^{\dagger} \partial_{\mu} U=i \mathcal{D}_{\mu}^{A} T^{A}+i \mathcal{E}_{\mu}^{a} T^{a} \equiv i \mathcal{D}_{\mu}+i \mathcal{E}_{\mu}
\end{gathered}
$$

$$
\begin{aligned}
\frac{f^{2}}{2} \operatorname{Tr}\left(\mathcal{D}^{\mu} \mathcal{D}_{\mu}\right) & \supset \frac{1}{f^{2}} h^{a} h^{b} \partial_{\mu} h^{c} \partial^{\mu} h^{d} \mathcal{T}^{a b c d} ; \\
\mathcal{T}^{a b c d} & \equiv-\left(\frac{1}{6 f^{2}} f^{a c i} f^{b d i}+\frac{1}{24 f^{2}} f^{a c e} f^{b d e}\right)
\end{aligned}
$$

WW Scattering @ LHC

Review

- The anomalous 4-point couplings in chiral Lag., and the HVV dim-6 operators in Linearized Lag. are relevant to WW scattering.

- WW scattering offers a way to probe strong TeV dynamics, or probe HVV couplings.
- WW scattering papers in our HEP theory group.

FIND a w. repko and t scattering From SPIRES HEP

High-energy photon neutrino elastic scattering Doc 29, 00, 7,00 PM
$\mathrm{I}=1, \mathrm{~J}=1$ resonances in the Pade unitarized $\mathrm{W}(\mathrm{L})+\mathrm{W}(\mathrm{L}$ Dicus. Duane A. Phys.Rev.D474154-4157,19e3 Readmore.

Pade approximants and unitarity in W+ W- and zo zo sca Dicus, Duane A. Ptys.Rev.D423660 3567,1990 Read more

FIND a c.p.yuan and t scattering From SPIRES HEP

Heavy Quark Mass Effects in Deep Inelastic Scattering and Glo Tung. W.K. JHEP 0702:053,2007 hep-ph061 1254 Bead more...

Inelastic channels in w w scattering Doc 9, "09, 7:00 PM

Resummation of transverse momentum and mass logarithms in

Nadolssy, Pavel M. Phys.Rev.D67:074015,2003 hep-ph0210082 Read more...

Phenomenology of multiple parton radiation in semilinclusive d Nadolsty, Pavel M. Phys.Rev.D6s:114011,2001 hep-pho012261 Reasd more..

Soft parton resummation in the current region of semilinclusive Nadolsky, Pavel M. nep-phooosi76 Read more.

FIND a chivukula and simmons and t scattering
W(L) W(L) Scattering in Higgsless Models: Identifying Better Effectiv Belyaev, Alexander S. Phys.Rev.D80:055022,2009 arXiv:0907.2662 Read more...

Identifying Better Effective Higgsless Theories via W_L W_L Scatteri
Belyaev, Alexander S. arXiv:1003. 1

General Sum Rules for

Chivukula, R.Sekhar Phys.Rev.D7
\square

Cross Section \& EWA

$$
\begin{aligned}
\sigma\left(p p \rightarrow\left(q \bar{q}^{\prime} \rightarrow V_{3} V_{4}\right)+X\right)= & \sum_{i, j} \iiint d x_{1} d x_{2} d \cos \theta f_{i}\left(x_{1}, Q^{2}\right) f_{j}\left(x_{2}, Q^{2}\right) \\
& \frac{d \hat{\sigma}}{d \cos \theta}\left(q \bar{q}^{\prime} \rightarrow V_{3} V_{4}\right)
\end{aligned}
$$

Effective W Approximation (EWA):

$$
\begin{aligned}
\sigma\left(p p \rightarrow\left(V_{1} V_{2} \rightarrow V_{3} V_{4}\right)+X\right)= & \sum_{i, j} \iint d x_{1} d x_{2} d \cos \theta f_{i}\left(x_{1}, Q^{2}\right) f_{j}\left(x_{2}, Q^{2}\right) \\
& \iint d \hat{\tau} d \hat{\eta} \hat{\partial^{2} L} \partial \hat{\tau} \partial \hat{\eta} \frac{d \hat{\sigma}}{d c o s \theta}\left(V_{1} V_{2} \rightarrow V_{3} V_{4}\right) \\
\approx & \sum_{\lambda_{1}, \lambda_{2}} \int d x_{1} d x_{2} F_{q_{1} \rightarrow q_{1}^{\prime} V_{1}}^{\lambda_{1}}\left(x_{1}\right) F_{q_{2} \rightarrow q_{2} V_{2}}^{\lambda_{2}}\left(x_{2}\right) \sigma_{V_{1} V_{2} \rightarrow V_{1} \lambda_{1}^{\prime} V_{2}^{\prime} V_{2}\left(x_{1} x_{2} s\right)}
\end{aligned}
$$

In the exact calculation, the ambiguity for the off-shell W??

Kilian, et al

Signal \& Backgrounds

If strong dynamics at TeV scale, VLVL to VLVL scattering is expected to be enhanced at large invariant mass.

In contrast, VTVT to VTVT, andVTVL to VT VL scattering remain perturbative through the whole invariant mass range. (irreducible BG)

Signal Definition: the enhancement of the cross section over the SM prediction with a light Higgs

$$
\sigma_{\text {signal }}=\sigma_{n e w p h y s}-\sigma_{S M}\left(m_{H}=100 \mathrm{GeV}\right)
$$

WW Scattering Channels:

| 4 scattering
 processes:
 W+W-
 W+W+
 W Z
 $Z ~ Z$ |
| :---: | :---: |

Signal \& Backgrounds

Bagger, Barger, Cheung, Gunion, Han, Ladinsky, Rosenfeld, Yuan

WL-WL Signal

energetic leptons at low rapidity (intrinsic BG)

Forward Jet-Tagging

(a)

(b)

(c)

(d)

Central Jet-Veto

Selection of Cuts

Characteristics:

- energetic jets in the forward and backward directions ($p_{T}>20 \mathrm{GeV}$)
- large rapidity separation and large invariant mass of the two tagging jets
- Higgs decay products between tagging jets

Central-rapidity leptonic cuts

- Little gluon radiation in the central-rapidity region, due to colorless W / Z exchange (central jet veto: no extra jets with $p_{T}>20 \mathrm{GeV}$ and $|\eta|<2.5$)

All jets need to lie in the rapidity-range accessible to the detector,

$$
\left|\eta_{j}\right|<4.5
$$

and are supposed to be well-separated,

$$
\Delta R_{j j}=\sqrt{\left(\eta_{j_{1}}-\eta_{j_{2}}\right)^{2}+\left(\phi_{j_{1}}-\phi_{j_{2}}\right)^{2}}>0.7
$$

Jet-Tagging \& Jet-Veto

The two jets of largest Pt are called "tagging jets".

1. Require two jets with

- $|\eta(j e t)|>\eta_{\text {cut }}$ and $p_{T}(j e t)>p_{T \text { cut }}$
- opposite signed rapidity

$$
p_{T j}^{\operatorname{tag}}>30 \mathrm{GeV}
$$

- at least one of them has an energy greater than a critical value $E_{\mathrm{cut}} \quad m_{j j}>m_{j j}^{\min }$,

2. If more than one jet with the same sign rapidity satisfies the above cuts, choose the most energetic, labelled FJ1. The next one is labelled FJ2.

- Require the tag-jet with the opposite sign of rapidity to satisfy $\Delta \eta(F J 1, F J 2)>\Delta \eta_{\text {cut }}$ and $E(F J 2)>E_{2}$ cut

$$
\Delta \eta_{j j}=\left|\eta_{j_{1}}^{t a g}-\eta_{j_{2}}^{t a g}\right|>4
$$

ATLAS TDR

For the central jets with larger Pt, we discards the events.
We veto any such activity by discarding all events with an extra veto jet of

$$
p_{T j}^{v e t o}>25 \mathrm{GeV},
$$

located in the gap region between the two tagging jets,

$$
\eta_{j, \text { min }}^{t a g}<\eta_{j}^{v e t o}<\eta_{j, \text { max }}^{\text {tag }}
$$

Leptonic Cuts

In order to ensure well-observable isolated charged leptons in the central-rapi region, we require

$$
p_{T \ell}>20 \mathrm{GeV}, \quad\left|\eta_{\ell}\right|<2.5, \quad \Delta R_{\ell j}>0.4
$$

The leptons (produced by VV decay) are typically located in the central rapidity region between two tagging jets:

$$
\eta_{j, \min }^{t a g}<\eta_{\ell}<\eta_{j, \max }^{t a g}
$$

Bagger, Barger, Cheung, Gunion, Han, Ladinsky, Rosenfeld, Yuan

- $Z Z j j \rightarrow 4 \ell j j$:

$$
\begin{aligned}
& m_{Z Z}>500 \mathrm{GeV} \\
& p_{T}(\ell \ell)>0.2 \times m_{Z Z}
\end{aligned}
$$

- $Z Z j j \rightarrow 2 \ell 2 \nu j j:$

$$
\begin{aligned}
& m_{T}(Z Z)>500 \mathrm{GeV} \\
& p_{T}^{m i s s}>200 \mathrm{GeV}
\end{aligned}
$$

with $p_{T}^{\text {miss }}$ being the transverse momentum of the neutrino system and

$$
m_{T}^{2}(Z Z)=\left[\sqrt{m_{Z}^{2}+p_{T}^{2}(\ell \ell)}+\sqrt{m_{Z}^{2}+\left(p_{T}^{m i s s}\right)^{2}}\right]^{2}-\left[\vec{p}_{T}(\ell \ell)+\vec{p}_{T}^{m i s s}\right]^{2}
$$

- $W^{ \pm} Z j j$:

$$
\begin{aligned}
& m_{T}(W Z)>500 \mathrm{GeV} \\
& p_{T}^{m i s s}>30 \mathrm{GeV}
\end{aligned}
$$

where

$$
m_{T}^{2}(W Z)=\left[\sqrt{m^{2}(\ell \ell \ell)+p_{T}^{2}(\ell \ell \ell)}+\left|p_{T}^{m i s s}\right|\right]^{2}-\left[\vec{p}_{T}(\ell \ell \ell)+\vec{p}_{T}^{m i s s}\right]^{2}
$$

- $W^{+} W^{-} j j$:

$$
\begin{aligned}
& p_{T \ell}>100 \mathrm{GeV} \\
& \Delta p_{T}(\ell \ell)=\left|\vec{p}_{T, \ell_{1}}-\vec{p}_{T, \ell_{2}}\right|>250 \mathrm{GeV}, \\
& m_{\ell \ell}>200 \mathrm{GeV} \\
& \min \left(m_{\ell j}\right)>180 \mathrm{GeV}
\end{aligned}
$$

Calculation Tools

Pythia

(I) generate signal in the effective W approximation; (2) scenarios with different resonances are available by choice of input a4, a5; (3)only 2 to $2+$ decay, so the BGs are only qq to WW, qq to tt.

MadEvent

(I) handle all processes up to 6 particles in final states; (2)best to generate BGs; (3) not strong TeV models with amplitude unitarization available; (4) too many unwanted diagrams (possible to modify the source code to exclude unwanted diagrams, or specify W polarization).

CalcHEP

(I) handle all processes up to 6 particles in final states; (2)hard to manipulate the code to modify something.

VBFNLO

(I) Specific to generate vector boson fusion up to NLO; (2)in LO use HELAS amplitude generated by MadGraph; (3) possible to modify the code to add new physics parameters.

NLO Calculations?

WW/WZ(SM Higgs/Higgsless KK)

WZ Channel (Three Site/ Higgsless)

Three Site

Chivukula, Simmons, et. al.

Results from VBFNLO(wz)

Foadi, Gopalakrishna, Schmidt

Figure 7: The $J=0$ partial wave amplitude as a function of \sqrt{s} for the standard model without a Higgs boson (red) and the $U(1) \times[S U(2)]^{N} \times S U(2)_{N+1}$ model (blue) for $N=1$ to 100 with $m_{W^{\prime}}=500 \mathrm{GeV}$.

Results from VBFNLO(ww)

In the WW channel, if we know there is a unitarity violation, how can we identify the unitarity violation scale $M(W W)$ from the $M T(I I)$??

Other Scenarios?

Chiral Lag

ATLAS TDR

Other Scenarios???
Non-Standard Higgs?

Linearized effective Lag.

> Little Higgs?

He, Kuang, Yuan, Zhang
Strongly-Interacting Light Higgs?

Summary

- Before Higgs discovery,WW scattering offers a way to probe the EWSB mechanism.
- Even when Higgs is discovered,WW scattering can still be used to distinguish SM Higgs from other models.
- WW scattering at the LHC (Signal+BG) is reviewed, and new results from MC generator is in progress.

Thank You!!!

New Resonances?

$$
\mathcal{L}_{s}=-\frac{1}{2} \Phi_{r}^{a} \square \Phi_{r}^{a}-\frac{1}{2} m_{r}^{2} \Phi_{r}^{a} \Phi_{r}^{a}+\beta_{r} f \Phi_{r}^{a}\left(\vec{h}^{T} T_{L}^{a} T_{R}^{3} \vec{h}\right)+\cdots
$$

By integrating out Φ_{r}^{a} we find

$$
\begin{aligned}
\mathcal{L}_{e f f} & =\frac{\beta_{r}^{2} f^{2}}{2}\left(\vec{h}^{T} T_{L}^{a} T_{R}^{3} \vec{h}\right) \frac{1}{\square+m_{r}^{2}}\left(\vec{h}^{T} T_{L}^{a} T_{R}^{3} \vec{h}\right) \\
& =\frac{\beta_{r}^{2} f^{2}}{2 m_{r}^{2}}\left(\vec{h}^{T} T_{L}^{a} T_{R}^{3} \vec{h}\right)\left[1-\frac{\square}{m_{r}^{2}}+\cdots\right]\left(\vec{h}^{T} T_{L}^{a} T_{R}^{3} \vec{h}\right)
\end{aligned}
$$

