Probing Electroweak Symmetry Breaking in the TeV region

C.-P. Yuan 袁簡鵬

Michigan State University & Center for High Energy Physics, PKU

October 18, 2011 @ ITP, PKU

September 09, 2010 Michigan State University

The Road Map

Observable & Parametrization

LEP I & II, SLD, Tevatron Data:

	1100001011	Value	DIVI PLOUIDO
Atomic parity	$Q_W(Cs)$	-72.62 ± 0.46	-73.17 ± 0.03
violation	$Q_W(Tl)$	-116.6 ± 3.7	-116.78 ± 0.05
Muon $g-2$	$\frac{1}{2}(g_{\mu}-2-\frac{\alpha}{\pi})[10^{-9}]$	4511.07 ± 0.82	4509.82 ± 0.10
-nucleon scattering	g_L^2	0.30005 ± 0.00137	0.30378 ± 0.00021
	$g_R^{\overline{2}}$	0.03076 ± 0.00110	0.03006 ± 0.00003
ν -e scattering	$g_V^{ u e}$	-0.040 ± 0.015	-0.0396 ± 0.0003
	$g^{ u e}_A$	-0.507 ± 0.014	-0.5064 ± 0.0001
$e^+e^- \to f\bar{f}$	$\Gamma_Z[\text{GeV}]$	2.4952 ± 0.0023	2.4968 ± 0.0011
at Z -pole	$\sigma_h^0[{ m nb}]$	41.541 ± 0.037	41.467 ± 0.009
	R_e^0	20.804 ± 0.050	20.756 ± 0.011
	R^0_μ	20.785 ± 0.033	20.756 ± 0.011
	$R^0_{ au}$	20.764 ± 0.045	20.801 ± 0.011
	R_b	0.21629 ± 0.00066	0.21578 ± 0.00010
	R_c	0.1721 ± 0.0030	0.17230 ± 0.00004
	$A^{0,e}_{fb}$	0.0145 ± 0.0025	0.01622 ± 0.00025
	$A_{fb}^{0,\mu}$	0.0169 ± 0.0025	0.01622 ± 0.00025
	$A^{0, au}_{fb}$	0.0188 ± 0.0017	0.01622 ± 0.00025
	$A^{\check{0},b}_{fb}$	0.0992 ± 0.0016	0.1031 ± 0.0008
	$A_{fb}^{0,c}$	0.0707 ± 0.0035	0.0737 ± 0.0006
	$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2319 ± 0.0012	0.23152 ± 0.00014
	A_e	0.1514 ± 0.0019	0.1471 ± 0.0011
	A_{μ}	0.142 ± 0.015	0.1471 ± 0.0011
	A_{τ}	0.1433 ± 0.0041	0.1471 ± 0.0011
Fermion pair	$\sigma_f(f=q,\mu,\tau)$	Ref. 3	Ref. 3
production at	$A_{fb}^f(f=\mu,\tau)$	Ref. 3	Ref. 3
LEP 2	$d\sigma_e/d\cos\theta$	Ref. 26	Ref. 27
W pair	$d\sigma_W/d\cos heta$	Ref. 28	Ref. 28
W mas	$M_{\mathcal{W}}[\mathrm{GeV}]$	80.410 ± 0.022	$^{\circ\circ}$ $^{\circ\circ\circ}$ $^{\circ\circ\circ}$ $^{\circ\circ\circ}$ $^{\circ\circ\circ}$ $^{\circ\circ\circ}$ $^{\circ\circ\circ}$ $^{\circ\circ\circ}$ $^{\circ\circ\circ}$ $^{\circ\circ\circ\circ}$ $^{\circ\circ\circ\circ}$ $^{\circ\circ\circ\circ}$ $^{\circ\circ\circ\circ\circ}$ $^{\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$ $^{\circ\circ$
	and the second se	and the second second	and a second
		PDG	

Parametrization: bosonic sector

couplings	PDG bounds	indirect limits	Unit. W^+W^-	Unit. $W^{\pm}Z$
Δg_1^Z	$-0.016^{+0.022}_{-0.019}$	[-0.051, 0.0092]	2.7	0.22
$\Delta \kappa_Z$	$-0.076^{+0.059}_{-0.056}$	[-0.050, 0.0039]	0.22	3.5
λ_Z	$-0.088^{+0.060}_{-0.057}$	[-0.061 , 0.10]	0.15	0.14
g_5^Z	-0.07 ± 0.09	[-0.085, 0.049]	2.7	1.7
g_4^Z	-0.30 ± 0.17		2.7	0.22
$\tilde{\kappa}_Z$	$-0.12^{+0.06}_{-0.04}$		2.7	3.5
$\tilde{\lambda}_Z$	-0.09 ± 0.07		0.15	0.14

New-Physics Resonance

Model independent new physics:

Low-energy effects (integrate out resonances):

Appelquist, Carrazzone Usually, the effects from heavy resonance are either suppressed by inverse powers of M, or renormalize parameters of the low-energy theory. (Decoupling Theorem)

Special case: Non-decoupling effects! (example: oblique(chiral fermion), zbb, K/B-mixing...)

WW Scattering (Non-decoupling Channel)

 $W_L^+(p_+) + W_L^-(p_-) \to W_L^+(q_+) + W_L^-(q_-)$ Scattering in COM frame The differential cross section (neglecting particle masses) $\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |\mathcal{T}|^2.$ Performing a partial wave expansion $\mathcal{T}(s,t) = 16\pi \sum_{I} (2J+1)a_{J}(s)P_{J}(\cos\theta),$ (a) (b) (c) (d) Z H Z H The total cross section is $\sigma = 16\pi \sum_{J} (2J+1)|a_J(s)|^2.$ (e) (f) Using the optical theorem (g) $\varepsilon_L(p_{\pm}) = \left(\frac{p}{M_{\rm WL}}, 0, 0, \pm \frac{E}{M_{\rm WL}}\right),$ $\sigma = \frac{1}{2} \operatorname{Im} \mathcal{T}(s, t = 0),$ $\varepsilon_L(q_{\pm}) = \left(\frac{p}{M_W}, 0, \pm \frac{E}{M_W}\sin\theta, \pm \frac{E}{M_W}\cos\theta\right).$ the unitarity bound is $|a_J(s)|^2 = \text{Im}(a_J(s)), \text{ or } |\text{Re}a_J(s)| \le 1/2.$ $\mathcal{T}^{a-d} = g_W^2 \left\{ \frac{p^4}{M_W^4} \left[3 - 6\cos\theta - \cos^2\theta \right] + \frac{p^2}{M_W^2} \left[\frac{9}{2} - \frac{11}{2}\cos\theta - 2\cos^2\theta \right] \right\},$ m a $\mathcal{T}^e = g_W^2 \left\{ \frac{p^4}{M_W^4} \left[-3 + 6\cos\theta + \cos^2\theta \right] + \frac{p^2}{M_W^2} \left[-4 + 6\cos\theta + 2\cos^2\theta \right] \right\},$ $+ \frac{p^2}{M_W^2} \left[-\frac{1}{2} - \frac{1}{2} \cos \theta \right] \qquad - \frac{M_H^2}{4M_W^2} \left[\frac{s}{s - M_H^2} + \frac{t}{t - M_H^2} \right] \right\}.$ $\mathcal{T}^{f-g} = g_W^2 \left\{ \qquad 0 \right.$ Physical Amplitude **Nondecoupling:** In the $M_H \to \infty$ limit, $\mathcal{T}^{tot} = -g_W^2 \frac{M_H^2}{4M_W^2} \left[\frac{s}{s - M_H^2} + \frac{t}{t - M_H^2} \right] \to \frac{u}{v^2} + \mathcal{O}(1/M_H^2).$

The Partial wave amplitude, without Higgs or other new physics, violate unitarity @ TeV scale.

Re

Goldstone Boson Scattering

To simplify our calculation, use the equivalent theorem:

 $T = \Sigma \tau^3 \Sigma^\dagger \quad \to \quad g_L(x) T g_L(x)^\dagger, \quad \text{violate } SU(2)_C \text{ symmetry.}$

$$\mathcal{L}_{mass}(f) = -\overline{Q}_L \Sigma M_Q Q_R - \overline{L}_L \Sigma M_L L_R + h.c.$$

$$\mathcal{L}_{mass}(GB) = -\frac{v^2}{4} \operatorname{Tr}[V_{\mu}V^{\mu}].$$

$$\operatorname{Invariant under EW}_{gauge symmetry now!}$$

Anomalous Couplings (Bosonic Sector)

WW Scattering in Chiral Lag.

Low-energy

Theorem

WW scattering at LO

 $A(W_L^- W_L^- \to W_L^- W_L^-) = -s/v^2$ $A(W_L^+ W_L^- \to W_L^+ W_L^-) = -u/v^2$ $A(W_L^+ W_L^- \to Z_L Z_L) = s/v^2$ $A(Z_L Z_L \to Z_L Z_L) = 0$

WW scattering at NLO

$$\begin{aligned} \operatorname{Re} A(s,t,u) &= \frac{s}{v^2} + \frac{1}{16\pi^2 v^4} \left\{ -\frac{(t-u)}{6} \left[t \ln \frac{-t}{\mu^2} - u \ln \frac{-u}{\mu^2} \right] - \frac{s^2}{2} \ln \frac{s}{\mu^2} \right\} \\ &+ \alpha_4^0 \frac{4(t^2+u^2)}{v^4} + \alpha_5^0 \frac{8s^2}{v^4}. \end{aligned}$$

 $a_0^0 = \frac{1}{64\pi} \left[+\frac{4s}{v^2} + \frac{16}{3} \left(7\alpha_4 + 11\alpha_5 \right) \frac{s^2}{v^4} \right]$

 $a_0^2 = \frac{1}{64\pi} \left[-\frac{2s}{v^2} + \frac{32}{3} \left(2\alpha_4 + \alpha_5 \right) \frac{s^2}{v^4} \right]$

 $a_1^1 = \frac{1}{64\pi} \left[+\frac{2s}{3v^2} + \frac{8}{3} (\alpha_4 - 2\alpha_5) \frac{s^2}{v^4} \right]$

 $a_2^0 = \frac{1}{64\pi} \left[0 + \frac{16}{15} \left(2\alpha_4 + \alpha_5 \right) \frac{s^2}{v^4} \right]$

 $a_2^2 = \frac{1}{64\pi} \left[0 + \frac{8}{15} \left(\alpha_4 + 2\alpha_5 \right) \frac{s^2}{v^4} \right]$

Unitarity Constraints

S wave:

P wave:

D wave:

Custodial Symmetry Relations:

$$\begin{split} &A(W_L^- W_L^- \to W_L^- W_L^-) = A(t,s,u) + A(u,t,s) \\ &A(W_L^+ W_L^- \to W_L^+ W_L^-) = A(s,t,u) + A(t,s,u) \\ &A(W_L^+ W_L^- \to Z_L Z_L) = A(s,t,u) \\ &A(W_L^- Z_L \to W_L^- Z_L) = A(t,s,u) \\ &A(Z_L Z_L \to Z_L Z_L) = A(s,t,u) + A(t,s,u) + A(u,t,s) \\ &A^{(0)} = 3A(s,t,u) + A(t,s,u) + A(u,t,s) \\ &A^{(1)} = A(t,s,u) - A(u,t,s) \\ &A^{(2)} = A(t,s,u) + A(u,t,s) \end{split}$$

New Scalar Resonance?

 $\alpha_4 = 0$

 $\alpha_6 = 0$

0.9

SM

0.9

5000

0.8

3000

 $\alpha_5 = g_\sigma^2 \left(\frac{v^2}{8M_\sigma^2}\right) \qquad \qquad \alpha_7 = 2g_\sigma h_\sigma \left(\frac{v^2}{8M_\sigma^2}\right)$

Scalar Singlet

$$\mathcal{L}_{\sigma} = -\frac{1}{2} \left[\sigma \left(M_{\sigma}^2 + \partial^2 \right) \sigma + 2\sigma j \right]$$

$$j = -\frac{g_{\sigma}v}{2}\operatorname{tr}\left\{\mathbf{V}_{\mu}\mathbf{V}^{\mu}\right\} - \frac{h_{\sigma}v}{2}\left(\operatorname{tr}\left\{\mathbf{T}\mathbf{V}_{\mu}\right\}\right)^{2}$$

Linearized EW Lagrangian

Effective theory with Higgs mechanism above EW scale:

All the SM particles are incorporated as fund. or composite fields;

At low energy, it reduces to SM via decoupling heavy particles;

More global and local symmetries can be imposed.

The linearized EW effective Lagrangian

Dimension-6 Operators

	Operator	Notation	Operator	Notation	Buchmuller, Wyler
S	$\partial_{\mu}\left(\phi^{\dagger}\phi ight)\partial^{\mu}\left(\phi^{\dagger}\phi ight)$	$\mathcal{O}_{\partial\phi}$	$rac{1}{3}\left(\phi^{\dagger}\phi ight)^{3}$	$\mathcal{O}_{\phi 6}$	
V	$\epsilon^{abc}W^{a u}_{\mu}W^{b\lambda}_{ u}W^{c\mu}_{\lambda}$	\mathcal{O}_{W3}	$\epsilon^{abc}G^{a u}_{\mu}G^{b\lambda}_{ u}G^{c\mu}_{\lambda}$	\mathcal{O}_{G3}	
	$\phi^{\dagger}\phi\left(D^{\mu}\phi ight)^{\dagger}D_{\mu}\phi$	$\mathcal{O}_{\phi}^{(1)}$	$\left(\phi^{\dagger}D_{\mu}\phi ight)\left(\left(D^{\mu}\phi ight)^{\dagger}\phi ight)$	$\mathcal{O}_{\phi}^{(3)}$	
Oblique	$\phi^{\dagger}\sigma_{a}\phi\;W^{a}_{\mu u}B^{\mu u}$	${\cal O}_{WB}^{_{arphi}}$		Ŧ	
1	$\frac{1}{2}\phi^{\dagger}\phi W^{a}_{\mu u}W^{a}_{\mu u}$	\mathcal{O}_{WW}	${1\over 2} \phi^\dagger \phi \; B^{\mu u} B^{\mu u}$	\mathcal{O}_{BB}	
	$\frac{1}{2}\phi^{\dagger}\phi^{}G^{}_{\mu\nu}G^{}_{\mu\nu}$	O_{GG}			
	$\begin{pmatrix} \phi^{\dagger}iD_{\mu}\phi \end{pmatrix} \begin{pmatrix} l_{L}\gamma^{\mu}l_{L} \end{pmatrix}$	$\mathcal{O}_{\phi l}^{(1)}$	$\left(\phi^{\intercal}\sigma_{a}iD_{\mu}\phi ight)\left(l_{L}\gamma^{\mu}\sigma_{a}l_{L} ight)$	$\mathcal{O}_{\phi l}^{(3)}$	
SVF	$\left(\phi^{\dagger}iD_{\mu}\phi\right)\left(\overline{e_{R}}\gamma^{\mu}e_{R}\right)$	$\mathcal{O}_{\phi e}^{(1)}$		(3)	
	$\left(\phi^{\dagger}iD_{\mu}\phi\right)\left(\overline{q_{L}}\gamma^{\mu}q_{L}\right)$	$\mathcal{O}_{\phi q}^{(1)}$	$ (\phi^{\dagger}\sigma_{a}iD_{\mu}\phi) (\overline{q_{L}}\gamma^{\mu}\sigma_{a}q_{L}) $	$\mathcal{O}_{\phi q}^{(3)}$	
	$\begin{pmatrix} \phi^{\dagger} i D_{\mu} \phi \end{pmatrix} (\overline{u_R} \gamma^{\mu} u_R)$	$\mathcal{O}_{\phi u}^{(1)}$	$\left(\phi^{\dagger}iD_{\mu}\phi ight)\left(d_{R}\gamma^{\mu}d_{R} ight)$	${\cal O}_{\phi d}^{(1)}$	
	$\frac{\left(\phi^{\prime} i\sigma_{2} iD_{\mu}\phi\right)\left(u_{R}\gamma^{\mu}a_{R}\right)}{1\left(\overline{1},\mu\right)\left(\overline{1},\mu\right)}$	$\frac{O_{\phi ud}}{\mathcal{O}^{(1)}}$	$1(\overline{1}, \dots, \overline{1})(\overline{1}, \mu, -1)$	(3)	
	$\frac{1}{2} \begin{pmatrix} l_L \gamma_{\mu} l_L \end{pmatrix} \begin{pmatrix} l_L \gamma^{\mu} l_L \end{pmatrix}$ $\frac{1}{2} \begin{pmatrix} \overline{a_L} \gamma_{\mu} a_L \end{pmatrix} \begin{pmatrix} \overline{a_L} \gamma^{\mu} a_L \end{pmatrix}$	$\mathcal{O}_{ll}^{(1,1)}$	$\frac{1}{2} \begin{pmatrix} l_L \gamma_\mu \sigma_a l_L \end{pmatrix} \begin{pmatrix} l_L \gamma^\mu \sigma_a l_L \end{pmatrix}$	$\mathcal{O}_{ll}^{(1,3)}$	
LLLL	$\frac{1}{2} \left(\frac{q_L}{\mu} q_L \right) \left(\frac{q_L}{q_L} \gamma^{\mu} q_L \right) \\ \left(\frac{1}{\mu} \gamma^{\mu} q_L \right) \left(\frac{q_L}{\eta} \gamma^{\mu} q_L \right)$	\mathcal{O}_{qq} $\mathcal{O}^{(1)}$	$\frac{1}{2} \left(\frac{q_L}{q_L} \gamma_{\mu} \sigma_a q_L \right) \left(\frac{q_L}{q_L} \gamma^{\mu} \sigma_a q_L \right) \\ \left(\frac{1}{q_L} \gamma_{\mu} \sigma_a q_L \right) \left(\frac{q_L}{q_L} \gamma^{\mu} \sigma_a q_L \right)$	$\mathcal{O}_{qq} \ \mathcal{O}^{(3)}$	
	$ \frac{(\iota_L \not \mu \iota_L)}{1} (\overline{q_L} \gamma \lambda_A q_L) (\overline{q_L} \gamma \mu \lambda_A q_L) $	\mathcal{O}_{lq} $\mathcal{O}^{(8,1)}$	$\frac{(\iota_L \not \mu \sigma_a \iota_L)}{(q_L \not \sigma_a q_L)} (q_L \not \sigma_a q_L)$ $\frac{1}{(q_L \gamma \sigma_a \lambda_L q_L)} (q_L \gamma^\mu \sigma_a \lambda_L q_L)$	$\mathcal{O}_{lq}^{(8,3)}$	
	$\frac{2 \left(4L \right) \right)}{2 \left(4L \right) \right)}$	\mathcal{O}_{qq}	$\frac{\frac{1}{2} \left(q_L \right) \left(q$	$\frac{\mathcal{O}_{qq}}{\mathcal{O}}$	
	$\frac{1}{2} \left(\overline{u_{P}} \gamma_{\mu} u_{P} \right) \left(\overline{u_{P}} \gamma^{\mu} u_{P} \right)$	$\mathcal{O}^{(1)}$	$\frac{1}{2} \left(\overline{d_R} \gamma_\mu c_R \right) \left(\overline{d_R} \gamma^\mu d_R \right)$ $\frac{1}{2} \left(\overline{d_R} \gamma_\mu d_R \right) \left(\overline{d_R} \gamma^\mu d_R \right)$	$\mathcal{O}_{ee}^{(1)}$	
BBBB	$\frac{2}{(\overline{e_R}\gamma_{\mu}e_R)}(\overline{u_R}\gamma^{\mu}u_R)$	\mathcal{O}_{eu}	$\frac{2}{(\overline{e_R}\gamma_\mu e_R)} \left(\frac{\overline{a_R}\gamma^\mu a_R}{\overline{d_R}\gamma^\mu d_R} \right)$	\mathcal{O}_{dd} \mathcal{O}_{ed}	
	$(\overline{u_R}\gamma_\mu u_R) (\overline{d_R}\gamma^\mu d_R)$	$\mathcal{O}_{ud}^{(1)}$	(10, 10) (10, 10)	<i>cu</i>	
	$\frac{1}{2} \left(\overline{u_R} \gamma_\mu \lambda_A u_R \right) \left(\overline{u_R} \gamma^\mu \lambda_A u_R \right)$	$\mathcal{O}_{uu}^{(8)}$	$\frac{1}{2}\left(\overline{d_R}\gamma_{\mu}\lambda_A d_R\right)\left(\overline{d_R}\gamma^{\mu}\lambda_A d_R\right)$	$\mathcal{O}_{dd}^{(8)}$	
	$\left(\overline{u_R}\gamma_{\mu}\lambda_A u_R\right)\left(\overline{d_R}\gamma^{\mu}\lambda_A d_R\right)$	$\mathcal{O}_{ud}^{(8)}$	2 (, , , (, , , , , , , , , , , , , ,	uu	
	$\left(\overline{l_L}e_R\right)\left(\overline{e_R}l_L ight)$	\mathcal{O}_{le}	$\left(\overline{q_L}e_R ight)\left(\overline{e_R}q_L ight)$	\mathcal{O}_{qe}	
IDDI	$\left(\overline{l_L} u_R ight)\left(\overline{u_R} l_L ight)$	\mathcal{O}_{lu}	$\left(\overline{l_L}d_R ight)\left(\overline{d_R}l_L ight)$	\mathcal{O}_{ld}	
LRRL	$(\overline{q_L}u_R)(\overline{u_R}q_L)$	$\mathcal{O}_{qu}^{(1)}$	$\left(\overline{q_L}d_R ight)\left(\overline{d_R}q_L ight)$	${\cal O}_{qd}^{(1)}$	
	$(l_L e_R) (d_R q_L)$	\mathcal{O}_{qde}		(8)	
	$(\overline{q_L}\lambda_A u_R) (\overline{u_R}\lambda_A q_L)$	$\mathcal{O}_{qu}^{(0)}$	$(\overline{q_L}\lambda_A d_R) \left(d_R \lambda_A q_L \right)$	$\mathcal{O}_{qd}^{(c)}$	
B-L	$\epsilon_{ABC} (l_I i \sigma_2 q_I^c A) (d_B^B u_B^c C)$	\mathcal{O}_{1}	$\epsilon_{ABC} \left(a_{r}^{B} i \sigma_{2} a_{r}^{c C} \right) \left(\overline{e_{D}} u_{D}^{c A} \right)$	\mathcal{O}_{aaaa}	

Dim-6 Operators (Bosonic Sector) $\mathcal{L} = \frac{1}{2\Lambda^2} \left\{ f_{DW} g^2 \vec{W}_{\mu\nu} \partial^2 \vec{W}^{\mu\nu} + f_{DB} g'^2 B_{\mu\nu} \partial^2 B^{\mu\nu} + \right.$ $\mathcal{O}_i^{(6)}$ $f_{BW} m_Z^2 sc W_{\mu\nu}^3 B_{\mu\nu} + f_{\Phi,1} \frac{v^2}{2} m_Z^2 Z^{\mu} Z_{\mu} \Big\} ,$ Barbieri, Pomarol, Rattazzi, Strumi custodial $SU(2)_L$ operators $\overline{g^{-2}\widehat{S}} = \Pi'_{W_3B}(0)$ $\mathcal{O}_{WB} = (H^{\dagger} \tau^a H) W^a_{\mu\nu} B_{\mu\nu} / gg'$ + $\mathcal{O}_{DW} = \operatorname{Tr}\left(\left[D_{\mu}, \hat{W}_{\nu\rho}\right]\left[D^{\mu}, \hat{W}^{\nu\rho}\right] ight)$ $g^{-2}M_W^2 \widehat{T} = \Pi_{W_3W_3}(0) - \Pi_{W^+W^-}(0) \quad \mathcal{O}_H = |H^\dagger D_\mu H|^2$ $-g^{-2}\hat{U} = \Pi'_{W_3W_3}(0) - \Pi'_{W^+W^-}(0)$ Oblique $\mathcal{O}_{DB} = -\frac{g^{\prime 2}}{2} \Big(\partial_{\mu} B_{\nu\rho} \Big) \Big(\partial^{\mu} B^{\nu\rho} \Big)$ $2g^{-2}M_W^{-2}V = \Pi_{W_3W_3}'(0) - \Pi_{W^+W^-}'(0)$ $2g^{-1}g'^{-1}M_W^{-2}X = \Pi''_{W_3B}(0)$ $\mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$ $2g'^{-2}M_W^{-2}Y = \Pi''_{BB}(0)$ $\mathcal{O}_{BB} = (\partial_{\rho} B_{\mu\nu})^2 / 2g^2$ + $2g^{-2}M_W^{-2}W = \Pi_{W_3W_3}'(0)$ $\mathcal{O}_{WW} = (D_{\rho}W^a_{\mu\nu})^2/2g^2$ + $\mathcal{O}_{\Phi,1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \Phi \right] \left[\Phi^{\dagger} \left(D^{\mu} \Phi \right) \right]$ $2g_{\rm s}^{-2}M_W^{-2}Z = \Pi_{GG}''(0)$ $\mathcal{O}_{GG} = (D_{\rho}G^A_{\mu\nu})^2/2g_{\rm s}^2$ + $\mathcal{L}_{\text{eff}}^{H} = g_{H\gamma\gamma} H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_{HZ\gamma} A_{\mu\nu} Z^{\mu} \partial^{\nu} H$ $\mathcal{O}_{WWW} = \mathrm{Tr}\left(\hat{W}_{\mu\nu}\hat{W}^{\nu\rho}\hat{W}_{\rho}^{\ \mu}\right)$ TGC $+g^{(2)}_{HZ\gamma}HA_{\mu\nu}Z^{\mu\nu}+g^{(1)}_{HZZ}Z_{\mu\nu}Z^{\mu}\partial^{\nu}H$ $\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$ $+g_{HZZ}^{(2)}HZ_{\mu\nu}Z^{\mu\nu}+g_{HWW}^{(1)}(W_{\mu\nu}^{+}W^{-\mu}\partial^{\nu}H+h.$ $\mathcal{L}_{\text{eff}}^{\text{WWV}} = -ig_{\text{WWV}} \left[g_1^V (W_{\mu\nu}^+ W^{-\mu} - W_{\mu\nu}^- W^{+\mu}) V^{\nu} \right]$ HVV $+g_{HWW}^{(2)}HW_{\mu\nu}^{+}W^{-\mu\nu},$ $+\kappa_V W^+_{\mu} W^-_{\nu} V^{\mu\nu} + \frac{\lambda_V}{M^2} W^{+\nu}_{\mu} W^{-\rho}_{\nu} V^{\mu}_{\rho}$ $\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$ **Gonzalez-Garcia** $g_{H\gamma\gamma} = -\left(\frac{gm_W}{\Lambda^2}\right) \frac{s^2(f_{BB} + f_{WW})}{2}$ $-ig_5^V \epsilon^{\mu\nu\rho\sigma} (W^+_{\mu} \partial_{\rho} W^-_{\nu} - W^-_{\nu} \partial_{\rho} W^+_{\mu}) V_{\sigma}]$ $\mathcal{O}_W = \left(D_\mu \Phi \right)^\dagger \hat{W}^{\mu\nu} \left(D_\nu \Phi \right)$ $g_{HZ\gamma}^{(1)} = \left(\frac{gm_W}{\Lambda^2}\right) \frac{s(f_W - f_B)}{2c},$ $\Delta g_1^Z = g_1^Z - 1 = \frac{1}{2} \frac{m_Z^2}{\Lambda^2} f_W ,$ $\mathcal{O}_B = \left(D_\mu \Phi \right)^\dagger \hat{B}^{\mu\nu} \left(D_\nu \Phi \right)$ $g_{HZ\gamma}^{(2)} = \left(\frac{gm_W}{\Lambda^2}\right) \frac{s[s^2 f_{BB} - c^2 f_{WW}]}{c}$ $\Delta \kappa_{\gamma} = \kappa_{\gamma} - 1 = 1 + \frac{1}{2} \frac{m_W^2}{\Lambda^2} \left(f_W + f_B \right),$ $g_{HZZ}^{(1)} = \left(\frac{gm_W}{\Lambda^2}\right) \frac{c^2 f_W + s^2 f_B}{2c^2},$ Pi-Pi $\mathcal{O}_{\Phi,2} = rac{1}{2} \partial_\mu \Big(\Phi^\dagger \Phi \Big) \partial^\mu \Big(\Phi^\dagger \Phi \Big)$ $\Delta \kappa_Z = \kappa_Z - 1 = 1 + \frac{1}{2} \frac{m_Z^2}{\Lambda^2} \left(c^2 f_W - c^2 f_B \right)$ $g_{HZZ}^{(2)} = -\left(\frac{gm_W}{\Lambda^2}\right)\frac{s^4 f_{BB} + c^4 f_{WW}}{2c^2}$ Scattering $\lambda_{\gamma} = \lambda_Z = -\frac{3g^2 m_W^2}{2\Lambda^2} f_{WWW} \,.$ $\mathcal{O}_{\Phi,3} = \frac{1}{3} \left(\Phi^{\dagger} \Phi \right)^3$ $g_{HWW}^{(1)} = \left(\frac{gm_W}{\Lambda^2}\right) \frac{f_W}{2},$ Higgs Self- $\lambda_Z = \lambda_\gamma \qquad \Delta \kappa_Z = -\Delta \kappa_\gamma \tan^2 \theta_W + \Delta g_1^Z$ $g_{HWW}^{(2)} = -\left(\frac{gm_W}{\Lambda^2}\right) f_{WW},$ $\left|\mathcal{O}_{\Phi,4} = \left(\Phi^{\dagger}\Phi\right) \left| \left(D_{\mu}\Phi\right)^{\dagger} \left(D^{\mu}\Phi\right) \right| \right|$ coupling

Connections between linear and chiral Lag.

Lir		ed Lag.
	$-rac{4eta_1}{v^2}\mathcal{O}_{\Phi,1}$	$\mathcal{O}_{\Phi,1} = \left[\left(D_{\mu} \Phi ight)^{\dagger} \Phi ight] \left[\Phi^{\dagger} \left(D^{\mu} \Phi ight) ight]$
	$\frac{4\alpha_1}{v^2}\mathcal{O}_{BW}$	$\mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \; ,$
	$\frac{8lpha_2}{v^2}\mathcal{O}_B$	$\mathcal{O}_B = \left(D_\mu \Phi ight)^\dagger \hat{B}^{\mu u} \left(D_ u \Phi ight) ,$
	$\frac{8\alpha_3}{v^2}\mathcal{O}_W$	$\mathcal{O}_W = \left(D_\mu \Phi \right)^\dagger \hat{W}^{\mu u} \left(D_ u \Phi \right) ,$
	$\frac{4\alpha_4}{v^4}\mathcal{O}_4^{(8)}$	$\mathcal{O}_{4}^{(8)} = \left[(D_{\mu}\Phi)^{\dagger} (D_{\nu}\Phi) + (D_{\nu}\Phi)^{\dagger} (D_{\mu}\Phi) \right]^{2},$
	$\frac{16\alpha_5}{v^4}\mathcal{O}_5^{(8)}$	$\mathcal{O}_5^{(8)} = \left[(D_\mu \Phi)^\dagger (D^\mu \Phi) \right]^2 ,$
	$-rac{64lpha_{6}}{v^{6}}\mathcal{O}_{6}^{(10)}$	$\mathcal{O}_6^{(10)} = \left[(D_\mu \Phi)^\dagger (D_\nu \Phi) \right] \left[\Phi^\dagger (D^\mu \Phi) \right] \left[\Phi^\dagger (D^\nu \Phi) \right] ,$
	$-\frac{64lpha_7}{v^6}\mathcal{O}_7^{(10)}$	$\mathcal{O}_7^{(10)} = \left[(D_\mu \Phi)^\dagger (D^\mu \Phi) \right] \left[\Phi^\dagger (D_\nu \Phi) \right] \left[\Phi^\dagger (D^\nu \Phi) \right] ,$
	$-rac{4lpha_8}{v^4}\mathcal{O}_8^{(8)}$	$\mathcal{O}_8^{(8)} = \left[\Phi^\dagger \hat{W}_{\mu u} \Phi ight]^2 ,$
	$-rac{16lpha_9}{v^4}\mathcal{O}_9^{(8)}$	$\mathcal{O}_9^{(8)} = \left[\Phi^{\dagger} \hat{W}_{\mu\nu} \Phi \right] \left[(D^{\mu} \Phi)^{\dagger} (D^{\nu} \Phi) \right] ,$
	$\frac{128\alpha_{10}}{v^8}\mathcal{O}_{10}^{(12)}$	$\mathcal{O}_{10}^{(12)} = \left(\left[\Phi^{\dagger}(D_{\mu}\Phi) \right] \left[\Phi^{\dagger}(D_{\nu}\Phi) \right] \right)^2.$
L	$\frac{8\alpha_{11}}{v^4}\mathcal{O}_{11}^{(8)}$	$\mathcal{O}_{11}^{(8)} = i\epsilon^{\mu\nu\rho\sigma} \left[\Phi^{\dagger}(D_{\mu}\Phi) \right] \left[\Phi^{\dagger}\hat{W}_{\rho\sigma}(D_{\nu}\Phi) \right] + \text{h.c.}$

	EVM Chiral Lag.
$2(D_{\mu}\Phi)^{+}\Phi = \partial_{\mu}h^{2} + h^{2}Tr(TV_{\mu})$	$\mathcal{L}_1' = \frac{\beta_1 v^2}{4} \left[\operatorname{Tr} \left(T V_\mu \right) \right]^2$
$2\Phi^+ W_{\mu\nu} \Phi = h^2 Tr(TW_{\mu\nu}) \qquad \qquad$	$\mathcal{L}_1 = \frac{\alpha_1 g g'}{2} B_{\mu\nu} \operatorname{Tr} \left(T W^{\mu\nu} \right)$
$2(D_{\mu}\Phi)^{+}W^{\mu\nu}(D_{\nu}\Phi) = h^{2}Tr(W^{\mu\nu}V_{\mu}V_{\nu}) - (\partial_{\mu}h^{2})Tr(W^{\mu\nu}V_{\nu})$	$\mathcal{L}_2 = \frac{i\alpha_2 g'}{2} B_{\mu\nu} \operatorname{Tr} \left(T[V^{\mu}, V^{\nu}] \right)$
$2\Phi^{+}W^{\nu\rho}(D^{\mu}\Phi) = h^{2}[Tr(TV^{\mu}W^{\nu\rho}) + Tr(V^{\mu}W^{\nu\rho})]$ $2(D^{\mu}\Phi)^{+}W^{\nu\rho}\Phi = h^{2}[Tr(TV^{\mu}W^{\nu\rho}) - Tr(V^{\mu}W^{\nu\rho})].$	$\mathcal{L}_3 = i\alpha_3 g \operatorname{Tr}\left(W_{\mu\nu}[V^{\mu}, V^{\nu}]\right)$
	$\mathcal{L}_4 = \alpha_4 \Big[\operatorname{Tr} \left(V_\mu V_\nu \right) \Big]^2$
	$\mathcal{L}_5 = \alpha_5 \Big[\mathrm{Tr} \left(V_\mu V^\mu \right) \Big]^2$
	$\mathcal{L}_6 = \alpha_6 \operatorname{Tr} \left(V_{\mu} V_{\nu} \right) \operatorname{Tr} \left(T V^{\mu} \right) \operatorname{Tr} \left(T V^{\nu} \right)$
	$\mathcal{L}_{7} = \alpha_{7} \operatorname{Tr} \left(V_{\mu} V^{\mu} \right) \operatorname{Tr} \left(T V_{\nu} \right) \operatorname{Tr} \left(T V^{\nu} \right)$
	$\mathcal{L}_8 = \frac{\alpha_8 g^2}{4} \Big[\text{Tr} \left(T W_{\mu\nu} \right) \Big]^2$
	$\mathcal{L}_9 = \frac{i\alpha_9 g}{2} \operatorname{Tr} \left(T W_{\mu\nu} \right) \operatorname{Tr} \left(T [V^{\mu}, V^{\nu}] \right)$
	$\mathcal{L}_{10} = \frac{\alpha_{10}}{2} \left[\operatorname{Tr} \left(T V_{\mu} \right) \operatorname{Tr} \left(T V_{\nu} \right) \right]^2$
	$\mathcal{L}_{11} = \alpha_{11} g \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr} \left(T V_{\mu} \right) \operatorname{Tr} \left(V_{\nu} W_{\rho\sigma} \right)$

TeV Chiral Lag.

EW Linearized Lag.

TeV Chiral Lagrangian

Review

 The anomalous 4-point couplings in chiral Lag., and the HVV dim-6 operators in Linearized Lag. are relevant to WW scattering.

- WW scattering offers a way to probe strong TeV dynamics, or probe HVV couplings.
- WW scattering papers in our HEP theory group.

FIND a w. repko and t scattering From	SPIRES HEP		
Dicus, Duane A. Phys. Nev. D48:5106-5108,1993 hep-ph/9305284 Head more			
High-energy photon neutrino elastic scattering Dec 29, 10 Abbasabadi, Ali Phys.Rev.D63:093001,2001 hep-ph/0012257 Read more	FIND a c p when and t coattoring From SPI		
W, Z and Higgs scattering at SSC energies Dec 9, '09, 7:00 Gupta, Suraj N. Phys.Rev.D48:2083-2096,1993 hep-ph/9307239 Read.more	Heavy Quark Mass Effects in Deep Inelastic Scattering and Glo		
The Effects of a strongly interacting Higgs sector on gar	Tung, W.K. JHEP 0702:053,2007 hep-ph/0611254 Read more	FIND a chivukula	and simmons and t scattering
I = 1, J = 1 resonances in the Pade unitarized W(L)+ W(L) Dicus, Duane A. Phys.Rev.D47:4154-4157,1993 Read more	Inelastic channels in W W scattering Dec 9, '09, 7:00 PM Naculich, Stephen G. Phys.Rev.D48:1097-1103,1993 hep-ph/9302226 Read more	W(L) W(L) Scattering in I Belyaev, Alexander S. Phys.Rev.D8	Higgsless Models: Identifying Better Effection 0:055022,2009 arXiv:0907.2662 Read more
Pade approximants and unitarity in W+ W- and Z0 Z0 sca Dicus, Duane A. Phys.Rev.D42:3660-3667,1990 Read more	Resummation of transverse momentum and mass logarithms in Nadolsky, Pavel M. Phys.Rev.D67:074015,2003 hep-ph/0210082 Read more	Identifying Better Effecti	ive Higgsless Theories via W_L W_L Scatter
Neutrino-photon scattering and the neutrino mass Aug : Vega, Roberto Read more	Phenomenology of multiple parton radiation in semiinclusive de Nadolsky, Pavel M. Phys.Rev.D64:114011,2001 hep-ph/0012261 Read more	Belyaev, Alexander S. arXiv:1003.1	FIND a c. schmidt and t
Unitarity Effects in W+ W- Elastic Scattering Jan 16, 107, 7 Repko, Wayne W. Phys.Rev.Lett.62:859,1989 Read.more	Soft parton resummation in the current region of semiinclusive Nadolsky, Pavel M. hep-ph/0006176 Read more	Chivukula, R.Sekhar Phys.Rev.D78	Equivalence Theorem Redux Mar 2
Neutrino photon scattering in a magnetic field Nov 20, 108 Dicus, Duane A. Phys.Lett.B482:141-144,2000 hep-ph/0003305 Read more	Testing anomalous gauge couplings of the Higgs boson via we	a wea Deconstruction and Elas Bagger, Jonathan Phys.Rev.D41:264,1	

Cross Section & EWA

$$\sigma(pp \to (q\bar{q'} \to V_3V_4) + X) = \sum_{i,j} \int \int \int dx_1 dx_2 d\cos\theta f_i(x_1, Q^2) f_j(x_2, Q^2)$$
$$\frac{d\hat{\sigma}}{d\cos\theta} (q\bar{q'} \to V_3V_4)$$

Effective W Approximation (EWA):

$$\sigma(pp \to (V_1 V_2 \to V_3 V_4) + X) = \sum_{i,j} \int \int dx_1 dx_2 d\cos\theta f_i(x_1, Q^2) f_j(x_2, Q^2)$$
$$\int \int d\hat{\tau} d\hat{\eta} \frac{\partial^2 L}{\partial \hat{\tau} \partial \hat{\eta}} \frac{d\hat{\sigma}}{d\cos\theta} (V_1 V_2 \to V_3 V_4)$$
$$\approx \sum_{\lambda_1, \lambda_2} \int dx_1 dx_2 F_{q_1 \to q_1' V_1}^{\lambda_1}(x_1) F_{q_2 \to q_2' V_2}^{\lambda_2}(x_2) \sigma_{V_1 V_2 \to V_1' V_2}^{\lambda_1 \lambda_2}$$

In the exact calculation, the ambiguity for the off-shell W??

Signal & Backgrounds

If strong dynamics at TeV scale, VLVL to VLVL scattering is expected to be enhanced at large invariant mass.

In contrast, VT VT to VT VT, and VT VL to VT VL scattering remain perturbative through the whole invariant mass range. (irreducible BG)

Signal Definition: the enhancement of the cross section over the SM prediction with a light Higgs

$$\sigma_{signal} = \sigma_{newphys} - \sigma_{SM} (m_H = 100 \text{ GeV})$$

WW Scattering Channels:

4 scattering processes:		3 decay modes:		Potentially
W+W- W+W+ W Z Z Z	Х	purely leptonic semi-leptonic purely hadronic	=	at least 12 analyses to do!

All jets need to lie in the rapidity-range accessible to the detector,

 $|\eta_j| < 4.5\,,$

and are supposed to be well-separated,

 $\Delta R_{jj} = \sqrt{(\eta_{j_1} - \eta_{j_2})^2 + (\phi_{j_1} - \phi_{j_2})^2} > 0.7$

Jet-Tagging & Jet-Veto

The two jets of largest Pt are called "tagging jets".

- 1. Require two jets with
 - $|\eta(jet)| > \eta_{\text{cut}}$ and $p_T(jet) > p_{T\text{cut}}$ $p_{Tj}^{\text{tag}} > 30 \text{ GeV}$.
 - opposite signed rapidity
 - at least one of them has an energy greater than a critical value E_{cut} $m_{jj} > m_{jj}^{min}$,
- 2. If more than one jet with the same sign rapidity satisfies the above cuts, choose the most energetic, labelled FJ1. The next one is labelled FJ2.
 - Require the tag-jet with the opposite sign of rapidity to satisfy $\Delta \eta(FJ1, FJ2) > \Delta \eta_{cut}$ and $E(FJ2) > E_{2cut}$ $\Delta \eta_{jj} = |\eta_{j_1}^{tag} - \eta_{j_2}^{tag}| > 4$,

 $\eta_{j_1}^{tag} \times \eta_{j_2}^{tag} < 0.$

ATLASTDR

For the central jets with larger Pt, we discards the events.

We veto any such activity by discarding all events with an extra veto jet of

$$p_{Tj}^{veto} > 25 \text{ GeV}$$

located in the gap region between the two tagging jets,

$$\eta_{j,min}^{tag} < \eta_j^{veto} < \eta_{j,max}^{tag} \,.$$

Leptonic Cuts

In order to ensure well-observable isolated charged leptons in the central-rapi region, we require

 $p_{T\ell} > 20 \text{ GeV}, \ |\eta_{\ell}| < 2.5, \ \Delta R_{\ell j} > 0.4,$

The leptons (produced by VV decay) are typically located in the central rapidity region between two tagging jets:

$$\eta_{j,\min}^{tag} < \eta_{\ell} < \eta_{j,\max}^{tag} \,,$$

Bagger, Barger, Cheung, Gunion, Han, Ladinsky, Rosenfeld, Yuan

•
$$ZZjj \rightarrow 4\ell jj$$
:

 $m_{ZZ} > 500 \text{ GeV},$ $p_T(\ell\ell) > 0.2 \times m_{ZZ}.$

• $ZZjj \rightarrow 2\ell 2\nu jj$:

$$m_T(ZZ) > 500 \text{ GeV},$$

$$p_T^{miss} > 200 \text{ GeV},$$

with p_T^{miss} being the transverse momentum of the neutrino system and

$$m_T^2(ZZ) = \left[\sqrt{m_Z^2 + p_T^2(\ell\ell)} + \sqrt{m_Z^2 + (p_T^{miss})^2}\right]^2 - \left[\vec{p}_T(\ell\ell) + \vec{p}_T^{miss}\right]^2.$$

• $W^{\pm}Zjj$:

$$m_T(WZ) > 500 \text{ GeV},$$

$$p_T^{miss} > 30 \text{ GeV},$$

where

$$m_T^2(WZ) = \left[\sqrt{m^2(\ell\ell\ell) + p_T^2(\ell\ell\ell)} + |p_T^{miss}|\right]^2 - \left[\vec{p}_T(\ell\ell\ell) + \vec{p}_T^{miss}\right]^2$$

• W^+W^-jj :

 $p_{T\ell} > 100 \text{ GeV},$ $\Delta p_T(\ell \ell) = |\vec{p}_{T,\ell_1} - \vec{p}_{T,\ell_2}| > 250 \text{ GeV},$ $m_{\ell \ell} > 200 \text{ GeV},$ $\min(m_{\ell j}) > 180 \text{ GeV},$

Englert, Jager, Worek, Zeppenfeld

Calculation Tools

Pythia

(1) generate signal in the effective W approximation; (2) scenarios with different resonances are available by choice of input a4, a5; (3)only 2 to 2 + decay, so the BGs are only qq to WW, qq to tt.

MadEvent

(1) handle all processes up to 6 particles in final states; (2)best to generate BGs; (3) not strong TeV models with amplitude unitarization available; (4) too many unwanted diagrams (possible to modify the source code to exclude unwanted diagrams, or specify W polarization).

CalcHEP

(1) handle all processes up to 6 particles in final states; (2) hard to manipulate the code to modify something.

VBFNLO

(1) Specific to generate vector boson fusion up to NLO; (2)in LO use HELAS amplitude generated by MadGraph; (3) possible to modify the code to add new physics parameters.

NLO Calculations?

WW/WZ(SM Higgs/Higgsless KK)

WZ Channel (Three Site/ Higgsless) 100 $E_j > 300 \,{\rm GeV}\,, \quad p_{Tj} > 30 \,{\rm GeV}$ Three Site Higgsless Signal+BG $pp \rightarrow W_0 Z_0 qq (BG)$ $\left|\eta_{j}\right| < 4.5\,, \quad \left|\Delta\eta_{(}jj)\right| > 4\,,$ E.N. /25 GeV @ 100 fb⁻¹ $pp \rightarrow W_0 Z_0 qg (BG)$ $pp \rightarrow W_0 Z_0 gg (BG)$ W' 600 200 400 800 1000 $M_{T}(W_{0}Z_{0})$ GeV Chivukula, Simmons, et. al. Higgsless KK 10² Higgsless Luminosity: 300 fb 10^{4} $E_i > 300 \text{ GeV}$ Pade $_{1-01}^{\rm N}$ (events/100 GeV) $p_{\text{T},j} > 30 \text{ GeV}$ Higgsless $\sigma(W^+Z \rightarrow W^+Z)$ (pb) $2.0 < |\eta_{\rm j}| < 4.5$ K-matrix $|\eta_1| < 2.5$ Pade K-matrix SM 10^{2} 500 1000 1500 2000 2500 3000

5000

 m_{wz} (GeV)

200 300 700 1000 500 2000 3000 $s^{1/2}$ (GeV) Birkedal I, Matchev I, Perelstein

Figure 7: The J = 0 partial wave amplitude as a function of \sqrt{s} for the standard model without a Higgs boson (red) and the $U(1) \times [SU(2)]^N \times SU(2)_{N+1}$ model (blue) for N = 1 to 100 with $m_{W'} = 500$ GeV.

violation?

Results from VBFNLO(ww)

In the WW channel, if we know there is a unitarity violation, how can we identify the unitarity violation scale M(WW) from the MT(II)??

Summary

 Before Higgs discovery, WW scattering offers a way to probe the EWSB mechanism.

Even when Higgs is discovered, WW scattering can still be used to distinguish SM Higgs from other models.

WW scattering at the LHC (Signal+BG) is reviewed, and new results from MC generator is in progress.

Thank You!!!

New Resonances?

$$\mathcal{L}_s = -\frac{1}{2} \Phi_r^a \Box \Phi_r^a - \frac{1}{2} m_r^2 \Phi_r^a \Phi_r^a + \beta_r f \Phi_r^a (\vec{h}^T T_L^a T_R^3 \vec{h}) + \cdots$$

By integrating out Φ_r^a we find

$$\mathcal{L}_{eff} = \frac{\beta_r^2 f^2}{2} (\vec{h}^T \ T_L^a T_R^3 \ \vec{h}) \frac{1}{\Box + m_r^2} (\vec{h}^T \ T_L^a T_R^3 \ \vec{h}) = \frac{\beta_r^2 f^2}{2m_r^2} (\vec{h}^T \ T_L^a T_R^3 \ \vec{h}) \left[1 - \frac{\Box}{m_r^2} + \cdots \right] (\vec{h}^T \ T_L^a T_R^3 \ \vec{h}),$$