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Observable & Parametrization

     Parametrization: bosonic sector
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Table 1. Relevant measurements

Notation Value SM prediction
Atomic parity QW (Cs) −72.62 ± 0.46 −73.17 ± 0.03

violation QW (T l) −116.6 ± 3.7 −116.78 ± 0.05
Muon g − 2 1

2
(gµ − 2 − α

π
)[10−9] 4511.07 ± 0.82 4509.82 ± 0.10

ν-nucleon scattering g2
L 0.30005 ± 0.00137 0.30378 ± 0.00021

g2
R 0.03076 ± 0.00110 0.03006 ± 0.00003

ν-e scattering gνe
V −0.040 ± 0.015 −0.0396 ± 0.0003

gνe
A −0.507 ± 0.014 −0.5064 ± 0.0001

e+e− → ff̄ ΓZ [GeV] 2.4952 ± 0.0023 2.4968 ± 0.0011
at Z-pole σ0

h[nb] 41.541 ± 0.037 41.467 ± 0.009
R0

e 20.804 ± 0.050 20.756 ± 0.011
R0

µ 20.785 ± 0.033 20.756 ± 0.011
R0

τ 20.764 ± 0.045 20.801 ± 0.011
Rb 0.21629 ± 0.00066 0.21578 ± 0.00010
Rc 0.1721 ± 0.0030 0.17230 ± 0.00004

A0,e
fb 0.0145 ± 0.0025 0.01622 ± 0.00025

A0,µ
fb 0.0169 ± 0.0025 0.01622 ± 0.00025

A0,τ
fb 0.0188 ± 0.0017 0.01622 ± 0.00025

A0,b
fb 0.0992 ± 0.0016 0.1031 ± 0.0008

A0,c
fb 0.0707 ± 0.0035 0.0737 ± 0.0006

sin2 θlept
eff (Qfb) 0.2319 ± 0.0012 0.23152 ± 0.00014

Ae 0.1514 ± 0.0019 0.1471 ± 0.0011
Aµ 0.142 ± 0.015 0.1471 ± 0.0011
Aτ 0.1433 ± 0.0041 0.1471 ± 0.0011

Fermion pair σf (f = q, µ, τ) Ref. 3 Ref. 3

production at Af
fb(f = µ, τ) Ref. 3 Ref. 3

LEP 2 dσe/d cos θ Ref. 26 Ref. 27
W pair dσW /d cos θ Ref. 28 Ref. 28
W mass MW [GeV] 80.410 ± 0.032 80.376 ± 0.017

Note that the observables listed in Table 1 are often “pseudo-observables”, in
the sense that they are not the directly measured quantities in the experiments. For
example, the LEP 1 experiments measured the cross sections for e+e− → ff at a few
different center mass energy around the Z-pole. They have all been combined and
translated to a few quantities at Z-pole. For LEP 2 measurements at various center
of mass energies, there is no such simplification and therefore the numerical values
of SM predictions are not listed in Table 1. Instead, we have given the corresponding
references.

The Z-pole observables and several low-energy observables have the best preci-
sion. They dominate the constraints whenever the considered operators contribute
to them. Therefore, in the literature, some of the observables in Table 1 are often
omitted, which does not significantly alter the bounds on the models in consid-
eration. Nevertheless, there are also operators that cannot be constrained by the
Z-pole and low energy measurements. As we will see, some of the 4-fermion opera-
tors are only constrained by the LEP 2 measurements. The LEP 2 measurement for
e+e− → W+W− cross sections also provides us unique constraints on triple gauge
couplings.
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The operator OW is not constrained as well as others, due to the low statistics
in the measurement of e+e− → W+W− cross sections. Therefore, in the literature,
this measurement is often neglected from the list of EWPOs. Nevertheless, it gives
the unique constraint of O(TeV) if the new physics only modifies the triple gauge
couplings.

We also see from the bounds on aeB and aeW that, the muon g−2 measurement
does not give us stringent constraints if the new physics contribution is suppressed
by a loop factor and the muon mass. See Ref. 25 for exceptions, as well as an analysis
for the non-linear case.

Although it is clear from Table 2 how well each of the operators is constrained,
in practice, constraints on individual operators are not useful. The reason is that we
usually obtain multiple operators when the new physical states are integrated out.
Their contributions to the observables are correlated. Therefore, in order to obtain
the bounds on a new model, the full χ2 distribution should be used. Including
experimental correlations, Eq. (4) is modified to

χ2(ai) =
∑

p,q

(Xp
th(ai) − Xp

exp)(σ
2)−1

pq (Xq
th(ai) − Xq

exp), (86)

where σ2 is the error matrix, defined from the standard deviations σp and the
correlation matrix ρpq as

σ2
pq = σpρpqσq. (87)

The numerical result of the χ2 distribution, for operators (26)-(29), is given in
Ref. 14. After obtaining the χ2, it is straightforward to calculate constraints for a
given model once the heavy particles are integrated out and the coefficients ai’s are
obtained. See Ref. 41-43 for a few examples on the little Higgs models40 and models
with a warped extra-dimension.

6. Discussions

6.1. Oblique corrections

The oblique corrections are modifications to the gauge boson propagators. We dis-
cuss in this section the relations between the oblique parameters and the effective
operators.

6.1.1. S, T and U

The well known S, T and U parameters17 are defined by

α

4s2c2
S = Π′

ZZ −
c2 − s2

cs
Π′

Zγ − Π′
γγ ,

αT =
ΠWW (0)

M2
W

−
ΠZZ(0)

M2
Z

,

α

4s2
(S + U) = Π′

WW −
c

s
Π′

Zγ − Π′
γγ . (88)

A Chiral Parameters and Anomalous Couplings

In this section, we list the formulas that relate the operators of the chiral Lagrangian (see
Sec. 2) to the anomalous couplings of vector bosons in the physical basis of Aµ, Zµ, W±

µ . While
standard parameterizations exist for the oblique corrections and for the triple gauge couplings
(TGC), this is not the case for quartic anomalous couplings.

A.1 Oblique corrections

New physics that does not couple to light fermions can be parameterized in terms of S, T, U .
The relations are

∆S = −16πα1 ∆T = 2β1/αQED ∆U = −16πα8 (123)

The oblique corrections are needed for the proper renormalization of the SM vertices. First,
we have to specify our definition of the weak mixing angle. It is customary to adopt the
GF /α/MZ scheme. In this scheme, the weak mixing angle is defined by

swcw =
e

2MZ
(
√

2GF )−1/2. (124)

Furthermore, the oblique corrections renormalize the wave functions of the vector bosons and
thus affect the definition of the gauge couplings g and g′ in terms of e and sw, cw.

A simple recipe of including the oblique corrections to the trilinear and quartic gauge cou-
plings is the following: (i) Expand the SM Lagrangian in terms of physical fields according
to

gW 3 = eA + e
cw

sw
(1 + δZ)Z, gW± =

e

sw

(

1 + c2
wδZ −

g2

2
α8

)

W± (125)

where

δZ =
β1 + g′ 2α1

c2
w − s2

w

, (126)

and (ii) switch to the GF/α/MZ scheme by the replacements

sw → sw

(

1 −
c2
w

c2
w − s2

w

β1 −
e2

2s2
w(c2

w − s2
w)

α1

)

(127)

cw → cw

(

1 +
s2

w

c2
w − s2

w

β1 +
e2

2c2
w(c2

w − s2
w)

α1

)

(128)

A.2 Triple gauge couplings

We define a generic C and CP -even triple-gauge vertex in the standard way

LTGC = ie

[

gγ
1Aµ

(

W−
ν W+µν − W+

ν W−µν
)

+ κγW−
µ W+

ν Aµν +
λγ

M2
W

W−
µ

νW+
νρA

ρµ

]

+ ie
cw

sw

[

gZ
1 Zµ

(

W−
ν W+µν − W+

ν W−µν
)

+ κZW−
µ W+

ν Zµν +
λZ

M2
W

W−
µ

νW+
νρZ

ρµ

]

(129)

57couplings PDG bounds indirect limits Unit. W+W− Unit. W±Z

∆gZ1 −0.016+0.022
−0.019 [−0.051 , 0.0092] 2.7 0.22

∆κZ −0.076+0.059
−0.056 [−0.050 , 0.0039] 0.22 3.5

λZ −0.088+0.060
−0.057 [−0.061 , 0.10] 0.15 0.14

gZ5 −0.07± 0.09 [−0.085 , 0.049] 2.7 1.7

gZ4 −0.30± 0.17 — 2.7 0.22

κ̃Z −0.12+0.06
−0.04 — 2.7 3.5

λ̃Z −0.09± 0.07 — 0.15 0.14

Table 1
Available limits on the anomalous TGV couplings. The first column contains a
compilation of the direct searches performed by the Particle Data Group [4]. The
indirect bounds are presented in the second column [5] where the entries not evalu-
ated in the literature are marked as —. The third and fourth columns contain the
bounds derived from the processes qq → W+W− and W±Z [13] imposing that
unitarity is satisfied for energies below 2 TeV.

ence between the SM and the anomalous contribution, and the pure anomalous
ones. For the CP violating couplings σi

int vanishes.

SM contributions to pp → "+"′−/ET include electroweak (EW) processes lead-
ing to this final state – such us W+W− production or ZZ production with one
Z decaying in charged leptons and the other in neutrinos – and tt̄ production
with the top quarks decaying semi-leptonicaly. For pp → "±"′+"′−/ET the main
SM backgrounds are the EW production of W±Z pairs and ZZ production
with the subsequent decays of the Z’s into leptons when one charged lepton
escapes detection. An additional background comes from tt̄ production if the
semi-leptonic decay of a b gives rise to an isolated charged lepton.

The signal and backgrounds were simulated at the parton level with full tree
level matrix elements generated with the package MadEvent [8] conveniently
modified to include the anomalous TGV’s. We employed CTEQ6L parton dis-
tribution functions [9] throughout. We took the electroweak parameters to be
αem = 1/132.51, mZ = 91.188 GeV, mW = 80.419 GeV, and sin2 θW = 0.222,
which was obtained imposing the tree level relation cos θW = mW/mZ . We sim-
ulated experimental resolutions by smearing the energies (but not directions)
of all final state charged leptons with a Gaussian error ∆(E)/E = 0.02/

√
E.

We also included in our analysis a 90% lepton detection efficiency.

We began our analysis of processes (1) and (2) by imposing some basic accep-
tance cuts for the charged leptons and missing energy

p!T ≥ 10 GeV , |η!| < 2.5 , ∆R!! ≥ 0.4 , /pT ≥ 10 GeV (5)
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     LEP I & II, SLD, Tevatron Data:

S = −0.13± 0.10

T = −0.17± 0.12

U = 0.22± 0.13

(mh = 117 GeV)

Oblique 2-point function:

Triple GB Coupling 3-point function: 

Peskin, Takeuchi

PDG



New-Physics Resonance

     Model independent new physics:
New 

Resonances

Scalar Vector 

Boson Tensor T-prime
Broad-width

resonance

Singlet Higgs Triplet Quintet Vector 

Singlet
Vector 

Triplet
Gauge 

Boson

Resonance mass: M = ΛSB ,

Couplings (or width): gΛ (ΓM ) .

     Low-energy effects (integrate out resonances):

do less influence the low-energy range. Actually, a resonance with f = 1 looks like a broad
continuum that saturates unitarity in the energy range E ≈ M .

We therefore define the sensitivity limit Λ of a low-energy measurement as given by a
resonance with mass M = Λ for which tree-level exchange would induce a 1σ shift in the fit,
compared to some assumed central value. The resonance coupling is set such that the width is
equal to the mass (precisely: Γ = fM , where we consider f ≤ 1), assuming that there are no
other decay channels. This definition ensures that a real resonance with mass M = Λ may have
a smaller, but never a larger effect on the considered low-energy observable. In other words,
the observable is insensitive to anything in the high-energy amplitude beyond E = Λ.

Looking at resonances that couple to vector boson pairs, we can limit ourselves to spin
J = 0, 1, 2 and isospin I = 0, 1, 2, since these are the possible quantum numbers of a pair
of spin-1, mixed-isospin (1/0) bosons. If isospin was conserved exactly, the only accessible
(I, J) combinations would be (0, 0), (0, 2), (2, 0), and (1, 1). However, isospin is broken by
the B gauge boson (hypercharge) and by the fermion couplings, therefore we should not rely
on isospin conservation. Still, there is one combination that we can leave out, (I, J) = (2, 1),
since due to the Landau-Yang theorem an isospin-2 vector state does not couple to W+W+ or
W−W− pairs and is thus indistinguishable from a vector with mixed I = 1/0.

Along with the couplings to vector bosons, for all states considered here we evaluate the
partial width for the decay into a vector boson pair. If the resonance is sufficiently heavy (this
is the case for any state that is not directly accessible at the ILC), due to the Goldstone-boson
equivalence theorem this width is well approximated by the partial width for the decay into
two (unphysical) Goldstone bosons. This gives us a lower limit ΓV V for the total resonance
width Γ. From the upper limit on the total width, Γ ≈ M , we can infer an upper bound for the
resonance coupling, and thus for the scattering amplitude itself. Integrating out the resonance
gives rise to a shift in the low-energy scattering amplitude, which is therefore also bounded in
magnitude. In the end, these bounds have to be compared with the achievable accuracy in the
determination of the low-energy parameters.

The method for integrating out heavy states and thus obtaining their low-energy (tree-
level) effects is well known. Given a Lagrangian that contains quadratic and linear terms for
the resonance Φ,

LΦ =
z

2

[

Φ(M2 + A)Φ + 2ΦJ
]

(14)

where A and J involve light fields and (covariant) derivatives, the tree-level low-energy expan-
sion is

Leff
Φ = −

z

2M2
JJ +

z

2M4
JAJ + O(M−6). (15)

In an actual calculation, this expression is typically manipulated further in order to relate the
resulting operators to the canonical basis as defined in Sec. 2.

We do not consider loop corrections due to resonance exchange, since after proper renor-
malization they generically do not alter the results at the order we are considering. However,
in cases where a symmetry forbids the linear coupling to J , and thus the effect is zero in our
framework, the loop contribution is actually the leading one, although suppressed by powers of
1/16π2 and 1/M2. This happens, for instance, for the supersymmetric partners in the MSSM.
Furthermore, we should keep in mind that in technicolor theories there are non-decoupling
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Usually, the effects from heavy resonance are either suppressed by inverse powers of 
M, or renormalize parameters of the low-energy theory. (Decoupling Theorem)

Special case: Non-decoupling effects! (example: oblique(chiral fermion), zbb, K/B-mixing...)

Appelquist, Carrazzone



WW Scattering (Non-decoupling Channel)

The Higgs boson and vector boson
scattering

• Strong cancellations in the high-energy behaviour of
amplitudes in the SM.
• W+(p+) + W−(p−) → W+(q+) + W−(q−)

• the scattering of longitudinal bosons, is responsible for the
leading behaviour at high energy.

• In the centre-of-mass frame the longitudinal polarization
vectors for the W bosons are

εL(p±) =
( p

MW
, 0, 0,± E

MW

)
,

εL(q±) =
( p

MW
, 0,± E

MW
sin θ,± E

MW
cos θ

)
.
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sin θ,± E
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.

T a−d = g2
W

�
p4

M4
W

�
3− 6 cos θ − cos2θ

�
+

p2

M2
W

�
9

2
− 11

2
cos θ − 2cos2θ

��
,

T e = g2
W

�
p4

M4
W

�
−3 + 6 cos θ + cos2θ

�
+

p2

M2
W

�
−4 + 6 cos θ + 2cos2θ

��
,

T f−g = g2
W

�
0 +

p2

M2
W

�
−1

2
− 1

2
cos θ

�
− M2

H

4M2
W

�
s

s−M2
H

+
t

t−M2
H

��
.

\begin

W+
L (p+) +W−

L (p−) → W+
L (q+) +W−

L (q−) Scattering in COM frame

In theMH → ∞ limit, T tot = −g2
W

M
2
H

4M2
W

�
s

s−M
2
H

+ t

t−M
2
H

�
→ u

v2 +O(1/M2
H
).

Limits of an Effective 
Theory

L =
�

i

κi(Λ)Oi

Λdi−4
with di>4 leads to M ∝ κi(Λ)pdi−4

Λdi−4

!"#$

%&#$

'()*+,$-#.&/-+012"

3456#.&/-+012"

76+0$5+0)

34162#46

!"#$Amplitude “violates” unitarity at 
scale M, and the (perturbative) 
effective theory breaks down

M is the scale at which the 
description of the theory changes,
e.g. the W instead of Fermi Theory  The Partial wave amplitude, without Higgs or other new physics, violate unitarity @ TeV scale.

Nondecoupling:

The differential cross section (neglecting particle masses)

dσ

dΩ
=

1

64π2s
|T |2.

Performing a partial wave expansion

T (s, t) = 16π
�

J

(2J + 1)aJ(s)PJ(cos θ),

The total cross section is

σ = 16π
�

J

(2J + 1)|aJ(s)|2.

Using the optical theorem

σ =
1

s
ImT (s, t = 0),

the unitarity bound is

|aJ(s)|2 = Im(aJ(s)), or , |ReaJ(s)| ≤ 1/2.



Goldstone Boson Scattering

although it is non-linearly realized on the χa fields:

χa(x) → χa(x) +
v

2
αa
L(x)−

v

2
δa3 αY (x) . (10)

In the unitary gauge, �Σ� = 1, the chiral Lagrangian (8) reproduces the mass term
of eq.(1) with

ρ ≡ M2
W

M2
Z cos2 θW

= 1 . (11)

This relation is consistent with the experimentally measured value to quite good ac-
curacy. It follows as the consequence of a larger approximate invariance of (8) under
SU(2)L × SU(2)R global transformations,

Σ → UL ΣU
†
R , (12)

which is spontaneously broken to the diagonal subgroup SU(2)c by �Σ� = 1, and
explicitly broken by g� �= 0 and λu

ij �= λd
ij. In the limit of vanishing g� the fields χa

transform as a triplet under the “custodial” SU(2)c, so that MW = MZ . This equality
is replaced by Eq.(11) at tree level for arbitrary values of g�. Further corrections
proportional to g� and (λu − λd) arise at the one-loop level and are small. In fact, the
success of the tree-level prediction ρ = 1 a posteriori justifies the omission in the chiral
Lagrangian (8) of the additional term

v
2 Tr

�
Σ†

DµΣ σ3
�2

(13)

that is invariant under the local SU(2)L × U(1)Y but explicitly breaks the global
SU(2)L ×SU(2)R. In other words, the coefficient of such additional operator is exper-
imentally constrained to be very small.

The chiral Lagrangian (8) makes the origin of the violation of perturbative unitarity
most transparent. Let us work in a renormalizable ξ-gauge, with a gauge-fixing term

LGF =− 1

2ξ

�
∂µW

3
µ + ξ

gv

2
χ3

�2
− 1

2ξ

�
∂µBµ + ξ

g�v

2
χ3

�2

− 1

2ξ

����∂µW
+
µ + ξ

g�v

2
χ+

����
2

.

(14)

The Equivalence Theorem [11,10] states that at large energies the amplitude for the
emission or absorption of a Goldstone field χ becomes equal to the amplitude for the
emission or absorption of a longitudinally-polarized vector boson:

=

Wµ
L χ

×
�
1+O

�
m2

W

E2

��
.
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order in h [12]:

LH =
1

2
(∂µh)

2
+ V (h) +

v2

4
Tr

�
(DµΣ)

†
(DµΣ)

��
1 + 2a

h

v
+ b

h2

v2
+ . . .

�

− v√
2

�

i,j

�
ū
(i)
L
d
(i)
L

�
Σ

�
1 + c

h

v
+ · · ·

��
λu

ij
u
(j)
R

λd

ij
d
(j)
R

�
+ h.c.

(16)

Here V (h) denotes the potential, including a mass term, for h. Each of these parame-

ters controls the unitarization of a different sector of the theory. For a = 1 the exchange

of the scalar unitarizes the χχ → χχ scattering
4

A(χ+χ− → χ+χ−
) =

1

v2

�
s− a

2 s2

s−m2
h

+ (s ↔ t)

�

=
s+ t

v2

�
1− a

2
�
+O

�
m2

h

E2

�
.

Since we have introduced a new particle in the theory, we have to check that also the

inelastic channels involving h are unitarized. The χχ → hh scattering (equivalent to

WLWL → hh at high energy), is perturbatively unitarized for b = a2:

A(χ+χ− → hh) =
s

v2

�
b− a

2
�
+O

�
m2

h

E2

�
.

Finally, the χχ → ψψ̄ scattering (equivalent to WLWL → ψψ̄ at high energy) is unita-

rized for ac = 1

4In the diagrams showed in present section, dashed and solid lines denote respectively the fields χ
and h, whereas solid lines with an arrow denote fermions.
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     To simplify our calculation, use the equivalent theorem:

     Goldstone boson scattering process:

T (W+
L W−

L → W+
L W−

L ) � T (π+π− → π+π−)

{\cal T}(W_L^+ W_L^- 

LGoldstone =
1

2
∂µH∂µ

H +
1

2
∂µπ

0∂µπ0 + ∂µπ
+∂µπ− − m

2
H

2
H

2

−m
2
H

2v
H

�
H

2 + (π0)2 + 2π+π−�− m
2
H

8v2
�
H

2 + (π0)2 + 2π+π−�2

T (π+π− → π+π−) = −m2
H

v2

�
2 +

m2
H

s−m2
H

+
m2

H

t−m2
H

�

{\cal T}(\pi^+\pi^-\to 

In the mH → ∞ limit, still T (ππ → ππ) → u

v2 � s

v2 .

Low-energy Theorem (LET) (integrate out Higgs)

Similar to Pi-Pi Scattering in low-energy QCD 
(Understand chiral symmetry breaking)

Study WW scattering in EW chiral Lag. 
(Understand EW symmetry breaking)

Yao, Yuan Bagger, Schmidt

Lee, Quigg and Thacker

Chanowitz,  Gaillard He, Kuang, Li
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EW Chiral Lagrangian

     The SM Higgsless Lagrangian below the EW scale

LSM = Lkin(A,W,Z) + Lkin(f,Dµf) + Lmass(f) + Lmass(GB)

Violate EW gauge symmetry!Full EW gauge symmetry!

     Introduce extra field to parametrize ignorance on EWSB

         How to build an EW effective theory below EW scale with EW gauge symmetry? 

Σ(x) = e−iπa(x)τa/v → gL(x)Σ(x)gR(x)
†, with SU(2)L ⊗ U(1)Y trans.

Vµ = Σ(DµΣ)
† → gL(x)VµgL(x)

†, Dµ = ∂µΣ+ igWµT
aΣ− i

2
g�Στ3Bµ,

T = Στ3Σ† → gL(x)TgL(x)
†, violate SU(2)C symmetry.

Invariant under EW 
gauge symmetry now!

Lmass(f) = −QLΣMQQR − LLΣMLLR + h.c.

Lmass(GB) = −v2

4
Tr[VµV

µ].



Anomalous Couplings (Bosonic Sector)

L0 ≡ l0
v2

Λ2

v2

4
[Tr(TVµ)]

2, SU(2)C-violation, T-parameter (∆ρ)

L1 ≡ l1
v2

Λ2

gg�

2
BµνTr(TW

µν), S-parameter, TGC

L2 ≡ l2
v2

Λ2

ig�

2
BµνTr(T [V

µ, V ν ]), TGC

L3 ≡ l3
v2

Λ2
igTr(Wµν [V

µ, V ν ]), TGC

L4 ≡ l4
v2

Λ2
[Tr(VµVν)]

2, QGC

L5 ≡ l5
v2

Λ2
[Tr(VµV

µ)]2, QGC

L6 ≡ l6
v2

Λ2
Tr(VµVν)Tr(TV

µ)Tr(TV ν), SU(2)C-violation, QGC

L7 ≡ l7
v2

Λ2
Tr(VµV

µ)Tr(TVν)Tr(TV
ν), SU(2)C-violation, QGC

L8 ≡ l8
v2

Λ2

g2

4
[Tr(TWµν)]

2, SU(2)C-violation, U-parameter, TGC

L9 ≡ l9
v2

Λ2

ig

2
Tr(TWµν)Tr(T [V

µ, V ν ]), SU(2)C-violation, TGC

L10 ≡ l10
v2

Λ2

1

2
[Tr(TVµ)Tr(TVν)]

2, SU(2)C-violation, QGC

L11 ≡ l11
v2

Λ2
g� µνρλ Tr(TVµ)Tr(VνWρλ), P-vilation, TGC

L12 ≡ l12
v2

Λ2
2gTr(TVµ)Tr(V

νWµν), CP-vioaltion, TGC

L13 ≡ l13
v2

Λ2

gg�

4
� µνρλ BµνTr(TWρλ), CP-vioaltion, TGC

L14 ≡ l14
v2

Λ2

g2

8
� µνρλ Tr(TWµν)Tr(TWρλ), CP-vioaltion, TGC

3 Oblique Corrections

Since experimental work is so far restricted to energies below the W-pair threshold,

the only operators in the above list that have been directly constrained experimen-

tally are those that contribute to the gauge boson two-point functions. In addition

to L0, they are L′

1, L1 and L8, and they can be directly related to the S, T and

U parameters introduced by Peskin and Takeuchi [14]. By setting the Goldstone

boson fields to zero in these operators (“going to unitary gauge”), one finds

S ≡ −16π
d

dq2
Π3B(q2)|q2=0 = −16πα1, (7)

αT ≡
e2

c2s2m2
Z

(Π11(0) − Π33(0)) = 2g2β1, (8)

U ≡ 16π
d

dq2
[Π11(q

2) − Π33(q
2)]|q2=0 = −16πα8. (9)

The ∆ρ(≡ ρ − 1) parameter is related to T by ∆ρnew = ∆ρ − ∆ρSM = αT , where

∆ρSM is the contribution arising from standard model corrections.

4 The Triple Gauge Vertex

The next generation of e+e− colliders will operate above the W pair production

threshold, and will therefore be able to directly measure the triple gauge vertices

(TGV’s). The most general polynomial structure of the TGV has been derived [15]

by imposing Lorentz invariance and on-shell conditions for the W+ and W−. The

corresponding effective lagrangian for this vertex is:

LWWV

gWWV
= igV

1 (W+
µνW−µV ν − W−

µνW+µV ν) + iκV W+
µ W−

ν V µν

+
iλV

Λ2
χ

W+
µνW−ν

ρV
ρµ − gV

4 W+
µ W−

ν (∂µV ν + ∂νV µ)

5
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in39,

LWWV = gWWV

[

igV
1 Vµ(W−νW+

µν − W−
µνW+ν) + iκV W−

µ W+
ν V µν

+ i
λV

M2
W

W−ν
µ W+ρ

ν V µ
ρ + gV

5 εµνρσ(W−
µ ∂ρW

+
ν − ∂ρW

−
µ W+

ν )Vσ

]

,

(88)

where V denotes the photon (V = γ or Aµ) and the Z boson interactions
with prefactors gWWγ = e and gWWZ = gcw, respectively. If all anomalous
operator coefficients vanish, we have

gγ
1 = gZ

1 = κγ = κZ = 1, (89)

gγ
5 = gZ

5 = λγ = λZ = 0. (90)

Nonzero coefficients of the dimension-four operators contribute the follow-
ing shifts40e

∆κγ = g2α2 + g2α3 + g2α9, (91)

∆κZ = −g′2α2 + g2α3 + g2α9, (92)

∆gZ
1 = 1

c2
w

g2α3, (93)

∆gZ
5 = 1

c2
w

g2α11, (94)

∆gγ
1 = ∆gγ

5 = 0, (95)

∆λγ = ∆λZ = 0. (96)

Due to electromagnetic gauge invariance, corrections to gγ
1 and gγ

5 have
to vanish at zero momentum transfer. However, the absence of corrections to
the λ couplings up to this order is a characteristic feature of the strongly-
interacting scenario. Nonzero values for these coefficients are only intro-
duced at higher order in the chiral expansion, i.e., by dimension-six op-
erators. (In the weakly-interacting scenario where a light Higgs boson is
present, all anomalous terms scale as dimension six.) The reason is that λ
multiplies a term that involves transversal vector fields only and thus does
not probe the Higgs sector directly. By contrast, the operators L2, L3, L9

and L11 (37, 38, 44, 46) involve Goldstone scalars, visible as the longitudi-
nal components of vector bosons. Hence, the strongly interacting scenario

eThere are also shifts due to α1, β′ and α8. They are constrained already now by the
existing data as discussed in the previous section. These contributions, together with the
one-loop radiative corrections, have to be included, but can be assumed to be known in
a complete triple gauge boson coupling analysis.

which describe the first two non-leading and model-dependent terms in the chiral expansion.

The two interaction terms L4 and L5 are custodial symmetric, leaving the value ρ = 1 un-

changed. Since they involve at least a quartic coupling of the Goldstone particles, they affect

in lowest order only 2 → 2 scattering processes but do not affect the trilinear vertices. Thus,

α4 and α5 can only be determined in WW → WW scattering. [Additional dimension-4 oper-

ators affect the trilinear couplings; in this analysis they are assumed to be pre-determined by

standard methods such as WW pair production in e+e− annihilation.]

We assume that all higher-order coefficients in the chiral expansion are much smaller than

unity. Even though a gauge-symmetric chiral Lagrangean can be defined formally for any theory

with a particular particle content, this is meaningful only if the chiral series can be truncated

at a fixed operator dimension (d = 4 for our purpose) and still higher orders can be neglected.

However, if the concept of spontaneous chiral symmetry breaking were not realized in Nature,

higher-order coefficients would be so large that an infinite number of terms would enter even

at the W, Z mass scale. In that case, the above effective-theory formalism must be abandoned.

From the magnitude of loop effects which carry a factor 1/16π2 together with an additional

power of s/v2, the largest value of
√

s for a chiral expansion to be valid may be estimated [23]

as
√

s ! 4πv ∼ 3 TeV. Thus, if the coefficients αi in the chiral expansion were experimentally

required to be substantially larger than 1/16π2, new resonance effects would already appear

below the 3 TeV scale, e.g., thresholds for resonance production would become visible in the

intermediate range between about 1 and 3 TeV.

Although the ’t Hooft-Feynman gauge turns out to be most convenient for the computation

method described below (Sec.5), all observable quantities can be calculated equally well within

the unitary gauge in which the Goldstone fields $w are set to zero. In this gauge the physical

content of the various terms becomes more transparent: The standard vector boson interactions

are determined by the Yang-Mills kinetic Lagrangean alone, L0 just provides the W, Z masses,

and the new dimension-4 operators L4,5 are recognized as two independent contact-interaction

terms for the W, Z vector bosons:

L0 = M2
W W+

µ W−µ
+

1

2
M2

ZZµZ
µ (17)

L4 = α4

[
g4

2

[
(W+

µ W−µ
)2 + (W+

µ W+µ
)(W−

ν W−ν
)
]

+
g4

c2
w

(W+
µ Zµ)(W−

ν Zν) +
g4

4c4
w

(ZµZ
µ)2

]
(18)

6

Figure 1: Feynman graphs for (quasi-)elastic WW scattering.

L5 = α5

[
g4(W+

µ W−µ
)2 +

g4

c2
w

(W+
µ W−µ

)(ZνZ
ν) +

g4

4c4
w

(ZµZµ)2

]
(19)

[c2
w = 1 − sin2 θw and g2 = e2/ sin2 θw]. The contact terms introduce all possible quartic

couplings W+W−W+W−, W+W−ZZ, and ZZZZ among the weak gauge bosons, that are

compatible with charge conservation and custodial SU(2)c symmetry.

3 WW scattering

From the effective chiral Lagrangean, the 2 → 2 (quasi-)elastic WW scattering amplitudes can

easily be derived. As shown generically in Fig.1, they involve s-channel, t/u-channel exchange

diagrams, and the non-abelian quartic boson coupling, with their sum growing asymptotically

proportional to s. The additional quartic contributions introduced by L4 and L5 rise propor-

tional to s2. The maximal power of s is realized only for amplitudes in which all four vector

bosons are longitudinally polarized; replacing any longitudinally polarized external particle by

a transversely polarized particle removes one factor of
√

s/v; at the same time an additional

power of the weak couplings g, g′ is introduced. [In the extreme forward and backward direc-

tions where t, u are of the order M2
W,Z , the power counting is invalid and both longitudinal and

transversal degrees of freedom contribute with comparable magnitude.]

It follows [1,13] from analyticity, crossing symmetry, CP invariance, and custodial symmetry,

that to leading order in the Yang-Mills couplings all (quasi-)elastic amplitudes can be expressed

in terms of a single function A(s, t, u) which is symmetric with respect to the exchange (t ↔ u).

This function is analytic in the Mandelstam variables s, t, u apart from the usual one-particle

pole and two-particle cut singularities. The Mandelstam variables are given by the total energy

and the momentum transfer in the scattering processes: s = E2
c.m., t(u) ≈ −s(1 ∓ cos θ)/2 for

|s|, |t|, |u| ' M2
W . The amplitudes of the scattering processes (4) and (5) can be derived from

7

β1 = l0
v2

Λ2
,

αi = li
v2

Λ2
,

Λ = Min(MSB , 4πf).

Oblique

TGC

VVVV (with custodial sym):

Appelquist, Bernard

Longhitano



WW Scattering in Chiral Lag.

Figure 12: Region in α4,5 allowed by tree-level unitarity for WW elastic scattering at a subpro-
cess energy of 0.8 TeV (left) resp. 1.2 TeV (right).

From the parameterization (66) the non-zero amplitudes aI
0 can be extracted:

S wave: a0
0 =

1

64π

[
+

4s

v2
+

16

3
(7α4 + 11α5)

s2

v4

]
(68)

a2
0 =

1

64π

[
−

2s

v2
+

32

3
(2α4 + α5)

s2

v4

]
(69)

P wave: a1
1 =

1

64π

[
+

2s

3v2
+

8

3
(α4 − 2α5)

s2

v4

]
(70)

D wave: a0
2 =

1

64π

[
0 +

16

15
(2α4 + α5)

s2

v4

]
(71)

a2
2 =

1

64π

[
0 +

8

15
(α4 + 2α5)

s2

v4

]
(72)

All amplitudes with I + # = odd vanish due to CP invariance. Angular momentum states with

# > 2 are populated by higher-order operators in the chiral expansion.

Two-body elastic unitarity requires |aI
! − i

2 | = 1/2. Once a partial-wave amplitude ap-

proaches the limit Re aI
! = 1/2, rescattering effects set in which induce a phase shift that

unitarizes the amplitudes. Such effects can no longer be described within the effective-theory

approach in a model-independent way. The validity of the chiral expansion is therefore limited

to WW -scattering energies
√

ŝ and values of the parameters αi such that

|aI
! | ! 1/2 (73)

28
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the high-energy limit one obtains the Low-Energy Theorem (LET)27

A(W−
L W−

L → W−
L W−

L ) = −s/v2 (52)

A(W+
L W−

L → W+
L W−

L ) = −u/v2 (53)

A(W+
L W−

L → ZLZL) = s/v2 (54)

A(ZLZL → ZLZL) = 0 (55)

The cross sections for on-shell scattering are calculated by squaring the
amplitudes, inserting phase space factors and dividing by a symmetry factor
of two for like-sign W and for ZZ final states. This symmetry factor will
not be included in the amplitude in any of the relations given here.

To be precise, the LET predicts the numerical coefficient of the lowest-
order term of an expansion of the scattering amplitudes in terms of E/v,
terms of order MW /E neglected. Since MW = gv/2, this is in fact the limit
g → 0 with v fixed. As an approximation to the exact amplitude, the LET
is useful for energies larger than MW and below the scale where either new
states appear or partial-wave unitarity is saturated otherwise (see Sec. 3.4).

3.2. Custodial symmetry relations

The Goldstone bosons transform under SU(2)C transformations as a triplet.
Therefore, if this symmetry is exact, all quasielastic scattering amplitudes
are expressible in terms of a single function A(s, t, u):

A(W−
L W−

L → W−
L W−

L ) = A(t, s, u) + A(u, t, s) (56)

A(W+
L W−

L → W+
L W−

L ) = A(s, t, u) + A(t, s, u) (57)

A(W+
L W−

L → ZLZL) = A(s, t, u) (58)

A(W−
L ZL → W−

L ZL) = A(t, s, u) (59)

A(ZLZL → ZLZL) = A(s, t, u) + A(t, s, u) + A(u, t, s) (60)

The function A(s, t, u) satisfies

A(s, u, t) = A(s, t, u). (61)

As we have seen, its Taylor expansion begins with

A(s, t, u) = s/v2. (62)

Note that these relations are strongly violated in forward scattering where
photon exchange is important. There, elastic WW scattering becomes sin-
gular while WW → ZZ stays finite. This is outside the validity region of
the Equivalence Theorem.

     WW scattering at NLO 
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3.3. Next-to-leading order contributions

Even without additional knowledge about the high-energy behavior of the
theory, the next-to-leading order corrections to Goldstone scattering can
be computed. Only the logarithmic terms are scheme-independent and thus
physically meaningful28,9,29:

Re A(s, t, u) =
s

v2
+

1

16π2v4

{

−
(t − u)

6

[

t ln
−t

µ2
− u ln

−u

µ2

]

−
s2

2
ln

s

µ2

}

+ α0
4
4(t2 + u2)

v4
+ α0

5
8s2

v4
.

(63)

The result depends on a renormalization scale µ. This dependence can be
absorbed in a redefinition of the coefficients of the operators L4 and L5:

α4(µ) = α0
4 −

1

12

1

16π2
ln

µ2

µ2
0

, α5(µ) = α0
5 −

1

24

1

16π2
ln

µ2

µ2
0

(64)

Finite corrections depend on the calculational scheme, i.e., on the UV com-
pletion of the theory. They are contained in the constant coefficients α0

4,5,
which therefore represent the relevant information. The same applies to
the SU(2)C-violating couplings α5,6,10 which are scale-independent to this
order, if the coefficient β′ (35) is indeed zero (or ρ = 1), as suggested by
data.

3.4. Unitarity constraints

The optical theorem states that the total cross section for any process is
equal to the imaginary part of the elastic forward scattering amplitude. If
there is only elastic 2 → 2 scattering, this can be translated into a relation
for the scattering amplitude A(s, t, u). Expanding it in partial waves

A(s, t, u) = 32π
∑

!

a!(s) (2% + 1)P!(1 + 2t/s), (65)

each partial-wave amplitude a! has to satisfy

|a!(s) − i/2| = 1/2, (66)

i.e., as a curve in the complex plane parameterized by s it has to stay on
the Argand circle, a circle with radius 1

2 around the point i
2 . In particular,

the real part of the partial-wave amplitude can never exceed 1/2.
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the high-energy limit one obtains the Low-Energy Theorem (LET)27

A(W−
L W−

L → W−
L W−

L ) = −s/v2 (52)

A(W+
L W−

L → W+
L W−

L ) = −u/v2 (53)

A(W+
L W−

L → ZLZL) = s/v2 (54)

A(ZLZL → ZLZL) = 0 (55)

The cross sections for on-shell scattering are calculated by squaring the
amplitudes, inserting phase space factors and dividing by a symmetry factor
of two for like-sign W and for ZZ final states. This symmetry factor will
not be included in the amplitude in any of the relations given here.

To be precise, the LET predicts the numerical coefficient of the lowest-
order term of an expansion of the scattering amplitudes in terms of E/v,
terms of order MW /E neglected. Since MW = gv/2, this is in fact the limit
g → 0 with v fixed. As an approximation to the exact amplitude, the LET
is useful for energies larger than MW and below the scale where either new
states appear or partial-wave unitarity is saturated otherwise (see Sec. 3.4).

3.2. Custodial symmetry relations

The Goldstone bosons transform under SU(2)C transformations as a triplet.
Therefore, if this symmetry is exact, all quasielastic scattering amplitudes
are expressible in terms of a single function A(s, t, u):

A(W−
L W−

L → W−
L W−

L ) = A(t, s, u) + A(u, t, s) (56)

A(W+
L W−

L → W+
L W−

L ) = A(s, t, u) + A(t, s, u) (57)

A(W+
L W−

L → ZLZL) = A(s, t, u) (58)

A(W−
L ZL → W−

L ZL) = A(t, s, u) (59)

A(ZLZL → ZLZL) = A(s, t, u) + A(t, s, u) + A(u, t, s) (60)

The function A(s, t, u) satisfies

A(s, u, t) = A(s, t, u). (61)

As we have seen, its Taylor expansion begins with

A(s, t, u) = s/v2. (62)

Note that these relations are strongly violated in forward scattering where
photon exchange is important. There, elastic WW scattering becomes sin-
gular while WW → ZZ stays finite. This is outside the validity region of
the Equivalence Theorem.

for an integrated luminosity of
∫
L = 500 fb−1. Since the form of this amplitude is character-

istic for the chiral symmetry breaking as the mechanism driving the dynamics of the strongly

interacting W bosons, this test is the most important goal in analyzing the strong interaction

threshold before resonance phenomena are expected to be observed at still higher energies. No

dynamical mechanisms other than the Higgs mechanism and spontaneously broken strong in-

teraction theories have been worked out so far through which masses of the electroweak gauge

bosons could be generated in a natural way.
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A Unitarity bounds on α4, α5

If custodial SU(2)C symmetry is assumed, the weak isospin amplitudes A(I) (I = 0, 1, 2) for

longitudinal WW scattering in the asymptotic regime (|s|, |t|, |u| ! M2
W ) are given as follows

A(0) = 3A(s, t, u) + A(t, s, u) + A(u, t, s)

A(1) = A(t, s, u) − A(u, t, s)

A(2) = A(t, s, u) + A(u, t, s) (65)

The master amplitude A(s, t, u) has been discussed to next-to-leading order earlier,

A(s, t, u) =
s

v2
+ α4

4(t2 + u2)

v4
+ α5

8s2

v4
(66)

The isospin amplitudes may be decomposed with respect to orbital angular momentum accord-

ing to

A(I) = 32π
∞∑

!=0

(2# + 1)P!(cos θ) aI
! (67)

27

Custodial Symmetry Relations:

Low-energy 
Theorem

a(s)

aK(s)

i
2

Fig. 1. K matrix construction for projecting a real scattering amplitude onto the Ar-
gand circle.

Unitarization Models: K-matrix / Pade / IAM 

Figure 12: Region in α4,5 allowed by tree-level unitarity for WW elastic scattering at a subpro-
cess energy of 0.8 TeV (left) resp. 1.2 TeV (right).

From the parameterization (66) the non-zero amplitudes aI
0 can be extracted:

S wave: a0
0 =

1

64π

[
+

4s

v2
+

16

3
(7α4 + 11α5)

s2

v4

]
(68)

a2
0 =

1

64π

[
−

2s

v2
+

32

3
(2α4 + α5)

s2

v4

]
(69)

P wave: a1
1 =

1

64π

[
+

2s

3v2
+

8

3
(α4 − 2α5)

s2

v4

]
(70)

D wave: a0
2 =

1

64π

[
0 +

16

15
(2α4 + α5)

s2

v4

]
(71)

a2
2 =

1

64π

[
0 +

8

15
(α4 + 2α5)

s2

v4

]
(72)

All amplitudes with I + # = odd vanish due to CP invariance. Angular momentum states with

# > 2 are populated by higher-order operators in the chiral expansion.

Two-body elastic unitarity requires |aI
! − i

2 | = 1/2. Once a partial-wave amplitude ap-

proaches the limit Re aI
! = 1/2, rescattering effects set in which induce a phase shift that

unitarizes the amplitudes. Such effects can no longer be described within the effective-theory

approach in a model-independent way. The validity of the chiral expansion is therefore limited

to WW -scattering energies
√

ŝ and values of the parameters αi such that

|aI
! | ! 1/2 (73)
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New Vector Resonance?

The ω boson can decay into W+W− but not into ZZ, and the pair decay width is

Γω =
h2

ω + 1
2
"2
ω

48π
Mω (45)

Note that, at leading order in v2/M2, the kω coupling does not enter the width formula.
This interaction involves a longitudinal and a transversal gauge boson, which in the limit
v ! M is forbidden as an on-shell ωµ decay mode. We could thus interpret this term as a
continuum property, not related to the resonance, and allow for large values of kω (since the
Γ ≤ M constraint is irrelevant). However, looking at the equations of motion, consistent scaling
requires kω to be of the same order as the other dimensionless couplings.

3.2.2 Vector Triplet: ρ

The vector triplet is written as

ρµ = ρa
µτ

a =
√

2
(

ρ+
µ τ+ + ρ−

µ τ−)

+ ρ0
µτ 3 (46)

We write the generic Lagrangian up to order 1/M2 that includes isospin-violating effects and
anomalous magnetic moments:

Lρ = −
1

8
tr

{

ρµνρ
µν

}

+
M2

ρ

4
tr

{

ρµρ
µ
}

+
∆M2

ρ

8

(

tr
{

Tρµ

})2

+ i
µρ

2
g tr

{

ρµW
µνρν

}

+ i
µ′

ρ

2
g′ tr

{

ρµB
µνρν

}

+ i
gρv2

2
tr

{

ρµV
µ
}

+ i
hρv2

2
tr

{

ρµT
}

tr {TVµ}

+
g′v2kρ

2M2
ρ

tr
{

ρµ[Bνµ,Vν]
}

+
gv2k′

ρ

4M2
ρ

tr
{

ρµ[T,Vν ]
}

tr {TWνµ}

+
gv2k′′

ρ

4M2
ρ

tr
{

Tρµ

}

tr {[T,Vν]W
νµ} + i

"ρ

M2
ρ

tr
{

ρµνW
ν
ρW

ρµ
}

+ i
"′ρ
M2

ρ

tr
{

ρµνB
ν
ρW

ρµ
}

+ i
"′′ρ
M2

ρ

tr
{

ρµνT
}

tr {TWν
ρW

ρµ} (47)

For the moment, we omit the mass splitting term. Then, partial integration transforms the
Lagrangian into

Lρ =
1

4
tr

{

ρµ

(

M2
ρ gµν + D2gµν − DνDµ + 2iµρgW

µν + 2iµ′
ρg

′Bµν
)

ρν + 2ρµj
µ
}

(48)

where

jµ = igρv
2Vµ + ig′

ρv
2T tr {TVµ}

+
g′v2kρ

M2
ρ

[Bνµ,V
ν] +

gv2k′
ρ

2M2
ρ

[T,Vν] tr {TWνµ} +
gv2k′′

ρ

2M2
ρ

T tr {[T,Vν]Wνµ}

+ i
4"ρ

M2
ρ

Dν (Wν
ρW

ρµ) + i
4"′ρ
M2

ρ

Dν (Bν
ρW

ρµ) + i
4"′′ρ
M2

ρ

Dν (T tr {TWν
ρW

ρµ}) (49)
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so they merely renormalize a fictitious bare v value. This renormalization can be made
explicit by adding a counterterm to the ρ interaction Lagrangian, which by power counting
and symmetries must be of the form a gv2

M2Lkin with an appropriate prefactor a. In effect,
expressed in terms of the observed scale v, the LET holds, and the vector-exchange
amplitude is given by

Aρ(s, t, u) = −g2
ρ

(

s − u

t − M2
+

s − t

u − M2
+ 3

s

M2

)

, (119)

which vanishes as s2 as s → 0.

2. In the previous paragraph, the vector resonance was coupled to W/Z bosons by a mass
mixing term, tr [Vρ]. Alternatively, we could couple it by a kinetic mixing term,

Lint = −gρ tr [Wµνρ
µν ] (120)

where the resonance “field strength” is ρµν = Dµρν −Dνρµ with the covariant derivative
in the adjoint representation. Partial integration gives

Lint = 2gρ tr [(DµWµν)ρ
ν ] . (121)

Here, we can apply the W field equation

DµWµν = i
v2

4
Vν (122)

to obtain

Lint =
igρv2

2
tr [Vµρ

µ] (123)

as before, so we get the same scattering amplitude. Using the equations of motion is
precisely an application of the UET.

3. In the CCWZ formalism [31], the elementary building block is ξ with ξξ = Σ. From ξ,
we can construct a vector and an axial vector field,

Vµ =
i

2

(

ξ†Dµξ + ξDµξ
†) and Aµ =

i

2

(

ξ†Dµξ − ξDµξ
†) . (124)

Under SU(2)C , these transform like a gauge field and a matter field, respectively,

V → UCVU †
C − (DµUC)U †

C and A → UCAU †
C . (125)

A is related to the vector current that we have used in our previous formulation: ξ†Vµξ =
2iAµ. We just have to redefine ρµ → ξ†ρµξ to obtain

Lkin = −2v2 tr [AµAµ] and Lint = −gρv
2 tr

[

ρµAµ
]

, (126)

so a matter field ρ coupled to the axial vector A yields the same scattering amplitude
again.
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4. Alternatively, we can couple ρ to the vector field V by assigning to it a gauge-field
transformation law under SU(2)C ,

ρ → UCρU †
C − i

2gρv

M
(DµUC)U †

C , (127)

so the leading invariant term containing ρ is

Lint = −g2
ρv

2 tr

[

(

V + i
M

2gρv
ρ

)2
]

= −g2
ρv

2 tr [VV] − igρvM tr [Vρ] +
M2

4
tr [ρρ] (128)

The expansion of V is even in the number of Goldstone fields. Therefore, in this expression,
the last term is the ρ mass, the second term yields the ρ0w+w− and ρ±w∓z couplings,
and the first term is a contact term. Note that the gauge coupling is proportional to
1/gρ. The resulting w+w− → zz amplitude is again (119), this time without the need for
renormalizing v.

5. The BESS model [6] has a similar setup. Instead of gauging just SU(2)C , we can extend
the local symmetry by an extra local, nonlinearly realized SU(2)L×SU(2)R. This results
in two vector isotriplets, which can be combined to a vector and an axial vector isotriplet,
respectively. Only the vector couples to longitudinal W/Z pairs, and the amplitude (119)
can be derived as before.

The different formalisms for coupling vector resonances all result in the same scattering ampli-
tude. This is not surprising since this amplitude is completely determined by spin and isospin
conservation together with the LET. In order to give the CCWZ interpretation of the vec-
tor resonance as a gauge field (in contrast to a generic matter field) a physical meaning, we
would have to measure triple ρ couplings, analogous to the LEP2 measurements of triple gauge
couplings. Unfortunately, such measurements are beyond the reach of LHC.

D Specific Models

In the literature, a variety of “benchmark” models has been formulated that test weak-boson
scattering. In this section, we relate some of them to our parameterization:

1. The SM. As discussed in the main text, for gσ = 1 the scalar resonance model pre-
cisely reproduces SM Higgs exchange. Alternatively, one can switch to the default SM
implementation (in WHIZARD) without extra resonances.

2. Scalar resonances. Refs. [8,9] introduce a collection of models, among them two with a
scalar resonance (“O(2N)” and “chirally coupled scalar”). The latter model is identical
to our scalar resonance parameterization. The O(2N) model is essentially a special case
of this with fixed mass and width; the only distinction is a logarithmic cutoff-dependent
modification, which manifests itself beyond the resonance. This detail is unlikely to be
detectable at the LHC.

3. Vector resonances. The chirally-coupled vector resonance model of [8,9] is identi-
cal to ours (see the discussion of the CCWZ formalism in App. C), where we identify
a = (2gρv/Mρ)2 and g = M2

ρ /(2v2gρ). An analogous identification holds for the BESS
model [56], with a replaced by β in their notation.
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ξξ̃† = ξ2 = Σ = eiπ
aτa/v

Gauge Field Matter Field

CCWZ Reparametrization of  Vector Triplet:

Higgsless, BESS, Three Site... Technicolor, HLS...

In reducing the effective Lagrangian, we use the fact that the operators

tr {WµνW
µν} , tr {BµνB

µν} , and tr {VµV
µ} (50)

can be dropped because they occur in the zeroth-order part of the chiral Lagrangian. These
operators renormalize the measured values of g, g′, and v with respect to their bare values
which are unknown anyway. Finally, we add the effect of the mass splitting ∆M2 to get the
parameters

β1 = 4hρ(gρ + hρ)
v2

2M2
ρ

− (gρ + 2hρ)
2
v2∆M2

ρ

2M4
ρ

(51)

and

α1 = (gρ + 2hρ)
2

(

v2

2M2
ρ

)2

α2 =
[

−gρ(gρ(1 − µ′
ρ) + 2kρ) + 4h2

ρ

]

(

v2

2M2
ρ

)2

(52a)

α3 = (gρ + 2hρ)
[

gρ (1 + µρ) + k′′
ρ

]

(

v2

2M2
ρ

)2

(52b)

α4 = (gρ − 2hρ)
2

(

v2

2M2
ρ

)2

α6 = 8gρhρ

(

v2

2M2
ρ

)2

(52c)

α5 = −(gρ − 2hρ)
2

(

v2

2M2
ρ

)2

α7 = −8gρhρ

(

v2

2M2
ρ

)2

(52d)

α8 = −4hρ(gρ + hρ)

(

v2

2M2
ρ

)2

(52e)

α9 = −
[

(2hρ + k′′
ρ)(gρ + 2hρ)

+2hρ(k
′
ρ + gρµρ)

]

(

v2

2M2
ρ

)2

α10 = 0 (52f)

The λ-type couplings are

αλ
1 = −

[

(gρ + 2hρ)($ρ + 2$′′ρ) + 2gρ$ρ

]

(

v2

2M2
ρ

)2

(53a)

αλ
2 =

[

(gρ + 2hρ)($ρ + 2$′′ρ) −
cw

sw
gρ$

′
ρ

] (

v2

2M2
ρ

)2

(53b)

αλ
3 = −(gρ + 2hρ)$ρ

(

v2

2M2
ρ

)2

αλ
4 = −

cw

sw
(gρ + 2hρ)$

′
ρ

(

v2

2M2
ρ

)2

(53c)

αλ
5 = −(gρ − 2hρ)$

′′
ρ

(

v2

2M2
ρ

)2

(53d)
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αi = O

�
v4

M4
ρ
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or 0

     Adding Vector Triplet to delay unitarity violation:have poles at the appropriate locations. We do not yet include the resonance widths. The new
contributions are

Aσ(s, t, u) = −
g2

σ

v2

s2

s − M2
(33a)

Aφ(s, t, u) = −
g2

φ

4v2

(

t2

t − M2
+

u2

u − M2
−

2

3

s2

s − M2

)

(33b)

Aρ(s, t, u) = −g2
ρ

(

s − u

t − M2
+

s − t

u − M2
+ 3

s

M2

)

(33c)

Af (s, t, u) = −
g2

f

6v2

s2

s − M2
P2(s, t, u) +

g2
f

12v2

s2

M2
(33d)

Aa(s, t, u) = −
g2

a

24v2

{

t2

t − M2
P2(t, s, u) +

u2

u − M2
P2(u, s, t) −

(

2

3

s2

s − M2
−

s2

6M2

)

P2(s, t, u)

}

(33e)

where P2(s, t, u) = [3(t2 + u2) − 2s2]/s2.
Beyond the resonance location, for gσ = 1 the σ exchange amplitude cancels the rise of the

LET amplitude. This is the SM case. Otherwise, beyond the resonance all amplitudes rise with
a power of s/M2. This implies again unitarity violation, which has to be cured by the unknown
UV completion of the theory.

4.3 Eigenamplitudes

For the analysis of unitarity, we need the spin-isospin eigenamplitudes, i.e., scattering ampli-
tudes for superpositions of states which scatter only into themselves. We first list the isospin
eigenamplitudes

A0(s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, s, t) (34a)

A1(s, t, u) = A(t, s, u) − A(u, s, t) (34b)

A2(s, t, u) = A(t, s, u) + A(u, s, t) (34c)

which can be decomposed into partial waves using Legendre polynomials,

AI(s, t, u) =
∞

∑

J=0

AIJ(s) (2J + 1) PJ(s, t, u), (35)

where AIJ "= 0 only for I − J even. The coefficient functions AIJ(s) are the spin-isospin
eigenamplitudes. They are obtained by angular integration,

AIJ(s) =

∫ 0

−s

dt

s
AI(s, t, u) PJ(s, t, u). (36)

Below, we explicitly list the spin-isospin eigenamplitudes, treating LO, NLO, and resonances
separately:

(a) The eigenamplitudes for the LO Lagrangian:

A(0)
00 = 2

s

v2
A(0)

11 =
s

3v2
A(0)

20 = −
s

v2
(37)
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Still need UV cancellation

3.2.1 Vector Singlet: ω

The Lagrangian is

Lω = −
1

4
ωµνω

µν +
M2

ω

2
ωµω

µ + i
hωv2

2
ωµ tr {TVµ} +

gv2kω

2M2
ω

ωµ tr {[T,Vν ]W
νµ}

+ i
"ω

M2
ω

ωµν tr {TWν
ρW

ρµ} (39)

and can be rewritten by partial integration:

Lω =
1

2

[

ωµ

(

(M2 + ∂2)gµν − ∂ν∂µ
)

ων + 2ωµj
µ
]

(40)

with

jµ = i
hωv2

2
tr {TVµ} +

gv2kω

2M2
ω

tr {[T,Vν]Wνµ} + i
2"ω

M2
ω

∂ν tr {TWν
ρW

ρ
µ} (41)

Expanding up to second order and expressing the result in the canonical operator basis, we
obtain the coefficients

β1 = h2
ω

v2

2M2
ω

(42)

α1 = h2
ω

(

v2

2M2
ω

)2

α2 = h2
ω

(

v2

2M2
ω

)2

(43a)

α3 = hωkω

(

v2

2M2
ω

)2

(43b)

α4 = h2
ω

(

v2

2M2
ω

)2

α6 = −h2
ω

(

v2

2M2
ω

)2

(43c)

α5 = −h2
ω

(

v2

2M2
ω

)2

α7 = h2
ω

(

v2

2M2
ω

)2
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3.2.1 Vector Singlet: ω

The Lagrangian is

Lω = −
1

4
ωµνω

µν +
M2

ω

2
ωµω

µ + i
hωv2

2
ωµ tr {TVµ} +

gv2kω

2M2
ω

ωµ tr {[T,Vν ]W
νµ}

+ i
"ω

M2
ω

ωµν tr {TWν
ρW

ρµ} (39)

and can be rewritten by partial integration:

Lω =
1

2

[

ωµ

(

(M2 + ∂2)gµν − ∂ν∂µ
)

ων + 2ωµj
µ
]

(40)

with

jµ = i
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2
tr {TVµ} +

gv2kω

2M2
ω

tr {[T,Vν]Wνµ} + i
2"ω

M2
ω

∂ν tr {TWν
ρW

ρ
µ} (41)
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ω

(
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loop corrections (which originate from the massless, confined technicolor partons) that have a
rather strong impact on the anomalous couplings that we consider. The shifts in the oblique
corrections due to this effect have been used to rule out some of the simplest models. However,
it is generally assumed that in the theories considered nowadays these corrections are rather
small.

In any case, in the present paper we do not intend to actually predict the values of anomalous
couplings in certain models. Instead, by relating the possible shifts in low-energy observables
(anomalous couplings) to the high-energy behavior of physical scattering amplitudes (reso-
nances) we want to estimate the physics reach of precision measurements and express it in
terms of dimensionful parameters Λ (resonance masses) in a meaningful way.

3.1 Scalar Resonances

Scalar resonances are of particular interest since the most prominent representative, a I = 0
scalar boson, serves as a Higgs boson if its couplings take particular values. In extended models
with Higgs bosons, there are also scalar resonances with higher isospin. For instance, in the
MSSM the (H+, H0, H−) triplet can be viewed as an I = 1 triplet. As another example,
the Littlest Higgs model [10] contains a complex triplet (φ++, φ+, φ0), which under isospin
decomposes into a real I = 2 quintet and a singlet.

After the elimination of Goldstone bosons in unitarity gauge, scalars do not mix with vector
bosons, so at tree level, the low-energy effects of a heavy scalar resonance are confined to
four-boson couplings, i.e., the parameters α4,5,6,7,10. This is easily verified for the explicit
representations considered here. We should keep in mind, however, that a resonance or an
equivalent contribution in the I = J = 0 channel (i.e., a Higgs boson) provides a (partial)
cutoff for the logarithmic divergences in the chiral Lagrangian and thus sets the renormalization
point for the anomalous couplings. In this sense, the parameters α1–α5 contain a logarithmic
dependence ln M/(16π2) on this resonance mass. However, after taking this renormalization
into account, the residual mass dependence due to one-loop diagrams is of order 1/(16π2M2)
and thus subleading compared to the tree-level contributions that are listed below.

3.1.1 Scalar Singlet: σ

This state is the generalization of a Higgs resonance. It has two independent linear couplings,
gσ and hσ. The latter violates isospin. (In the following, we always adopt a notation where g
couplings conserve isospin, while h and k couplings violate it by one and two units, respectively.)
Neglecting self-couplings etc. that do not contribute to the order we are interested in, the
Lagrangian is

Lσ = −
1

2

[

σ
(

M2
σ + ∂2

)

σ + 2σj
]

(16)

where

j = −
gσv

2
tr {VµV

µ}−
hσv

2
(tr {TVµ})2 (17)

The Higgs boson corresponds to the special values gσ = 1 and hσ = 0. Given the fact that we
can freely add bilinear and higher (self-)couplings, the minimal Standard Model emerges as a
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special case of the chiral Lagrangian coupled to a scalar resonance. It should be emphasized
that this is an exact equivalence: a simple nonlinear transformation of the scalar fields, that
does not affect the S matrix, transforms Lσ into the SM Lagrangian in its usual form.

Integrating out σ, we obtain the values of the anomalous couplings β1 and αi. We get zero
values for β1 and all parameters that involve field strengths, and

α4 = 0 α6 = 0 (18a)

α5 = g2
σ

(

v2

8M2
σ

)

α7 = 2gσhσ

(

v2

8M2
σ

)

(18b)

α10 = 2h2
σ

(

v2

8M2
σ

)

(18c)

In the high-mass limit, the σ width is given by

Γσ =
g2

σ + 1
2
(gσ + 2hσ)2

16π

(

M3
σ

v2

)

(19)

This includes σ → W+W− and σ → ZZ.
Scalar resonances may couple to SM fermions. The couplings need not follow the pattern

of SM Higgs couplings that are proportional to the fermion masses. Altogether, the linear
couplings of a scalar σ to SM particles take the general form

L = −σ(jV + jf ), (20)

where jV ∼ vVµV µ is the bosonic current (17). The fermionic current has the structure

jf = gQQLΣQR + g"%LΣ%R + hQQLΣTQR + h"%LΣT %R + h.c.

+ gL
ν %

c
LΣ∗P+Σ%L + gR

ν %
c
RP+%R

with P± ≡ 1±σ3

2
. The Σ factors make the interaction terms formally SU(2)-invariant. (We are

assuming baryon-number conservation.)
Integrating out the heavy singlet σ results in the current-current interactions:

−
1

2M2
σ

{

jV jV 2jV jf + jfjf+
}

(21)

The first term is the purely bosonic one considered above. The third term is a generic four-
fermion contact interaction, while the second one is a dimension-5 operator coupling two EW
gauge bosons and two fermions. This term should be detectable in dedicated high-precision
analyses at ILC, but is essentially unconstrained by existing data.

Four-fermion operators mediated by scalar resonances have been discussed (in the context of
fermion compositeness) in [32]. The most severe limits discussed there come from atomic parity
violation experiments. However, they are applicable only if CP is violated, and disappear for the
case of a purely scalar or purely pseudoscalar resonance. Limits from precision measurements
at LEP or Tevatron are generically of the order of Λ > 200 − 500 GeV.
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3.1.2 Scalar Triplet: π

If isospin is conserved, this multiplet does not have any couplings to vector boson pairs, and
instead of a resonance we might rather expect pair production as the dominant phenomenolog-
ical effect. Furthermore, technipions in technicolor models, as a typical realization of isospin-1
scalars, are actually pseudoscalars and, at first glance, do not have linear couplings at all.
However, in our treatment the logic is opposite: we assume an effect to be present and express
it in terms of would-be resonance parameters. Therefore, we consider the I = 1 triplet in the
resonance mode.

Writing the field as
π = πaτa ≡

√
2(π+τ+ + π−τ−) + π0τ 3 (22)

the Lagrangian is

Lπ = −
1

4
tr

{

π(M2
π + D2)π + 2πj

}

(23)

with

j =
hπv

2
Vµ tr {TVµ} +

h′
πv

2
T tr {VµV

µ} +
kπv

2
T (tr {TVµ})2 (24)

Evaluating the effective Lagrangian, the nonvanishing parameters are

α4 = 0 α6 = h2
π

(

v2

16M2
π

)

(25a)

α5 = 2h′ 2
π

(

v2

16M2
π

)

α7 = 2h′
π(hπ + 2kπ)

(

v2

16M2
π

)

(25b)

α10 = 4kπ(hπ + kπ)

(

v2

16M2
π

)

(25c)

The partial widths for the decay into vector boson pairs are different for charged and neutral
pions:

Γπ± =
1
4
h2

π

16π

(

M3
π

v2

)

(26a)

Γπ0 =
h′ 2

π + 1
2
(hπ + h′

π + 2kπ)2

16π

(

M3
π

v2

)

(26b)

If there is approximate isospin conservation we expect the total widths to be dominated by
fermion pairs and by three-boson decays, analogous to the pions of QCD.

The fermionic couplings of a triplet scalar involve the current

ja
f = g±

QQLτaP±QR + g±
" $LτaP±$R + h.c. (27)

Note that Majorana terms are not possible in the triplet case. Integrating out the heavy triplet
scalar leads to similar fermion-coupling results as for the singlet σ.
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have poles at the appropriate locations. We do not yet include the resonance widths. The new
contributions are

Aσ(s, t, u) = −
g2

σ

v2

s2

s − M2
(33a)

Aφ(s, t, u) = −
g2

φ

4v2

(

t2

t − M2
+

u2

u − M2
−

2

3

s2

s − M2

)

(33b)

Aρ(s, t, u) = −g2
ρ

(

s − u

t − M2
+

s − t

u − M2
+ 3

s

M2

)

(33c)

Af (s, t, u) = −
g2

f

6v2

s2

s − M2
P2(s, t, u) +

g2
f

12v2

s2

M2
(33d)

Aa(s, t, u) = −
g2

a

24v2

{

t2

t − M2
P2(t, s, u) +

u2

u − M2
P2(u, s, t) −

(

2

3

s2

s − M2
−

s2

6M2

)

P2(s, t, u)

}

(33e)

where P2(s, t, u) = [3(t2 + u2) − 2s2]/s2.
Beyond the resonance location, for gσ = 1 the σ exchange amplitude cancels the rise of the

LET amplitude. This is the SM case. Otherwise, beyond the resonance all amplitudes rise with
a power of s/M2. This implies again unitarity violation, which has to be cured by the unknown
UV completion of the theory.

4.3 Eigenamplitudes

For the analysis of unitarity, we need the spin-isospin eigenamplitudes, i.e., scattering ampli-
tudes for superpositions of states which scatter only into themselves. We first list the isospin
eigenamplitudes

A0(s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, s, t) (34a)

A1(s, t, u) = A(t, s, u) − A(u, s, t) (34b)

A2(s, t, u) = A(t, s, u) + A(u, s, t) (34c)

which can be decomposed into partial waves using Legendre polynomials,

AI(s, t, u) =
∞

∑

J=0

AIJ(s) (2J + 1) PJ(s, t, u), (35)

where AIJ "= 0 only for I − J even. The coefficient functions AIJ(s) are the spin-isospin
eigenamplitudes. They are obtained by angular integration,

AIJ(s) =

∫ 0

−s

dt

s
AI(s, t, u) PJ(s, t, u). (36)

Below, we explicitly list the spin-isospin eigenamplitudes, treating LO, NLO, and resonances
separately:

(a) The eigenamplitudes for the LO Lagrangian:

A(0)
00 = 2

s

v2
A(0)

11 =
s

3v2
A(0)

20 = −
s

v2
(37)
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FIG. 2: The partial-wave coefficients a0,1,2
0 versus the center-

of-mass energy
√

sWW for various δ = 0 − 0.9.

limit, the total amplitude becomes

iMgauge + iMHiggs ! i
g2

4m2
W

(u + t) (1 − δ) . (3)

One can then check the unitarity limit as a function of
δ. The partial-wave coefficient for the dominant S-wave
scattering is

a2
0 =

1

64π

∫ 1

−1

d cos θM
(

W+
L W+

L → W+
L W+

L

)

, (4)

where the superscript 2 denotes the isospin of the W+
L W+

L

system. Besides this I = 2 channel, one can also study
the I = 0, 1 partial waves. Unitarity requires |$e aI

0| ≤
1/2. We show in Fig. 2 the partial-wave coefficients aI

0

(I = 0, 1, 2) versus
√

sWW for various δ = 0−0.9. We use
the full expressions of the amplitudes, instead of the sim-
plified expression like Eq. (3), in the evaluations. Details
of these amplitudes will be presented elsewhere. At high
energies, a0

0’s are positive while a2
0’s stay negative. The

unitarity limit can be read off when each curve reaches
$e(aI

0) = ±1/2. Note that the matrix element of the
I = 1 channel at high energy is an odd function of cos θ
such that the partial wave a1

0 does not show any growing
behavior for various δ. The unitarity limits that would
be obtained from a1

1 are significantly weaker than those
from a0,2

0 due to P -wave suppression. The most severe
violation of unitarity is in the a0

0 channel. For exam-
ple, unitarity is violated at

√
sWW ! 1.7 (2.7) TeV for

δ = 0.5 (0.8). The LHC may not be able to directly
probe such high CM energies. But the growing behav-
ior of the scattering amplitudes should be discernible at
much lower energies.

Various models – The simplest example of partially
strong weak gauge boson scattering is the 2HDM [3],
in which light Higgs boson couples to the vector bo-
son with a strength ghWW = sin(β − α)gSM

hWW , where

tan β is the ratio of the VEVs of the two doublets and
α is the mixing angle of the two CP even neutral Higgs
bosons. If the other neutral Higgs boson H is much heav-
ier, the weak gauge boson scattering amplitudes will en-
joy their growths as s/m2

W for the energy between the
two Higgs boson masses. This heavier neutral Higgs bo-
son couples to the weak gauge boson with a strength
gHWW = cos(β−α)gSM

HWW such that it can unitarize the
rest of the growing amplitudes when sWW > m2

H . A
general 2HDM has enough room in the parameter space
to allow sin(β − α) to be small while keeping the other
Higgs boson H heavy. However, in minimal supersym-
metric standard models (MSSM) the heavier the heavy
Higgs boson H is, the closer to 1 the factor sin(β − α)
will be. As shown in Ref. [6], it is possible to achieve a
light Higgs boson with a small sin(β − α) while keeping
the other neutral ones relatively light as well. Thus, no
appreciable strong weak gauge boson scattering can be
observed in the MSSM.

In the strongly-interacting light Higgs model [1], a
composite-like model for the light Higgs boson is as-
sumed with the size of the ratio ghWW /gSM

hWW smaller
than 1. All other heavier degrees of freedom are inte-
grated out and the effects are parameterized as an effec-
tive Lagrangian with an explicit UV cutoff. The partial
widths of the light Higgs boson will be affected. Also,
the weak gauge boson scattering amplitudes described
by some higher dimensional effective operators will also
grow with s until the cutoff is reached. Similarly, in a
model of multi-scalar doublets [2] all the heavy Higgs
bosons can be integrated out to give corrections to the
partial decay widths of a light Higgs boson, which will
affect significantly its discovery modes at the LHC.

LHC signals – We show the invariant mass spectrum in
Fig. 3 for pp → W+

L W−

L → ZLZL and pp → W±

L W±

L →
W±

L W±

L . In Fig. 3(a), the mere δ = 0.9 curve is above the
SM one for MWW > 300 GeV, in accord with Fig. 1(b),
while δ = 0.5 case is way above the SM prediction. The
nonresonant channel W±

L W±

L shown in Fig. 3(b) requires
a smaller δ in order to see a large deviation from the SM.
We mainly focus on leptonic final states, WW → &ν&ν,
ZZ → &+&−&+&− and ZZ → &+&−νν̄. The latter mode is
used because the four charged-lepton mode of ZZ is too
small for realistic event rates. We show the event rates at
the LHC for various scattering channels in Table I, with
an angular cut of | cos θWW | < 0.8 and MWW > 300
GeV. We use the naive effective W -boson approximation
(EWA) [7] to estimate the event rates, which is good
enough to demonstrate the main idea here. The stud-
ies of strongly-interacting weak gauge boson scattering
and various backgrounds were summarized in Refs. [8],
based on the techniques of central-jet vetoing and for-
ward jet-tagging. The jet-tagging and central-jet vetoing
efficiencies under optimized cuts were listed there too.
The event rates predicted in this work are to be mul-
tiplied by those efficiencies. It is easy to see that with
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Linearized EW Lagrangian

     The linearized EW effective Lagrangian 

     Effective theory with Higgs mechanism above EW scale: 

         Its gauge group contains SU(3) x SU(2) x U(1) symmetry;

         All the SM particles are incorporated as fund. or composite fields;

         At low energy, it reduces to SM via decoupling heavy particles;

1 Introduction

The Standard Model (SM) of strong and electroweak interactions has been successfully tested
to a great precision [1]. Nevertheless, it is commonly accepted that it constitutes merely an
effective theory which is applicable up to energies not exceeding a certain scale Λ. A field
theory valid above that scale should satisfy the following requirements:

(i) its gauge group should contain SU(3)C × SU(2)L × U(1)Y of the SM,

(ii) all the SM degrees of freedom should be incorporated either as fundamental or composite
fields,

(iii) at low-energies, it should reduce to the SM, provided no undiscovered but weakly coupled
light particles exist, like axions or sterile neutrinos.

In most of beyond-SM theories that have been considered to date, reduction to the SM at
low energies proceeds via decoupling of heavy particles with masses of order Λ or larger. Such
a decoupling at the perturbative level is described by the Appelquist-Carazzone theorem [2].
This inevitably leads to appearance of higher-dimensional operators in the SM Lagrangian that
are suppressed by powers of Λ

LSM = L(4)
SM +

1

Λ

∑

k

C(5)
k Q(5)

k +
1

Λ2

∑

k

C(6)
k Q(6)

k +O

(
1

Λ3

)
, (1.1)

where L(4)
SM is the usual “renormalizable” part of the SM Lagrangian. It contains dimension-two

and -four operators only.1 In the remaining terms, Q(n)
k denote dimension-n operators, and

C(n)
k stand for the corresponding dimensionless coupling constants (Wilson coefficients). Once

the underlying high-energy theory is specified, all the coefficients C(n)
k can be determined by

integrating out the heavy fields.
Our goal in this paper is to find a complete set of independent operators of dimension 5 and

6 that are built out of the SM fields and are consistent with the SM gauge symmetries. We
do not rely on the original analysis of such operators by Buchmüller and Wyler [3] but rather
perform the full classification once again from the outset. One of the reasons for repeating the
analysis is the fact that many linear combinations of operators listed in Ref. [3] vanish by the
Equations Of Motion (EOMs). Such operators are redundant, i.e. they give no contribution to
on-shell matrix elements, both in perturbation theory (to all orders) and beyond [4]. Although
the presence of several EOM-vanishing combinations in Ref. [3] has been already pointed out
in the literature [5–7], no updated complete list has been published to date. Our final operator
basis differs from Ref. [3] also in the four-fermion sector where the EOMs play no role.

The article is organized as follows. Our notation and conventions are specified in Sec. 2. The
complete operator list is presented in Sec. 3. Comparison with Ref. [3] is outlined in Sec. 4.
Details of establishing operator bases in the zero-, two- and four-fermion sectors are described
in Secs. 5, 6 and 7, respectively. We conclude in Sec. 8.

1 Canonical dimensions of operators are determined from the field contents alone, excluding possible dimen-

sionful coupling constants. The only dimension-two operator in L(4)
SM is ϕ†ϕ in the Higgs mass term.
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Operator Notation Operator Notation
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λ OW3 �abcGaν

µ Gbλ
ν G
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1
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qq

RRRR

1
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µeR) Oee
1
2 (uRγµuR) (uRγµuR) O

(1)
uu

1
2

�
dRγµdR

� �
dRγµdR

�
O

(1)
dd

(eRγµeR) (uRγµuR) Oeu (eRγµeR)
�
dRγµdR

�
Oed
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�
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�
O

(1)
ud

1
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(8)
uu

1
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�
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� �
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(8)
dd
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�
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�
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(8)
ud
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�
lLeR

�
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�
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�
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� �
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�
Old

(qLuR) (uRqL) O
(1)
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(1)
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� �
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�
Oqde
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(8)
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�
O
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B-L �ABC

�
lLiσ2q

c A
L

� �
dBRu

c C
R

�
Olqdu �ABC

�
qBL iσ2q

c C
L

� �
eRu

c A
R

�
Oqqeu

It is worth noting that the operator Oφud induces a coupling in the form

W+
µ uRγµdR + h.c. which is absent in the SM. We can change the form from

LRRL to LLRR by using the Fierz transformation

(ψ1Lψ2R)(ψ3Rψ4L) =
1

2
(ψ1Lγ

µψ4L)(ψ3Rγµψ2R).

Dimension-6 Operators
Buchmuller, Wyler



Dim-6 Operators (Bosonic Sector)After converting the above anomalous couplings to the
notation introduced in Sec. III for a non-linear effec-
tive theory, the anomalous coupling ∆κ corresponds

to −fΦ,2v2

4Λ2 . For example, at a 500GeV (or 800GeV)

LC with an integrated luminosity of 1 ab−1, the 2σ
statistical error on the determination of the anoma-
lous coupling fΦ,2

Λ2 is at the level of 0.2 TeV−2, for a
120GeV SM-like Higgs boson [4]. This corresponds to
the determination of ∆κ at about the 0.3% level. Since
this operator can only generate E2-dependence of the
VLVL → VLVL scattering amplitude, and it is best de-
termined at the LC for a SM-like Higgs boson, in what
follows, we will neglect its effect in our studies.

The operator OWWW contributes to the triple and
quartic vector boson self-couplings, but not the anoma-
lous coupling of Higgs boson to gauge bosons. On the
other hand, the last four operators OWW , OBB, OW

and OB in Eq. (18) contribute to the following anoma-
lous HV V couplings [15]:

LH
eff = gHγγHAµνAµν + g(1)

HZγAµνZµ∂νH

+g(2)
HZγHAµνZµν + g(1)

HZZZµνZµ∂νH

+g(2)
HZZHZµνZµν + g(1)

HWW (W+
µνW−µ∂νH + h.c.)

+g(2)
HWW HW+

µνW−µν , (21)

where

gHγγ = −
(

gmW

Λ2

)

s2(fBB + fWW )

2
,

g(1)
HZγ =

(

gmW

Λ2

)

s(fW − fB)

2c
,

g(2)
HZγ =

(

gmW

Λ2

)

s[s2fBB − c2fWW ]

c
,

g(1)
HZZ =

(

gmW

Λ2

)

c2fW + s2fB

2c2
,

g(2)
HZZ = −

(

gmW

Λ2

)

s4fBB + c4fWW

2c2
,

g(1)
HWW =

(

gmW

Λ2

)

fW

2
,

g(2)
HWW = −

(

gmW

Λ2

)

fWW , (22)

with s ≡ sin θW , c ≡ cos θW . In our calculation,
we have included the complete gauge invariant set
of Feynman diagrams that receive contribution from
the anomalous operators OWWW , OWW , OBB, OW

and OB. For example, the triple vector boson self-
couplings include the contributions from the opera-
tors OWWW , OW and OB, while the quartic vec-
tor boson self-couplings are induced by OWWW and
OW . The reason that the operators OWW and OBB

do not modify the gauge boson self-couplings is as

follow. When the Higgs field of those operators is
replaced by its vacuum expectation value, it seems
that they would induce anomalous operators to mod-
ify the gauge boson self-couplings. However, the re-
sulting operators are proportional to the kinematic
term of the SU(2) and U(1) gauge bosons, and lead
to a finite wave-function renormalization of the gauge

fields by constants Z1/2
2W = (1 − g2fWW v2/2Λ2)−1/2

and Z1/2
2B = (1 − g′2fBBv2/2Λ2)−1/2, respectively.

Therefore, from the fact that the building blocks of
the effective Lagrangian Leff, cf. Eq. (17), involv-
ing gauge bosons are gWµν , g′Bµν , and the covari-
ant derivative Dµ, we can perform a finite charge
renormalization of the gauge couplings g and g′ by
constants Zg = (1 + g2fWW v2/2Λ2)−1/2 and Zg′ =

(1 + g′2fBBv2/2Λ2)−1/2, respectively, so that the net
effect of the operators OWW and OBB is to modify
only the couplings of a Higgs boson to gauge bosons,
but not the self-couplings of gauge bosons.

In Eq. (21), the anomalous HV V couplings are ex-
pressed in terms of the Lorentz-invariant dimension-5
operators containing the Higgs boson and the gauge
bosons W±, Z and γ. Among them, the operators
HAµνAµν , HAµνZµν , HZµνZµν and HW+

µνW−µν can
also be induced from the gauge-invariant dimension-5
operators in the nonlinear realization of the Higgs sec-
tor because in which the Higgs field H is an electroweak
singlet. Thus, it is worth noticing that the following
LHC study of testing the linearly realized anomalous
HV V couplings via V V scatterings may be general-
ized to the case of the dimension-5 operators in the
nonlinear realization.

B. Constraints on fn from the Existing

Experiments and the Unitarity Requirement

There are known experiments that can constrain the
size of the anomalous coupling constants fn.

The constraints on the anomalous coupling con-
stants fWWW , fWW , fBB, fW and fB have been stud-
ied in Refs. [15,45,46]. At the tree level, ∆S and
∆T are proportional to fBW /Λ2 and fΦ,1/Λ2, respec-
tively. Thus we can obtain the 68% and 95% bounds on
the (fBW /Λ2)-(fΦ,1/Λ2) plane directly from the cor-
responding bounds in Fig. 2(a). This is shown in Fig.
4. We see from Fig. 4 that the precision data give
quite strong constraints on fBW /Λ2 and fΦ,1/Λ2. At
the one loop level, ∆S and ∆T are related to other
five anomalous coupling constants through loop cor-
rections. Following Refs. [15,45,46], we make a one
parameter fit of the five anomalous coupling constants
by using the formulas given in Ref. [46] and the up-
dated ∆S-∆T bounds in Fig. 2(a). The obtained 95%
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B. Constraints on fn from the Existing

Experiments and the Unitarity Requirement
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Lagrangian [11]

LWWV
eff = −igWWV

[

gV
1 (W+

µνW
−µ − W−

µνW
+µ)V ν

+κV W+
µ W−

ν V µν +
λV

M2
W

W+ν
µ W−ρ

ν V µ
ρ

−igV
5 εµνρσ(W+

µ ∂ρW
−
ν − W−

ν ∂ρW
+
µ )Vσ

]

, (2)

where Vµν = ∂µVν − ∂νVµ, gWWγ = e, and gWWZ = ecW/sW , with sW (cW ) = sin(cos)θW .

The first three terms in Eq. (2) are C and P invariant while the last one violates both C and

P. Electromagnetic gauge invariance implies that 1− gγ
1 = gγ

5 = 0. Within the framework of

the SM, gγ
1 = gZ

1 = κγ = κZ = 1 and λγ = λZ = gZ
5 = 0.

Since the standard model is consistent with the available experimental data, it is natural

to parameterize the anomalous TGV’s in terms of an effective Lagrangian which exhibits

the SU(2)L×U(1)Y gauge invariance. The particular way this symmetry is realized depends

on the particle content at low energies. If the spectrum at low energies does not exhibit a

light Higgs boson, this symmetry has to be non-linearly realized and the triple gauge boson

vertex can be parameterized as Eq. (2) with the couplings gZ
1 , κγ, κZ , λγ , λZ , and gZ

5 being

independent parameters [12].

Conversely, if a light Higgs boson is present, the symmetry can be realized linearly [13, 14,

15]. In this case the leading effects of new interactions are described by eleven dimension–6

operators Oi

Llinear
eff =

∑

i

fi

Λ2
Oi , (3)

at energies below the new physics scale Λ. Three of these operators [15], namely,

OB = (DµΦ)†B̂µν(DνΦ) ,

OW = (DµΦ)†Ŵ µν(DνΦ) , (4)

OWWW = Tr
[

ŴµνŴ
νρŴ µ

ρ

]

,

modify the triple gauge boson couplings without affecting the gauge boson two–point func-

tions at tree level; the so called “blind” operators. In our notation, B̂µν = i(g′/2)Bµν and

Ŵµν = i(g/2)σaW a
µν with Bµν and W a

µν being the U(1)Y and SU(2)L full field strengths

and σa representing the Pauli matrices. In this framework, it is expected that gZ
5 should be

suppressed since it is related to a dimension 8 operator [16].

The anomalous couplings of the parameterization (2) are related to the coefficients of the

linearly realized effective Lagrangian by

∆gZ
1 = fW

m2
Z

2Λ2
, (5)

∆κZ = [fW − s2
W (fB + fW )]

m2
Z

2Λ2
, (6)

λZ = fWWW
3m2

W g2

2Λ2
. (7)

3

Adimensional form factors operators custodial SU(2)L
g−2Ŝ = Π′

W3B(0) OWB = (H†τaH)W a
µνBµν/gg′ + −

g−2M2
W T̂ = ΠW3W3

(0) − ΠW+W−(0) OH = |H†DµH|2 − −
−g−2Û = Π′

W3W3
(0) − Π′

W+W−(0) − − −
2g−2M−2

W V = Π′′
W3W3

(0) − Π′′
W+W−(0) − − −

2g−1g′−1M−2
W X = Π′′

W3B(0) − + −
2g′−2M−2

W Y = Π′′
BB(0) OBB = (∂ρBµν)2/2g′2 + +

2g−2M−2
W W = Π′′

W3W3
(0) OWW = (DρW a

µν)2/2g2 + +

2g−2
s M−2

W Z = Π′′
GG(0) OGG = (DρGA

µν)2/2g2
s + +

Table 1: The first column defines the adimensional form factors. The second column defines the SU(2)L-
invariant universal dimension-6 operators, which contribute to the form-factors on the same row. We
use non canonically normalized fields and Π, see eq. (3). The Ŝ, T̂ , Û are related to the usual S, T,U
parameters [5] as: S = 4s2

WŜ/α ≈ 119 Ŝ, T = T̂ /α ≈ 129 T̂ , U = −4s2
WÛ/α. The last row defines one

additional form-factor in the QCD sector.

zeroth order coefficients ΠV (0). Altogether this leaves 7 undetermined parameters, Ŝ, T̂ , Û , V,X, Y,W ,
defined in Table 1. The notation for the 3 residual coefficients up to order q2 makes clear reference
to the traditional ones, S, T,U [5]: the actual relation is S = 4s2

WŜ/α ≈ 119 Ŝ, T = T̂ /α ≈ 129 T̂ ,
U = −4s2

WÛ/α. As a natural extension of this formalism, Table 1 also includes an additional form
factor in the QCD sector, which is not related to EWSB and which we will henceforth neglect.

As we shall now explain, the subset Ŝ, T̂ , Y,W represents the most general parametrization of new
physics effects in Electroweak Precision Tests (EWPT). Notice that we can group the various form factors
in 3 different classes according to their symmetry properties. The first class is given by T̂ , Û and V as
they have the same custodial and weak isospin breaking quantum numbers. The second class is given
by Ŝ and X, which are custodially symmetric but weak isospin breaking (and odd under the spurionic
symmetry which reverses the sign of Bµ and of the hypercharges of matter fields). Finally W and Y ,
which preserve both custodial and weak isospin, make up the third class. By going to O(q6) and higher
there would arise no new class but only higher derivative terms in each of the above 3 classes. It is
reasonable to expect that coefficients with the same symmetry properties will be related to each other
up to trivial factors associated to the number of derivatives: in a model where the new physics comes
in at a scale Λ we expect Û ∼ (MW /Λ)2T̂ , V ∼ (MW /Λ)4T̂ . Similarly we expect X ∼ (MW /Λ)2Ŝ.
On the other hand, W and Y are the lowest in their class.1 As soon as the gap between MW and Λ
is big enough, it should be reasonable to retain only the lowest derivative term in each class: Ŝ, T̂ ,
W and Y . Neglecting Û , V,X when they are parametrically suppressed also makes sense because the
experimental sensitivity on them is not higher than for the other four. Of course one can imagine fine-
tuned situations where this reasoning fails. On the contrary, although Ŝ, T̂ and W , Y have a different
number of derivatives there is no deep physical reason, in general, to expect T̂ to be bigger than Ŝ and
in turn Ŝ to be bigger than W,Y . Indeed there are several explicit models where these 4 quantities
give comparable effects. Basically we can associate Ŝ and T̂ to new physics in the electroweak breaking
sector (both effects break weak isospin), which is the case of technicolor. On the other hand W and
Y are associated to new structure in the vector channels, like for instance vector compositeness or new
gauge bosons. To conclude, we stress, as is made evident from our discussion, that no additional relevant

1The leading term in their class is truly represented by the SM gauge kinetic coefficients 1/g2 and 1/g′2.

2

O(6)
i W

W

Z
Z

A
Z

A
A

W
W

Z

W
W

A

W
W

W
W

W
W

Z
Z

W
W

Z
A

W
W

A
A

Z
Z
Z
Z

ODW = Tr
([

Dµ, Ŵνρ

] [
Dµ, Ŵ νρ

])
X X X X X X X X X X

ODB = − g′2

2

(
∂µBνρ

)(
∂µBνρ

)
X X X

OBW = Φ†B̂µνŴ µνΦ X X X X X

OΦ,1 =
[(

DµΦ
)†

Φ
] [

Φ†
(
DµΦ

)]
X

OWWW = Tr
(
ŴµνŴ

νρŴρ
µ
)

X X X X X X

OWW = Φ†ŴµνŴ µνΦ O O O O O O O O O O

OBB = Φ†B̂µνB̂
µνΦ O O O

OW =
(
DµΦ

)†
Ŵ µν

(
DνΦ

)
X X X X X

OB =
(
DµΦ

)†
B̂µν

(
DνΦ

)
X X

OΦ,2 = 1
2∂µ

(
Φ†Φ

)
∂µ

(
Φ†Φ

)

OΦ,3 = 1
3

(
Φ†Φ

)3

OΦ,4 =
(
Φ†Φ

)[(
DµΦ

)†(
DµΦ

)]
O O

TABLE VI. Energy-dimension-six operators in the linear representation of the Higgs mecha-

nism. The contribution of an operator to a particular vertex is denoted by an ‘X’ . In some cases an

operator naively contributes to a vertex, yet that contribution does not lead to observable effects.

In such cases the ‘X’ is replaced by an ‘O’ .
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The five remaining operators:

OWWW = Tr[ŴµνŴ νρŴµ
ρ ] ,

OWW = Φ†ŴµνŴµνΦ ,

OBB = Φ†B̂µνB̂µνΦ , (7)

OW = (DµΦ)†Ŵµν(DνΦ) ,

OB = (DµΦ)†B̂µν(DνΦ) ,

contribute to the gauge–boson three– and four–point functions as well to the Higgs–
gauge–boson couplings. In the Appendix we give the corresponding Feynman rules
for these vertices. In principle it seems that the operators OWW and OBB would
also modify the triple gauge–boson couplings when the Higgs field is replaced by its
VEV (5). However the resulting operators are proportional to the kinetic energy of
the SU(2)L and U(1)Y gauge bosons respectively and therefore they only lead to
a finite renormalization of the gauge fields by constants Z1/2

2B = [1 − fBBv2/2]−1/2

and Z1/2
2W = [1 − fWW v2/2]−1/2.

2.2. Low–energy and LEPI constraints

Some of the operators introduced in the previous section contribute to low–energy
observables and their strength can be constrained by precision electroweak mea-
surements. They can affect those measurements through their contributions to both
universal 5,16,17 (also called oblique) and non-universal 18,19 (vertex) corrections.

Operators in Eq. (4) modify the oblique corrections to precision electroweak
measurements via their contributions at tree level to the transverse components of
the gauge–boson propagators. When replacing the Higgs field by its VEV, they
lead to the following bilinear gauge boson interactions

L = 1
2Λ2

{

fDW g2 !Wµν∂2 !Wµν + fDB g′
2
Bµν∂2Bµν +

fBW m2
ZscW 3

µνBµν + fΦ,1
v2

2
m2

ZZµZµ

}

, (8)

where s = sin θW and c = cos θW . This contribution to the oblique corrections can
be parametrized in terms of seven parameters 5,17, the usual S, T , and U (or ε1, ε2,
ε3) 20 together with four running form factors, such as, for instance, the running
of αQED. From Eq. (8) one can see that OΦ,1 modifies the Z mass but not the W
mass what gives a contribution to the ρ = αT = ε1 parameter. OBW induces a
mixing between B and W 3 and contributes to the S (i.e. ε3) parameter. ODW and
ODB contribute to the running charges and they lead for instance to an anomalous
running of αQED and the weak mixing angle.

Combining the information from precision measurements both at the Z–pole
as well as at low energy it is possible to constrain unambiguously the values of
the coefficients of the operators (4). We present here the results from a recent
analysis (second article in 17). The exact limits depend on the values of mH and
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operators (fDW = 0) the triple gauge–boson effective interaction can be rewritten
as the can be rewritten as the standard parametrization 23:

LWWV = −igWWV

{

gV
1

(

W+
µνW−µV ν − W+

µ VνW−µν
)

+ κV W+
µ W−

ν V µν +
λV

m2
W

W+
µνW− νρV µ

ρ

}

, (11)

where gWWγ = e, gWWZ = e/(s c). In general these vertices involve six dimension-
less couplings gV

1 , κV , and λV (V = γ or Z), after imposing C and P invariance.
Electromagnetic gauge invariance requires that gγ

1 = 1, while the other five cou-
plings are related to the new operators according to:

∆gZ
1 = gZ

1 − 1 =
1

2

m2
Z

Λ2
fW ,

∆κγ = κγ − 1 = 1 +
1

2

m2
W

Λ2

(

fW + fB

)

, (12)

∆κZ = κZ − 1 = 1 +
1

2

m2
Z

Λ2

(

c2fW − c2fB

)

,

λγ = λZ =
3g2m2

W

2Λ2
fWWW . (13)

In this case only three of the five couplings remain independent 5 which can be
chosen to be ∆κγ , λγ , and ∆gZ

1 . The remaining WWZ coupling parameters λZ

and ∆κZ are determined by the relations 5

λZ = λγ ∆κZ = −∆κγ tan2 θW + ∆gZ
1 . (14)

A different set of parameters has also been used by the LEP Collaborations 24 in
terms of three independent couplings, αBΦ, αWΦ, and αW which simply correspond
to the coefficients of the OB, OW , and OWWW operators but defined with a different
normalization than the fi coefficients. With that normalization these parameters are
related to the parametrization (11) through ∆κγ = αBΦ + αWΦ, ∆gZ

1 = αWΦ/c2
W ,

and αW = λγ while λZ and ∆κZ are determined by the relations (14).

LEP experiments are sensitive to anomalous triple gauge coupling through the
W–pair cross section, the angular distribution of the produced W ′s and their helicity
components which are deduced from the angles of the W decay products. In addition
single W and single γ production are also sensitive to the WWγ vertex.

Triple gauge–boson couplings measurements at DØ are based on the analysis
of di–boson production events. They obtain limits on WWγ from a fit to the
photon ET spectrum in Wγ with the subsequent decay W → lν. Limits on WWZ
and WWγ couplings are obtained from a fit to the ET of the two charged leptons
in pp̄ → W+W−X → lνl′ν′X events and from a fit to the pT spectrum of the
electron-neutrino system in pp̄ → W+W− (or W±Z)X → lνjj.
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Connections between linear and chiral Lag.

Lchiral O(n)
linear W

W

Z
Z

A
Z

A
A

W
W

Z

W
W

A

W
W

W
W

W
W

Z
Z

W
W

Z
A

W
W

A
A

Z
Z
Z
Z

L′
1 = β1v2

4

[
Tr (TVµ)

]2
−4β1

v2 OΦ,1 X

L1 = α1gg′

2 BµνTr
(
TW µν

)
4α1

v2 OBW X X X X X

L2 = iα2g′

2 BµνTr
(
T [V µ, V ν ]

)
8α2

v2 OB X X

L3 = iα3g Tr
(
Wµν [V µ, V ν ]

)
8α3

v2 OW X X X X X

L4 = α4

[
Tr (VµVν)

]2 4α4

v4 O(8)
4 X X X

L5 = α5

[
Tr (VµV µ)

]2 16α5

v4 O(8)
5 X X X

L6 = α6Tr
(
VµVν

)
Tr

(
TV µ

)
Tr

(
TV ν

)
−64α6

v6 O(10)
6 X X

L7 = α7Tr
(
VµV µ

)
Tr

(
TVν

)
Tr

(
TV ν

)
−64α7

v6 O(10)
7 X X

L8 = α8g2

4

[
Tr (TWµν)

]2
−4α8

v4 O(8)
8 X X X X X X

L9 = iα9g
2 Tr

(
TWµν

)
Tr

(
T [V µ, V ν ]

)
−16α9

v4 O(8)
9 X X X

L10 = α10

2

[
Tr (TVµ)Tr (TVν)

]2 128 α10

v8 O(12)
10 X

L11 = α11 g εµνρσTr
(
TVµ

)
Tr

(
VνWρσ

)
8α11

v4 O(8)
11 X X

TABLE VII. Column one lists operators in the nonlinear representation. The linear-representa-

tion counterparts appear in the second column. For the definitions of the operators O(n)
i the reader

is referred to the text. An ‘X’ is used to indicate the the contribution of an individual operator to

a particular vertex.
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The dimension-two operator L′
1 and the first ten dimension-four operators, L1 through L10,

conserve both C and P, whereas the last operator, L11, is both C-odd and P-odd. We adopt

the notation of Ref. [21] and Ref. [22]1.

In Table VII we indicate the vertices to which each operator contributes with an ‘X’.

Additionally we present, with each chiral operator, its counterpart in the linear realization. In

particular we may associate four of the chiral operators with energy-dimension-six operators

of Section IV. Realizing that the Oi depend explicitly upon the field H , but the Li do not,

we may write

L′
1 = −

4β1

v2
OΦ,1 , (5.8a)

L1 =
4α1

v2
OBW , (5.8b)

L2 =
8α2

v2
OB , (5.8c)

L3 =
8α3

v2
OW . (5.8d)

These operator identities give valid relations among matrix elements for processes that do

not involve external Higgs particles. The linear-realization counterparts of the remaining

chiral operators appear at energy-dimension eight, ten and twelve. These higher dimensional

operators in the second column of Table VI are [23]

O(8)
4 =

[
(DµΦ)†(DνΦ) + (DνΦ)†(DµΦ)

]2
, (5.9a)

O(8)
5 =

[
(DµΦ)†(DµΦ)

]2
, (5.9b)

O(10)
6 =

[
(DµΦ)†(DνΦ)

] [
Φ†(DµΦ)

] [
Φ†(DνΦ)

]
, (5.9c)

O(10)
7 =

[
(DµΦ)†(DµΦ)

] [
Φ†(DνΦ)

] [
Φ†(DνΦ)

]
, (5.9d)

O(8)
8 =

[
Φ†ŴµνΦ

]2
, (5.9e)

O(8)
9 =

[
Φ†ŴµνΦ

][
(DµΦ)†(DνΦ)

]
, (5.9f)

O(12)
10 =

([
Φ†(DµΦ)

] [
Φ†(DνΦ)

])2

. (5.9g)

O(8)
11 = iεµνρσ

[
Φ†(DµΦ)

] [
Φ†Ŵρσ(DνΦ)

]
+ h.c. (5.9h)

The higher dimensionality of the associated operators in the linear realization indicates

1Operators L1 through L10 were discussed in Ref. [21], but L11 was added in Ref. [22]
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OBW = Φ†B̂µνŴ
µνΦ , (4.2c)

OΦ,1 =
[(

DµΦ
)†

Φ
] [

Φ†
(
DµΦ

)]
, (4.2d)

OWWW = Tr
(
ŴµνŴ

νρŴρ
µ
)

, (4.2e)

OWW = Φ†ŴµνŴ
µνΦ , (4.2f)

OBB = Φ†B̂µνB̂
µνΦ , (4.2g)

OW =
(
DµΦ

)†
Ŵ µν

(
DνΦ

)
, (4.2h)

OB =
(
DµΦ

)†
B̂µν

(
DνΦ

)
, (4.2i)

OΦ,2 =
1

2
∂µ

(
Φ†Φ

)
∂µ

(
Φ†Φ

)
, (4.2j)

OΦ,3 =
1

3

(
Φ†Φ

)3
, (4.2k)

OΦ,4 =
(
Φ†Φ

)[(
DµΦ

)†(
DµΦ

)]
. (4.2l)

The covariant derivative, D, is given by

Dµ = ∂µ + igT aW a
µ + ig′Y Bµ , (4.3)

where g is the SU(2) coupling with Tr(T aT b) = 1
2δ

ab, g′ is the U(1) coupling and Y is the

hypercharge operator. For convenience when defining the normalizations of the individual

operators we use the ‘hatted’ field strength tensors defined according to

[
Dµ, Dν

]
= Ŵµν + B̂µν , (4.4)

hence

Ŵµν = igT aW a
µν and B̂µν = ig′Y Bµν . (4.5)

Combining the twelve operators of Eqn. (4.2) with Eqn. (4.1) completes the construction of

the effective Lagrangian in the linear representation.

The calculation of the Feynman rules from Eqns. (4.1) and (4.2) is straightforward,

though tedious. We do not present the Feynman rules, but in Table VI we indicate those

vertices to which each operator contributes with an ‘X’ in the appropriate box. First, observe
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Ŵµν = igT aW a
µν and B̂µν = ig′Y Bµν . (4.5)

Combining the twelve operators of Eqn. (4.2) with Eqn. (4.1) completes the construction of

the effective Lagrangian in the linear representation.

The calculation of the Feynman rules from Eqns. (4.1) and (4.2) is straightforward,

though tedious. We do not present the Feynman rules, but in Table VI we indicate those

vertices to which each operator contributes with an ‘X’ in the appropriate box. First, observe

14

OBW = Φ†B̂µνŴ
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L12, L13 and L14 are three CP violation terms.

Actually, there is a natural connection between the doublet linear representation given

in (3) and Non-linear representation given in (11), which we would show explicitly below.

In unitary gauge, higgs doublet is parameterized as

Φ =
1√
2
eiπaτa





0

h + v



 . (12)

Define the charge conjugation of Φ

Φc ≡ iτ 2Φ∗ =





h + v

0



 . (13)

Set

Σ ≡
(

Φc Φ
)

=
h + v√

2
eiπaτa ≡

h + v√
2

U , (14)

where U is defined as

U ≡ eiπaτa

. (15)

By doing some SU(2) algebras, we find following connections between the two representations

2(DµΦ)+Φ = ∂µh2 + h2Tr(TVµ)

2Φ+WµνΦ = h2Tr(TWµν)

2(DµΦ)+(DνΦ) = h2[Tr(TVµVν) − Tr(VµVν)] + 2(∂µh)(∂νh)

2(DµΦ)+W µν(DνΦ) = h2Tr(W µνVµVν) − (∂µh2)Tr(W µνVν)

2Φ+W νρ(DµΦ) = h2[Tr(TV µW νρ) + Tr(V µW νρ)]

2(DµΦ)+W νρΦ = h2[Tr(TV µW νρ) − Tr(V µW νρ)] . (16)

Here higgs field h and goldstone field U are defined as

h2 ≡ det Σ Σ ≡ hU . (17)

Thus higgs here is a SU(2)×U(1) scalar, denoting the module freedom of higgs doublet,

while goldstone U denotes the rotation angle of EW gauge transformation, which is similar

to the case in the chiral Lagrangian of strong interaction, where a scalar meson σ denotes the

module and eight goldstone U denotes angle of the strong chiral transformation[18]. Note
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apply: the coefficients of all chirally-invariant interactions in the effective Lagrangian are

expected to be of order one if (1) there is an overall factor of f 2Λ2, (2) each factor of the

Higgs field appears with a factor of 1/f and (3) derivatives appear with a factor of 1/Λ.

Here f is a measure of the amplitude for producing the Higgs [12] and Λ is the scale of

additional, heavy, strongly interacting particles. For consistency, Λ must be less than of

order 4πf [11]. As stated above, we are interested in the situation that Λ is of order one

or a few TeV, but we need not assume that f is that large.

The effective Lagrangian describing the Higgs doublet in such a theory is conveniently

written in terms of the matrix Φ = (iσ2φ∗, φ), which transforms3 as Φ → LΦR† under

SU(2)L × SU(2)R. The most general custodially symmetric Lagrangian to order momen-

tum squared is

L =
1

2
Tr

[

F

(

Φ†Φ

f 2

)

∂µΦ†∂µΦ

]

− f 2Λ2Tr G

(

Φ†Φ

f 2

)

, (1)

where F and G are arbitrary (dimensionless) functions analytic4 at Φ†Φ = 0 and with

F (0) = 1.

In order for SU(2) × U(1) breaking to occur, the potential G must be minimized

for Φ $= 0. We may analyze the Lagrangian (1) by expressing Φ in “polar” coordinates,

Φ = ρΣ/
√

2. Here ρ is real and positive, and Σ is a special unitary matrix. The Lagrangian

to order momentum squared may be written

L =
1

2
∂µρ∂µρ +

ρ2

4
A

(

ρ2

f 2

)

Tr (∂µΣ†∂µΣ) − Λ2f 2B

(

ρ2

f 2

)

, (2)

where A and B are analytic functions related to the F and G above (in particular, F (0) = 1

implies A(0) = 1). We have not included a function multiplying the kinetic-energy term

for the ρ field because such a function can always be eliminated by a redefinition of the

ρ field. Writing ρ = 〈ρ〉 + H , expanding around the true vacuum, and keeping only the

first few terms, we find

L =
1

4
(v2 + 2ξvH + ξ′H2 + ξ′′

H3

6v
) Tr (∂µΣ†∂µΣ) + LH (3)

3 As usual, SU(2)L will be identified with SU(2)weak and SU(2)R is the custodial SU(2) symmetry
whose τ3 component will be identified with hypercharge.

4In Composite Higgs models the non-derivative interactions of the Higgs doublet in the potential arise
from small chiral-symmetry violating interactions and therefore, we must also require that coefficients in
the expansion of G be small compared to 1.
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gρ > gSM , it makes sense to focus first on the strong sector in the limit gSM = 0, and to turn

on later the couplings of this sector to the SM vectors and fermions. Indicating by TA and

T a respectively the broken and the unbroken generators of the group G, we parametrize

the Goldstone field by the matrix

U = eiΠ Π ≡ ΠATA. (2.4)

In addition we assume the strong sector features a set of fields with mass of order mρ ,

which we collectively indicate by Φ. By our assumptions, the general form of the action

including quantum fluctuations from scales shorter than 1/mρ must be

L =
m4

ρ

g2
ρ

[

L(0)(U,Φ, ∂/mρ) +
g2
ρ

(4π)2
L(1)(U,Φ, ∂/mρ) +

g4
ρ

(4π)4
L(2)(U,Φ, ∂/mρ) + . . .

]

.

(2.5)

In the action we have kept massive degrees of freedom “integrated in” for purposes that will

become momentarily more clear. One can for instance check that the structure in eq. (2.5)

is obtained in the compactification of a 5D gauge theory with the identification mρ ≡ 1/R

and g2
ρ = g2

5/(πR) (provided the power divergent loops are computed by NDA, while the

log-divergent and finite pieces automatically satisfy the above structure). Moreover this

same structure characterizes the effective field-theory description of the string. For instance

in type I compactified on a T 6 of radius ∼ 1/Ms, we can make the identifications: Ms = mρ

and gs = g2
ρ/2π.

In order to get the truly low-energy effective action we should then integrate out the

Φ’s and also include the quantum fluctuations at scales below mρ. If the structure of the

terms in eq. (2.5) is the most general one, in particular if terms of all orders in derivatives

appear already in the classical Lagrangian L(0), then the presence or absence of the Φ’s

has no impact on the low-energy theory. We shall first concentrate on this case. Later we

shall discuss the more realistic situation where the classical Lagrangian involves at most

two derivatives: in that case the structure of the higher-order terms in the low-energy

action crucially depends on the quantum numbers of the Φ’s. The leading two-derivative

term defines relation (2.1) for the Goldstone decay constant as well as the leading self-

interactions4

m4
ρ

g2
ρ
L0 ≡ f2Tr (DµDµ) + · · ·

= f2Tr

[
∂µΠ∂µΠ +

1

3
(Π

←→
∂µ Π)(Π

←→
∂µ Π) + · · ·

]
. (2.6)

Here Dµ is the Goldstone combination defined in eq. (A.3) of appendix A and Π
←→
∂µ Π ≡

Π(∂µΠ) − (∂µΠ)Π. Once we interpret Π as the Higgs doublet and include gauge covariant

derivatives, we obtain that eq. (2.6) describes the following leading (dimension-6) interac-

tions
cH

2f2
∂µ

(
H†H

)
∂µ

(
H†H

)
+

cT

2f2

(
H†←→DµH

)(
H†←→DµH

)
. (2.7)

4When the coset generators T A transform as a reducible representation of H, in principle there will be

a different f for each quadratic invariant.
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shall discuss the more realistic situation where the classical Lagrangian involves at most
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Here Dµ is the Goldstone combination defined in eq. (A.3) of appendix A and Π
←→
∂µ Π ≡

Π(∂µΠ) − (∂µΠ)Π. Once we interpret Π as the Higgs doublet and include gauge covariant

derivatives, we obtain that eq. (2.6) describes the following leading (dimension-6) interac-

tions
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+
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. (2.7)
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couple with intermediate strength ∼ √
gρyt to the strong sector. It is then natural to

consider the possibility that one of the two helicities (tL or tR) goes all the way to being

composite. Moreover, in most of the realistic constructions to generate Yukawa couplings,

a composite tR also has phenomenological advantages, in that it allows to relax some

significant bounds from δρ and the Zb̄b vertex. In section 5, we have therefore extended

our effective Lagrangian to the case of a fully composite tR. Although model dependent,

there are important implications in flavor physics. Remarkably, for f ∼ v and assuming

a mixing pattern that follows the size entries of the CKM matrix, we predict flavor effects

(B → Xs#+#−, K+ → π+νν, t → cZ, ∆mD, . . . ) possibly within future experimental

reach. However, the leading signature of top compositeness is associated to the reaction

of four top-quark production. We plan to perform a detailed study of this and other

implications of composite Higgs and top at the LHC in a future work.

Acknowledgments

We would like to thank I. Antoniadis, A. Ceccucci, T. Han, B. Mele, G. Polesello, M. Porrati

and especially R. Contino and I. Low for valuable conversations. This work has been partly

supported by the European Commission under contract MRTN-CT-2004-503369. The work

of A.P. was partly supported by the FEDER Research Project FPA2005-02211 and DURSI

Research Project SGR2005-00916.

A. Integrating out vectors and scalars

Here we describe the low-energy action obtained by integrating out fields of mass mρ at

tree level. We shall need the standard CCWZ notation [13] to write terms in the Goldstone

action. The action of g ∈ G on the Goldstone operator Π, defined in eq. (2.4), is given by

gU(Π) ≡ U(g(Π))h(Π, g), (A.1)

where

h = eiξaT a
ξa ≡ ξa(Π, g) (A.2)

is an element of the unbroken subgroup H. Under the group action Π → g(Π) one has then

U → gUh†. If TA and T a are the broken and unbroken generators respectively, we define

U †∂µU = iDA
µ TA + iEa

µT a ≡ iDµ + iEµ (A.3)

with transformations under G

Dµ(Π) → Dµ(g(Π)) = h(Π, g)Dµ(Π)h(Π, g)† (A.4)

Eµ(Π) → Eµ(g(Π)) = h(Π, g)Eµ(Π)h(Π, g)† − ih(Π, g)∂µh(Π, g)†. (A.5)

Notice that for space dependent Π configurations, Dµ and Eµ transform under a local H
symmetry, in particular Eµ transforms like the associated gauge field. Massive multiplets
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fill reducible representations Φ of the unbroken group H. The action of the global group

G is realized through the “local” H tranformations

Φ → h(Π, g)Φ. (A.6)

Using the last 3 equations the most general Lagrangian for the non-linearly realized G can

be written, just by using the rules for a “local” H gauge group [13]. In particular Eµ defines

the H-covariant derivative ∂µ + iEµ on the massive fields Φ.

The weak gauging of GSM is obtained by changing eq. (A.3) to U †(∂µ + iAµ)U ≡
iD̄µ(π, A)+ iĒµ(π, A). Indeed since we treat the gauge fields as spectators in what follows,

we can, without loss of generality, gauge the full H ⊃ GSM . Thus Ēa
µ transforms as the H-

gauge field both under the global G-tranformations and under the genuinely local g ≡ h(x).

It is useful to have the expressions of Ē and D̄ at lowest order in Π

Ēµ = Aµ + Eµ(Π,Dν) = Aµ −
i

2
Π
←→
D µΠ + O(Π4) (A.7)

D̄µ = Dµ(Π,Dν) = DµΠ −
1

6

[
Π,Π

←→
D µΠ

]
+ O(Π5), (A.8)

where Dµ = ∂µ + iAµ is the H covariant derivative. (In the last second equality of both

equations we have specified to the interesting case in which G/H is a symmetric space.)

We want to classify the 4-derivative structures that can lead to couplings involving

two Goldstones and two gauge fields. There are 2 relevant structures

O1 = Tr[Fµν(Ē)Fµν(Ē)], O2 = Tr[D̄µD̄νF
µν(Ē)], (A.9)

where Fµν(Ē) = ∂µĒν − ∂ν Ēµ + i[Ēµ, Ēν ]. Substituting eqs. (A.7)–(A.8) into eq. (A.9) we

find that OW and OB emerge by expanding O1, while OHW and OHB emerge from O2. It

is also evident that operators of the above form cannot involve two gluons and two Higgses.

Indicating by D̄µ ≡ ∂µ + iĒµ the full H-covariant derivative, one could write down other

structures like D̄µD̄νD̄νD̄ν , D̄µD̄µD̄νD̄ν or D̄µD̄µD̄νD̄ν . These are however shown to give

either the same effects at dimension 6 or terms involving at least four Goldstones.

The question remains onto which effects can be generated at tree level in minimally

coupled theories, such as Holographic Goldstones or Little Higgses. One distinctive feature

of OHW and OHB is that they give rise to interactions involving on-shell photons and

electrically neutral states. This cannot occur at tree level in a minimally coupled theory

where photon interactions are purely dictated by covariant derivatives. On the other hand

OW and OB do not lead to any extra interactions for on-shell photons, so that one may

expect them to arise at tree level by integrating out heavy states. This is indeed the case

for both Holographic Goldstones and Little Higgses, which are known to give rise to a

contribution to Ŝ ∝ cW + cB through the exchange of heavy vector states. Let us briefly

outline how this effects come about within our formalism by focussing on the case of a

massive vector V transforming in the adjoint of H. In the ungauged limit we have the

option to choose Vµ to transform like Eµ under G. Then the most general two derivative

G-invariant action is given by

m4
ρL0 = m2

ρDA
µD

µ
A −

1

4
(F V

µν)2 +
1

2
m2

ρ(Vµ − Eµ)2, (A.10)
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Using the rules described in section 2.2, we obtain a low-energy effective action for the

leading dimension-6 operators involving the Higgs field of the form

LSILH =
cH

2f2
∂µ

(
H†H

)
∂µ

(
H†H

)
+

cT

2f2

(
H†←→DµH

)(
H†←→D µH

)

−
c6λ

f2

(
H†H

)3
+

(
cyyf

f2
H†Hf̄LHfR + h.c.

)

+
icW g

2m2
ρ

(
H†σi←→DµH

)
(DνWµν)

i +
icBg′

2m2
ρ

(
H†←→DµH

)
(∂νBµν)

+
icHW g

16π2f2
(DµH)†σi(DνH)W i

µν +
icHBg′

16π2f2
(DµH)†(DνH)Bµν

+
cγg′2

16π2f2

g2

g2
ρ
H†HBµνB

µν +
cgg2

S

16π2f2

y2
t

g2
ρ
H†HGa

µνGaµν . (2.15)

We will later discuss the Lagrangian terms that purely involve the vector bosons. The

coupling constants ci are pure numbers of order unity. For phenomenological applications,

we have switched to a notation in which gauge fields are canonically normalized, and

gauge couplings explicitly appear in covariant derivatives. Also, we recall the definition

H†←→D µH ≡ H†DµH − (DµH†)H.

In what follows, we will comment on the operators in eq. (2.15). Let us start with the

operators involving more than two Higgs fields. As previously discussed, by using the Fierz

identities for the Pauli matrices, one can write three independent operators involving four

H fields and two covariant derivatives. Two are shown in our Lagrangian with coefficients

cH and cT . The third operator H†H|DµH|2, can be written in terms of a combination of

cH , cT , c6, cy by a Higgs field redefinition Hα → Hα+(H†H)Hα/f2, or, which is equivalent,

by using the leading order equations of motion. The operator with coefficient cH , as we

will show in section 4, plays a crucial role in testing the SILH in Higgs and vector boson

scattering at high-energy colliders. The operator proportional to cT violates custodial

symmetry and gives a contribution T̂ to the ρ parameter

∆ρ ≡ T̂ = cT ξ, (2.16)

ξ ≡
v2

f2
, v =

(√
2GF

)−1/2
= 246GeV. (2.17)

From the SM fit of electroweak data [16], we find −1.1 × 10−3 < cT ξ < 1.3 × 10−3 at 95%

CL (letting also Ŝ to vary one finds instead −1.7 × 10−3 < cT ξ < 1.9 × 10−3 at 95% CL).

Because of this strong limit, we will neglect new effects from this operator and set cT to zero.

Indeed, the bound on cT suggests that new physics relevant for electroweak breaking must

be approximately custodial-invariant. In our Goldstone Higgs scenario this corresponds to

assuming the coset SO(5)/SO(4). When gSM is turned on, cT receives a model dependent

contribution, which should be small enough to make the model acceptable. In the next

section, we will briefly discuss the size of cT in various models.

The coefficient cy is universal at leading order in the Yukawa couplings, and non-

universal effects will appear at order y2
f/g2

ρ. This is because this term purely originates from
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5. Strongly-interacting top quark

In section 3 we have seen that, in some explicit realizations of the SILH, the top quark is

required to be strongly coupled to the resonances of the electroweak-breaking sector. Here

we want to study, in a model-independent way, the phenomenological implications of this

strongly-coupled top quark, much in the same spirit of section 2 for the case of the Higgs

boson.

Let us first consider the case in which, in addition to the Higgs, the right-handed top

also belongs to the strongly-coupled sector. The low-energy effective Lagrangian can be

written by generalizing the rules 1, 2 and 3 of section 2.2, noticing that each tR leg added to

leading interactions carries an extra factor 1/(fm1/2
ρ ). We find three dimension-6 operators

suppressed by 1/f2 and involving tR:

ctyt

f2
H†Hq̄LH̃tR + h.c. +

icR

f2
H†DµHt̄RγµtR +

c4t

f2
(t̄RγµtR)(t̄RγµtR) . (5.1)

We are not considering dimension-6 operators suppressed by 1/m2
ρ since their effects are

smaller than those in eq. (5.1) for large gρ. The first term of eq. (5.1) was already included

in eq. (2.15). Nevertheless, here it is only present for the top quark and therefore it violates

the universality of cy. The difference ct − cy can be viewed as originating from an insertion

of H†H/f2 on the tR line. The second term of eq. (5.1) violates the custodial symmetry,

and therefore it generates a contribution to T̂ at the one-loop level

T̂ ∼
Ncc2

Rv2Λ2

16π2f4
= 0.02 c2

R

(
Λ

f

)2

ξ , (5.2)

where Λ is the scale that cuts off the one-loop momentum divergence. In models in which

Λ ∼ mρ the 95% CL bound T̂ <∼ 0.002 translates, via eq. (5.2), into a severe upper bound

on c2
Rξ. This bound on cR can be easily satisfied in models in which the strong sector

preserves a custodial symmetry under which tR transforms as a singlet. This guarantees

cR = 0 at tree-level. Another possibility to evade the bound on cR is to reduce the scale

Λ in eq. (5.2). This can be achieved in models in which tR transforms non-trivially under

the custodial group as discussed in section 3. In this case Λ ∼ mcust where mcust is the

mass of the custodial partners of the tR. Assuming mcust # mρ we can satisfy the bound

from T̂ even if cR ∼ 1.

Similarly, we can consider the case in which tL and H are strongly coupled. We

have now the following 1/f2 dimension-6 operators in the low-energy Lagrangian involving

qL = (tL, bL):

cqyb

f2
H†Hq̄LHbR +

cqyt

f2
H†Hq̄LH̃tR + h.c. +

ic(1)
L

f2
H†DµHq̄LγµqL

+
ic(3)

L

f2
H†σiDµHq̄LγµσiqL +

c4q

f2
(q̄LγµqL)(q̄LγµqL) . (5.3)

The possibility of having a strongly-coupled qL has, however, severe constraints from flavor

physics due to bL. For example, the operator proportional to c4q in eq. (5.3) contributes
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In the above we have chosen to normalize the group generators as Tr(TATB) = Tr(XAXB) =
δAB. Notice that the only possible trilinear term fabc∂µΠaΠb∂µΠc vanishes identically by
Bose symmetry.

For our purpose, we will concentrate on Π = haXa, where Xa, a = 1, 2, 3, 4, are the
generators corresponding to the Higgs field. Operators with two derivatives and four Higgses
come from the last term in Eq. (24):

f 2

2
Tr(DµDµ) ⊃

1

f 2
ha hb ∂µh

c ∂µhd T abcd; (25)

T abcd ≡ −
(

1

6f 2
facif bdi +

1

24f 2
facef bde

)

. (26)

The four scalar fields {ha, a = 1, 2, 3, 4} together transform as a complex doublet under
the electroweak group SU(2)L × U(1)Y , and T abcd is a fourth-order invariant tensor under
that group. To see what operators arise from Eq. (25), it is most convenient to use the
generators of the full custodial group SO(4) % SU(2)L × SU(2)R, bearing in mind that the
custodial symmetry is broken by the gauging of the hypercharge Y = T 3

R, where TA
L and

TA
R are respectively the generators of SU(2)L and SU(2)R and A = 1, 2, 3. The Higgs field

#h = (h1, h2, h3, h4)T transform like a vector as 4 under the SO(4). Thus ha∂µhc in Eq. (25)
contains the product

4× 4 = 6A ⊕ (1⊕ 9)S, (27)

where S/A refers to the (anti-)symmetry property of the representation under the inter-
change of the two vectors. Under SU(2)L × SU(2)R, 6A is the adjoint representation
(3L, 1R)⊕(1L, 3R) and 9S = (3L, 3R). Since the structure constant is totally anti-symmetric,
the (ac) and (bd) components in T abcd are also anti-symmetric and must live in the adjoint
of SO(4). We thus have

T abcd = αL(T
A
L )ac(T

A
L )bd + αR(T

A
R )ac(T

A
R )bd + β(T 3

R)ac(T
3
R)bd (28)

The coefficient β, associated with the hypercharge generator T 3
R, vanishes for custodially

invariant cosets. Using the explicit expression in the Appendix for the generators we have

T abcd = α+

(

δabδcd − δadδbc
)

+ α−εabcd −
β

4
EacEbd (29)

Eac = (δa1δc2 + δa3δc4)− (a ↔ c) (30)

and α± = −(αR±αL)/4. The parity odd term proportional to α− vanishes by Bose symmetry
when contracted in Eq. (25). The other terms contain a contribution to cr and, upon using
the operator equivalence in Eq. (11), give the following combination of OH , Oy and OT

− 3
α+

f 2
OH + 2

α+

f 2
Oy −

β

4f 2
OT (31)

By comparing Eqs. (26), (29), and (30) we deduce that α+ is negative. Indeed Eq. (26) im-
plies T 1133 < 0 while Eqs. (29) and (30) give T 1133 = α+. Thus the nlσm gives contributions

c(σ)H = −6α+ > 0, c(σ)y = 2α+ < 0, c(σ)H + 2c(σ)y = −2α+ > 0. (32)

Notice that the combination c(σ)H + 2c(σ)y , which controls the partial widths Γ(h → f̄ f) and
Γ(h → gg), is positive.
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Review

     The anomalous 4-point couplings in chiral Lag., and  the HVV 
dim-6 operators in Linearized Lag. are relevant to WW 
scattering.

     WW scattering offers a way to probe strong TeV dynamics, 
or probe HVV couplings.

     WW scattering papers in our HEP theory group.



gives a clean and distinct signal because the Z0Z0 pairs can be fully reconstructed. The
disadvantage is the rather small leptonic branching ratio (0.44%).

In the W±Z0 case we have considered the channels:

W±Z0 → W±Z0

W±γ → W±Z0

qq̄′ → W±Z0

We focus our attention on the gold-plated events where the W± and Z0 decay to the
charged leptonic final states (l = e, µ, ν). The corresponding branching ratio is 1.3%.
All these cross sections depend on the chiral αk parameters so that they are taken into
account in the signature and background calculations.

The main source of Z0Z0 or W±Z0 pairs in pp colliders is via quark-antiquark annihi-
lation. The total production rate of gg → Z0Z0, in the studied cases, is 20−50% than that
from qq̄ → Z0Z0 depending on the top quark mass (we have chosen mt = 170 GeV ). On
the other hand, the production rates of Z0Z0 or W±Z0, via gauge boson fusion are sup-
pressed by powers of (α/sin2θw) due to the application of the W effective approximation
[15, 16] to obtain the initial bosons from pp beams, as we will see in next section.

5 The proton and gauge boson structure functions

Here we describe how to compute the total cross sections of the different processes studied
to obtain Z0Z0 or W±Z0 pairs in pp colliders.

pp → (qq̄ → V3V4) + X

pp → (gg → Z0Z0) + X

pp → (V1V2 → V3V4) + X

We have to integrate the differential cross section for the subprocess, (dσ/dcosθ), with
the distribution functions of the quark, antiquark and gluon (given by fi, fj and g) inside
the proton:

σ(pp → (qq̄′ → V3V4) + X) =
∑

i,j

∫ ∫ ∫

dx1dx2dcosθfi(x1, Q
2)fj(x2, Q

2)

dσ̂

dcosθ
(qq̄′ → V3V4)

16

σ(pp → (gg → Z0Z0) + X) =
∫ ∫ ∫

dx1dx2dcosθg(x1, Q
2)g(x2, Q

2)

dσ̂

dcosθ
(gg → Z0Z0) (12)

These formulae are used to compute the processes:

qq̄ → Z0Z0

qq̄′ → W±Z0

gg → Z0Z0

In order to compute the number of events of Z0Z0 and W±Z0 produced in pp collisions
via gauge boson fusion we apply the effective W approximation [15, 16] and we use the
formula:

σ(pp → (V1V2 → V3V4) + X) =
∑

i,j

∫ ∫

dx1dx2dcosθfi(x1, Q
2)fj(x2, Q

2)

∫ ∫

dτ̂dη̂
∂2L

∂τ̂∂η̂

dσ̂

dcosθ
(V1V2 → V3V4) (13)

Thus the total cross section in pp colliders (like LHC) can be written as the result of
the convolution of the subprocess cross section with the V1V2 pair luminosity in pp beams.
This luminosity is calculated from the convolution of the double bremsstrahlung of the
(V1V2) from the quark structure functions. Thus, ∂2L/∂τ̂∂η̂ is the luminosity function
for the gauge boson pair V h

1 V h
2 to be radiated from the quark pair qiqj . It depends on

the helicity state, transversal or longitudinal, of the initial bosons V1 and V2. Therefore
we have to separate in our computations the contribution of the different polarization
channels of the initial bosons.

Z0Z0 → Z0Z0

W+W− → Z0Z0

W±Z0 → W±Z0

W±γ → W±Z0

The amplitudes and differential cross sections for all these processes have been obtained
as it was described in the previous sections. According to the effective W approach we
take the following functions corresponding to the probability of a gauge boson VT or VL
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5 LHC Processes

5.1 Monte-Carlo simulation

We have implemented our parameterization of vector-boson scattering in the multi-particle
event generator WHIZARD [28,29]. The program generates matrix elements for partonic pro-
cesses via optimized helicity amplitudes while avoiding the redundancies inherent in a Feynman
diagram expansion. These optimized matrix elements together with a highly efficient phase-
space setup enable the simulation of six and eight-particle final states. WHIZARD contains the
infrastructure for simulations of complex collider environments like structured beams, parton
shower, and interfaces to fragmentation and hadronization.

As the starting point for the implementation in WHIZARD, we have chose the SM extension
with anomalous three-boson and four-boson couplings which has been used for the simulation
of anomalous triple and quartic gauge operators [20,46,47]. The algorithm for the symbolic gen-
eration of the matrix elements in WHIZARD, which is especially suited for the inclusion of beyond
the Standard Model (BSM) physics [48], allows for the insertion of operators in specific time
directions necessary by the crossing-symmetry breaking effects of the K-matrix unitarization
prescription.

5.2 Comparison with the Effective W approximation (EWA)

In 2 → 6 fermion processes that contain weak-boson scattering (Fig. 1) the W/Z bosons that
initiate the interaction are represented by their propagators with a spacelike momentum. The
main contribution comes from the region with small virtuality, and we are interested in the
region of large c.m. energy of the vector boson pair. In this region, the virtualities and the
masses of the vector bosons induce only small corrections to the amplitude, so the initial vector
bosons can be treated as approximately on-shell.

We can thus approximate the dominant Feynman graphs by a convolution of massless split-
ting (of the initial quark into a quark and a vector boson) with the vector-boson interaction,
which is called effective W approximation (EWA) [25]:

σ(q1q2 → q′1q
′
2V

′
1V

′
2) ≈

∑

λ1,λ2

∫

dx1 dx2 F λ1

q1→q′
1
V1

(x1) F λ2

q2→q′
2
V2

(x2) σλ1λ2

V1V2→V ′

1
V ′

2

(x1x2s) (67)

This has to be convoluted with the quark structure functions to yield the cross section for the
pp initial state.

Eq. (67) contains integrations over x1,2, the energy fractions of the vector bosons that are
radiated from the initial quarks, and a sum over vector-boson helicities. In contrast to the
analogous Weizsäcker-Williams approximation for photons, there is a longitudinal polarization
direction in addition to the two transversal polarization directions. Explicitly, the structure
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Figure 10: Comparison of the exact (red) and EWA (green, dashed) results for weak-boson
scattering for processes of the type q1q2 → q′1q

′
2V V for

√
sq1q2

= 2 TeV. Upper line: scalar
isosinglet resonance, lower line: tensor isosinglet resonance. The resonance masses and cou-
plings are MR = 1 TeV and gR = 1, respectively, the amplitudes are unitarized by the K-matrix
scheme of Sec. 4.5, and a pT cut of 30 GeV has been applied to the vector bosons.
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Figure 11: Feynman graphs that contribute an irreducible background to weak-boson scattering
in 2 → 6 fermion processes. E.g. double final state and double initial state radiation, as well
as t-channel like diagrams.
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Cross Section & EWA

Effective W Approximation (EWA):

In the exact calculation, the ambiguity for the off-shell W??

fTLTL = (
MV1

√

−q2
1

)(
MV2

√

−q2
2

) (11)

Finally one can write the cross section expression in the EVBA approximation as:

σEV BA
tot =

∫

g(q2
1, q

2
2, x, φ)dφdq2

1dq2
2

∑

Pol1Pol2

fpolσ
on
poldx (12)

By comparison with eq.(1) the luminosity can be expressed as:

LWW
Pol1Pol2

(x) =
∫

g(q2
1, q

2
2, x, φ)fpoldφdq2

1dq2
2 (13)

In our implementation we have used the same assumptions but we have performed the

onshell extrapolation at the matrix element level. This allows to keep all the terms

M(m, n)M∗(m′, n′) (m "= m′, n "= n′) in the total amplitude square expression. The off-

shell vector boson scattering matrix element M(m, n) in (2) and (5) is expressed in terms

of the corresponding on shell matrix elements and the polarization factors (9) as

M(m, n) =
√

fmnMon(m, n) (m, n = L, T ). (14)

Moreover we have not employed any luminosity function but we have used the diagram-

matical expression of the fermion lines, evaluating them for each kinematical configuration

and polarization.
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the anomalous quartic interactions we are interested in, so there is a sig-
nificant WT -induced background which has to be reduced by a suitable ex-
perimental strategy44,43,45. Since the longitudinal spectrum drops sharply
near x = 1, the energies that can be reached for Goldstone boson scattering
are considerably lower than the collider energy. For that reason, a Linear
Collider with an energy of at least 0.8 to 1 TeV is necessary to achieve a
reasonable precision in the determination of the quartic couplings. At these
energies, unitary constraints on the amplitudes (Sec. 3.4) are not yet an
issue, and the chiral Lagrangian parameterization describes the scattering
processes in a model-independent way.

Anomalous quartic couplings involving photons will not be induced by
the dimension-four operators L4 to L10. Therefore, in eγ and γγ collisions
vector boson pair production does not provide independent information
on a strongly interacting Higgs sector at this level, and in e+e− collisions
photon-induced processes should be considered as a background to vector
boson fusion. Dimension-six operators, however, allow for anomalous quar-
tic couplings involving photons and can be probed independently in these
channels.

A complete coverage of the parameter space, which requires also the
inclusion of the SU(2)C violating operators in the analysis, will be possible
only by combining all available channels and including, in particular, results
for the analogous processes at the LHC. Nevertheless, the results presented

Accomando,,Ballestrero, Belhouari and Maina

no Higgs mh=250GeV

Kilian, et al



Signal & Backgrounds

would be identified and studied at the LHC through the production of their intrinsic new

particles. However, the finite energy reach and large backgrounds at the LHC could make

discovering any new states very difficult.

Thus we will focus on these non-SM light Higgs scenarios, both because they are

favored by precision data and because they are perhaps the most difficult to distinguish

from the SM. To study these setups we will take a model-independent approach, employing

an effective field theory to parameterize the effects of new physics [5, 6, 7, 8, 9, 10]. We

will see that the general phenomenology of the Higgs sector is captured by the coefficients

of a small number of dimension-6 operators [11, 12], only one of which is relevant to the

vector boson fusion process we wish to study.

Figure 1: Illustration for vector boson fusion.

Vector boson fusion (VBF) is the process in which vector bosons radiated by initial

state quarks scatter into vector bosons (see Fig. 1). This process is intimately tied to

EWSB: just as the pion is a Nambu-Goldstone boson (NGB) and ππ scattering can be used

to understand chiral symmetry breaking, at high energies longitudinally polarized vector

bosons take on the behavior of the NGBs from EWSB. In the absence of a Higgs boson

or other new physics responsible for the EWSB, the scattering amplitudes probed by VBF

would violate perturbative unitarity [13, 14, 15, 16] at around 1 TeV (see the discussion in

appendix A). Furthermore, if the Higgs boson does not have the exact couplings to vector

bosons as predicted by the SM, then the necessary cancelations will not occur and one will

still observe an E2
growth in the amplitudes until new physics comes into play. It is by

measuring this growth that we can hope to observe the effects of physics beyond the SM,

even in scenarios where we only see a light Higgs-like particle [12, 17].

In this article we will introduce a novel technique designed to analyze VBF processes

and observe the E2
growth in longitudinal gauge-boson scattering amplitudes mentioned

above. We will begin by introducing our notations and framework in Section 2. To mo-

tivate our new technique, in Section 3 we will update past analyses of VBF (specifically

[18] and [19]) taking into account the effects of parton showering and jet clustering. We

will show that these analyses, which infer the E2
amplitude growth from cross section in-

creases, carry large O(100%) uncertainties due to factorization-scale ambiguities that affect

– 2 –

     PP        VVjj If strong dynamics at TeV scale, VL VL to VL VL 
scattering is expected to be enhanced at large 
invariant mass.

In contrast, VT VT to VT VT, and VT VL to VT 
VL scattering remain perturbative through the 
whole invariant mass range. (irreducible BG)

Signal Definition: the enhancement of the cross section over the SM prediction with a light Higgs

σsignal = σnewphys − σSM (mH = 100 GeV)
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a consequence, will be particularly challenging to detect.
Therefore, even if a light Higgs is discovered, boson–boson scattering is a crucial process

to study, which can give us useful information on the nature of the Higgs boson. It is worth
pointing out that, in this framework, since the Higgs can be viewed as an approximate
fourth Goldstone boson, its properties are related to those of the exact (eaten) Goldstone
bosons. Strong gauge-boson scattering will be accompanied by strong Higgs pair production
[21].

Scattering processes among vector bosons have been scrutinized since a long time
[23, 24]. In most cases previous studies of boson–boson scattering at high energy hadron
colliders have resorted to some approximation, either the Equivalent Vector Boson Approx-
imation (EVBA) [25], or a production times decay approach. In Ref. [26, 27] an analysis
of lν + four jets and µ+µ− + four jets production at the LHC has been presented, with
the limitation of taking into account only purely electroweak processes. Preliminary re-
sults concerning the inclusion of the O(α4

EMα2
S) background, which include V V + 2j and

top–antitop production have appeared in Ref. [28]. In the last few years QCD corrections
to boson–boson production via vector boson fusion [29] at the LHC have been computed
and turn out to be below 10%. While the present paper was being finalized, VBFNLO [30] a
Monte Carlo program for vector boson fusion, double and triple vector boson production
at NLO QCD accuracy, limited to the leptonic decays of vector bosons, has been released

In this paper we study at parton level the process pp → �ν + 4j, including all back-
grounds contributing to this six parton final state. We use complete tree level matrix
elements. We consider two scenarios: a light Higgs SM framework with MH = 200 GeV
and an infinite mass Higgs scenario. The production cross section for �ν + 4j has been
shown to be much larger [26, 27] than that for µ+µ− + 4j making it the most promising
candidate for boson–boson scattering studies provided the full QCD background can be
kept under control. Processes in which both vector bosons decay leptonically suffer from a
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to study, which can give us useful information on the nature of the Higgs boson. It is worth
pointing out that, in this framework, since the Higgs can be viewed as an approximate
fourth Goldstone boson, its properties are related to those of the exact (eaten) Goldstone
bosons. Strong gauge-boson scattering will be accompanied by strong Higgs pair production
[21].
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[23, 24]. In most cases previous studies of boson–boson scattering at high energy hadron
colliders have resorted to some approximation, either the Equivalent Vector Boson Approx-
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the limitation of taking into account only purely electroweak processes. Preliminary re-
sults concerning the inclusion of the O(α4

EMα2
S) background, which include V V + 2j and

top–antitop production have appeared in Ref. [28]. In the last few years QCD corrections
to boson–boson production via vector boson fusion [29] at the LHC have been computed
and turn out to be below 10%. While the present paper was being finalized, VBFNLO [30] a
Monte Carlo program for vector boson fusion, double and triple vector boson production
at NLO QCD accuracy, limited to the leptonic decays of vector bosons, has been released

In this paper we study at parton level the process pp → �ν + 4j, including all back-
grounds contributing to this six parton final state. We use complete tree level matrix
elements. We consider two scenarios: a light Higgs SM framework with MH = 200 GeV
and an infinite mass Higgs scenario. The production cross section for �ν + 4j has been
shown to be much larger [26, 27] than that for µ+µ− + 4j making it the most promising
candidate for boson–boson scattering studies provided the full QCD background can be
kept under control. Processes in which both vector bosons decay leptonically suffer from a
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Figure 6: Examples of contributions to the QCD irreducible background: tt̄ production (a,b) and

V V + 2j (c,d)

much smaller rate despite a reduced QCD background.

2. Outline of the analysis

The observation of strong boson–boson scattering as an excess of events compared to the

SM prediction requires, as an essential condition, that a signal of VV scattering is extracted
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Selection of Cuts
VBF signature
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Characteristics:

•• energetic jets in the forward and backward directions (pT > 20 GeV)

•• large rapidity separation and large invariant mass of the two tagging jets

•• Higgs decay products between tagging jets

•• Little gluon radiation in the central-rapidity region, due to colorless W/Z exchange

(central jet veto: no extra jets with pT > 20 GeV and |η| < 2.5)
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combining these processes, we proceed as follows: For tt̄jj production both tagging jets
are required to arise from massless partons, while in the tt̄j case exactly one tagging jet
is allowed to emerge from a b or b̄ quark. For tt̄ production both tagging jets stem from
b quarks [22, 23]. When presenting cross sections and kinematic distributions, the three
tt̄ + jets backgrounds are combined for clarity even though their individual distributions
are slightly different.

In all cases, the factorization scale is chosen as µF = min(mTi
) of the top quarks and

additional jets, where each mTi
is given by the transverse momentum and mass of the

respective entity i as

mTi
=

√

p2
Ti

+ m2
i . (9)

The overall strong coupling factors for the tt̄ + n jets cross section are calculated as
(αs)n+2 =

∏n+2
i=1 αs(mTi

).

3.2 Selection Cuts

In order to suppress the backgrounds with respect to the signal processes, the design of
dedicated selection cuts is essential. For our analysis we have developed various sets of
cuts, which are given as follows:

I. Inclusive cuts: Basic selection cuts need to be introduced to render our calcula-
tion of the production cross sections of all signal and background processes finite.
This is achieved by identifying all final state massless partons with high transverse
momentum jets. The two jets of largest transverse momentum are called “tagging
jets” and are required to carry

ptag
Tj > 30 GeV . (10)

All jets need to lie in the rapidity-range accessible to the detector,

|ηj| < 4.5 , (11)

and are supposed to be well-separated,

∆Rjj =
√

(ηj1 − ηj2)2 + (φj1 − φj2)2 > 0.7 , (12)

with ηj denoting the jet rapidity and ∆Rjj the separation of any pair of jets in the
rapidity-azimuthal angle plane. For all V V jj production processes, the tagging jets
are identified with the massless final-state partons of the reaction. For the tt̄ + jets
backgrounds, the tagging jets can stem from a massless quark or gluon, or from the
decay products of the top quarks.

In order to ensure well-observable isolated charged leptons in the central-rapidity
region, we require

pT ! > 20 GeV, |η!| < 2.5, ∆R!j > 0.4 , (13)

8

Jet-Tagging

Central-rapidity leptonic cuts

Jet-Veto
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Figure 13: Pseudo-rapidities of the forward and backward quarks in signal events after they radiate the

vector bosons, obtained from PYTHIA before any showering, fragmentation, etc.

Many different strategies are possible for implementing a tag-jet selection. A number of these were

compared, and the best rejection factors for a given efficiency were obtained as follows:

1. Require two jets with

• |η( jet)| > ηcut and pT ( jet) > pTcut

• opposite signed rapidity

• at least one of them has an energy greater than a critical value Ecut

2. If more than one jet with the same sign rapidity satisfies the above cuts, choose the most energetic,

labelled FJ1. The next one is labelled FJ2.

• Require the tag-jet with the opposite sign of rapidity to satisfy ∆η(FJ1,FJ2) > ∆ηcut and

E(FJ2) > E2cut

In addition a dijet mass cut is currently applied in the cone algorithm analyses. The specific values of the

cuts in each case are to be optimised depending upon the kinematic region under study.

4.4 Central Jet Veto

A useful analysis strategy to suppress backgrounds such as tt̄ is to apply a central jet veto [15, 38, 39].

For vector boson scattering, one expects little QCD radiation in the central region since only colourless

electroweak vector bosons are produced and the forward jets are not colour connected. Given the forward

jet cut definition, we unambiguously define the central region of the event as the η region between them.

The central jet veto then simply requires that no other high pT jet (here taken as pT > 30 GeV) other

than those resulting from the hadronically decaying vector boson lie in the central region.

Specifically, in the analyses where it is applied, the central jet veto rejects events if there are any

additional jets with a chosen maximum value for |η | and minimum value for pT .

EXOTICS – VECTOR BOSON SCATTERING AT HIGH MASS
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The two jets of largest Pt are called “tagging jets”.

combining these processes, we proceed as follows: For tt̄jj production both tagging jets
are required to arise from massless partons, while in the tt̄j case exactly one tagging jet
is allowed to emerge from a b or b̄ quark. For tt̄ production both tagging jets stem from
b quarks [22, 23]. When presenting cross sections and kinematic distributions, the three
tt̄ + jets backgrounds are combined for clarity even though their individual distributions
are slightly different.

In all cases, the factorization scale is chosen as µF = min(mTi
) of the top quarks and

additional jets, where each mTi
is given by the transverse momentum and mass of the

respective entity i as

mTi
=

√

p2
Ti

+ m2
i . (9)

The overall strong coupling factors for the tt̄ + n jets cross section are calculated as
(αs)n+2 =

∏n+2
i=1 αs(mTi

).

3.2 Selection Cuts

In order to suppress the backgrounds with respect to the signal processes, the design of
dedicated selection cuts is essential. For our analysis we have developed various sets of
cuts, which are given as follows:

I. Inclusive cuts: Basic selection cuts need to be introduced to render our calcula-
tion of the production cross sections of all signal and background processes finite.
This is achieved by identifying all final state massless partons with high transverse
momentum jets. The two jets of largest transverse momentum are called “tagging
jets” and are required to carry

ptag
Tj > 30 GeV . (10)

All jets need to lie in the rapidity-range accessible to the detector,

|ηj| < 4.5 , (11)

and are supposed to be well-separated,

∆Rjj =
√

(ηj1 − ηj2)2 + (φj1 − φj2)2 > 0.7 , (12)

with ηj denoting the jet rapidity and ∆Rjj the separation of any pair of jets in the
rapidity-azimuthal angle plane. For all V V jj production processes, the tagging jets
are identified with the massless final-state partons of the reaction. For the tt̄ + jets
backgrounds, the tagging jets can stem from a massless quark or gluon, or from the
decay products of the top quarks.

In order to ensure well-observable isolated charged leptons in the central-rapidity
region, we require

pT ! > 20 GeV, |η!| < 2.5, ∆R!j > 0.4 , (13)
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where ∆R!j stands for the separation of a charged lepton from any jet. Since any
b-quark close to a charged lepton is very likely to also spoil lepton isolation, we
require ∆R!b > 0.4 even if the b-quark is too soft to qualify as a jet. Finally, a cut
on the invariant mass m!! of two charged leptons of the same flavor is applied to
avoid virtual photon singularities stemming from quasi-collinear γ∗ → "+"− decays,

m!! > 15 GeV. (14)

II. VBF cuts: VBF events are characterized by two tagging jets in the far forward and
backward regions of the detector, while the leptonic decay products of the vector
bosons are typically located in the central-rapidity range between the jets. To favor
such configurations, we demand that the charged leptons fall between the tagging
jets,

ηtag
j,min < η! < ηtag

j,max , (15)

which are well-separated in rapidity,

∆ηjj = |ηtag
j1 − ηtag

j2 | > 4 , (16)

and occupy opposite detector hemispheres,

ηtag
j1 × ηtag

j2 < 0 . (17)

Furthermore, the tagging jets are required to have a large invariant mass,

mjj > mmin
jj , (18)

where mmin
jj = 1000 GeV for the W+W−jj signal and background processes and

mmin
jj = 500 GeV for all other channels.

To illustrate the significance of the mjj cut, the invariant mass distribution of the
two tagging jets in pp → W+W−jj is shown in Fig. 3, after applying the cuts of
Eqs. (10)-(17) and requiring pT (") > 100 GeV. For reducing the tt̄+jets backgrounds,
additionally a b-veto and a central jet veto have been imposed, as discussed below.
While large invariant masses of the tagging jets are characteristic for VBF processes,
QCD-induced reactions tend to peak at small values of mjj. Requiring mjj >
1000 GeV thus efficiently suppresses contributions from tt̄ + jets and QCD V V jj
production with respect to the signal processes.

III. Leptonic cuts: In all channels, the signal processes feature energetic leptons
of high pT and large invariant mass. The decay products of the backgrounds are
less back-to-back in the transverse plane and are characterized by lower transverse
momenta. These features suggest the application of extra selection cuts specific to
each decay channel:

• ZZjj → 4" jj:

mZZ > 500 GeV ,

pT ("") > 0.2 × mZZ . (19)
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Central Jet Veto: H j j j from VBF vs. gluon fusion

[ Del Duca, Frizzo, Maltoni, JHEP 05 (2004) 064]

• Angular distribution of third (softest) jet follows classically expected radiation pattern

• QCD events have higher effective scale and thus produce harder radiation than VBF (larger

three jet to two jet ratio for QCD events)

• Central jet veto can be used to distinguish Higgs production via GF from VBF

Figure 6: Minimum invariant mass distribution of a tagging jet and a charged lepton for the
pp → W+W−jj process after imposing the cuts of Eqs. (10)-(18), a b-veto, a CJV, and requiring
pT (!) > 100 GeV. Plotted are results for the heavy Higgs boson scenario, the Higgsless Kaluza-
Klein model, and the relevant SM backgrounds.

scattering. We did not impose further leptonic cuts for the ZZjj and W±Zjj chan-
nels, because the amount of improvement in the significance of the signal would be
marginal. However, in the case of pp → W+W−jj additional measures are necessary
to suppress the overwhelming tt̄ + jets backgrounds.

VI. Central jet veto: QCD-induced processes tend to exhibit more jet activity in
the central rapidity region than VBF reactions with colorless weak boson exchange
in the t-channel. A central jet veto (CJV) can therefore be applied to reduce QCD
backgrounds by eliminating events where in addition to the tagging jets at high
rapidity secondary jets with a high transverse momentum are found in the central
regions of the detector.

We veto any such activity by discarding all events with an extra veto jet of

pveto
T j > 25 GeV , (25)

located in the gap region between the two tagging jets,

ηtag
j,min < ηveto

j < ηtag
j,max . (26)

In our simulations we do not yet model extra QCD radiation which might be subject
to the central jet veto. Such refinements are beyond the scope of the present work.
However, the tt̄j and tt̄jj background processes typically have additional b-quark
jets from top-quark decay in the central region. The CJV thus is very effective in
reducing these backgrounds.
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For the central jets with larger Pt, we discards the events.

ATLAS TDR



Leptonic Cuts

where ∆R!j stands for the separation of a charged lepton from any jet. Since any
b-quark close to a charged lepton is very likely to also spoil lepton isolation, we
require ∆R!b > 0.4 even if the b-quark is too soft to qualify as a jet. Finally, a cut
on the invariant mass m!! of two charged leptons of the same flavor is applied to
avoid virtual photon singularities stemming from quasi-collinear γ∗ → "+"− decays,

m!! > 15 GeV. (14)
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bosons are typically located in the central-rapidity range between the jets. To favor
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j2 | > 4 , (16)

and occupy opposite detector hemispheres,

ηtag
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j2 < 0 . (17)

Furthermore, the tagging jets are required to have a large invariant mass,

mjj > mmin
jj , (18)

where mmin
jj = 1000 GeV for the W+W−jj signal and background processes and

mmin
jj = 500 GeV for all other channels.

To illustrate the significance of the mjj cut, the invariant mass distribution of the
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Eqs. (10)-(17) and requiring pT (") > 100 GeV. For reducing the tt̄+jets backgrounds,
additionally a b-veto and a central jet veto have been imposed, as discussed below.
While large invariant masses of the tagging jets are characteristic for VBF processes,
QCD-induced reactions tend to peak at small values of mjj. Requiring mjj >
1000 GeV thus efficiently suppresses contributions from tt̄ + jets and QCD V V jj
production with respect to the signal processes.

III. Leptonic cuts: In all channels, the signal processes feature energetic leptons
of high pT and large invariant mass. The decay products of the backgrounds are
less back-to-back in the transverse plane and are characterized by lower transverse
momenta. These features suggest the application of extra selection cuts specific to
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Figure 3: Invariant mass distribution of the two tagging jets for pp → W+W−jj after imposing
the cuts of Eqs. (10)-(17), a b-veto, a CJV, and requiring pT (!) > 100 GeV. Plotted are results
for the heavy Higgs boson scenario, the Higgsless Kaluza-Klein model, and the relevant SM
backgrounds.

Here, mZZ is the invariant mass of the four-lepton system, and pT (!!) the
transverse momentum of two same-flavor charged leptons.

• ZZjj → 2!2ν jj:

mT (ZZ) > 500 GeV ,

pmiss
T > 200 GeV , (20)

with pmiss
T being the transverse momentum of the neutrino system and

m2
T (ZZ) = [

√

m2
Z + p2

T (!!) +
√

m2
Z + (pmiss

T )2]2 − [#pT (!!) + #p miss
T ]2 . (21)

• W±Zjj:

mT (WZ) > 500 GeV ,

pmiss
T > 30 GeV , (22)

where

m2
T (WZ) = [

√

m2(!!!) + p2
T (!!!) + |pmiss

T |]2 − [#pT (!!!) + #p miss
T ]2 , (23)

with m(!!!) and pT (!!!) denoting the invariant mass and transverse momentum
of the charged-lepton system, respectively.
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Figure 4: Transverse momentum distribution of the softest charged lepton for pp → W+W−jj

after imposing the cuts of Eqs. (10)-(18), a b-veto, and a CJV. Plotted are results for the heavy
Higgs boson scenario, the Higgsless Kaluza-Klein model, and the relevant SM backgrounds.

• W+W−jj:

pT ! > 100 GeV ,

∆pT (!!) = |"pT,!1 − "pT,!2| > 250 GeV ,

m!! > 200 GeV ,

min (m!j) > 180 GeV , (24)

where ∆pT (!!) is the difference between the transverse momenta of the two
charged decay leptons, and min(m!j) the minimum invariant mass of a tagging
jet and any charged lepton.

To motivate this set of selection cuts, we show representative distributions for the
pp → W+W−jj channel in the following. In Fig. 4, the transverse momentum dis-
tribution of the softest charged lepton is shown after imposing the cuts of Eqs. (10)-
(18), a b-veto, and a central jet veto. While the heavy-Higgs and the Kaluza-Klein
distributions can barely be distinguished from the QCD and EW backgrounds at
low transverse momenta, the signal cross sections start to deviate from the EW
WWjj background at about pT ! ≈ 100 GeV. Removing events with pT ! < 100 GeV
therefore helps to suppress irreducible backgrounds from SM-like W+W−jj produc-
tion processes. For reducing the still sizeable tt̄+jets cross sections, additional cuts
are necessary.

Figure 5 (a) displays the invariant mass distribution of the two charged final-state
leptons after all inclusive and VBF cuts have been applied, and a b-veto, a cen-
tral jet veto, pT (!) > 100 GeV and min(mlj) > 180 GeV have been imposed. In
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combining these processes, we proceed as follows: For tt̄jj production both tagging jets
are required to arise from massless partons, while in the tt̄j case exactly one tagging jet
is allowed to emerge from a b or b̄ quark. For tt̄ production both tagging jets stem from
b quarks [22, 23]. When presenting cross sections and kinematic distributions, the three
tt̄ + jets backgrounds are combined for clarity even though their individual distributions
are slightly different.

In all cases, the factorization scale is chosen as µF = min(mTi
) of the top quarks and

additional jets, where each mTi
is given by the transverse momentum and mass of the

respective entity i as

mTi
=
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i . (9)

The overall strong coupling factors for the tt̄ + n jets cross section are calculated as
(αs)n+2 =

∏n+2
i=1 αs(mTi

).

3.2 Selection Cuts

In order to suppress the backgrounds with respect to the signal processes, the design of
dedicated selection cuts is essential. For our analysis we have developed various sets of
cuts, which are given as follows:

I. Inclusive cuts: Basic selection cuts need to be introduced to render our calcula-
tion of the production cross sections of all signal and background processes finite.
This is achieved by identifying all final state massless partons with high transverse
momentum jets. The two jets of largest transverse momentum are called “tagging
jets” and are required to carry

ptag
Tj > 30 GeV . (10)

All jets need to lie in the rapidity-range accessible to the detector,

|ηj| < 4.5 , (11)

and are supposed to be well-separated,

∆Rjj =
√

(ηj1 − ηj2)2 + (φj1 − φj2)2 > 0.7 , (12)

with ηj denoting the jet rapidity and ∆Rjj the separation of any pair of jets in the
rapidity-azimuthal angle plane. For all V V jj production processes, the tagging jets
are identified with the massless final-state partons of the reaction. For the tt̄ + jets
backgrounds, the tagging jets can stem from a massless quark or gluon, or from the
decay products of the top quarks.

In order to ensure well-observable isolated charged leptons in the central-rapidity
region, we require

pT ! > 20 GeV, |η!| < 2.5, ∆R!j > 0.4 , (13)
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where ∆R!j stands for the separation of a charged lepton from any jet. Since any
b-quark close to a charged lepton is very likely to also spoil lepton isolation, we
require ∆R!b > 0.4 even if the b-quark is too soft to qualify as a jet. Finally, a cut
on the invariant mass m!! of two charged leptons of the same flavor is applied to
avoid virtual photon singularities stemming from quasi-collinear γ∗ → "+"− decays,

m!! > 15 GeV. (14)

II. VBF cuts: VBF events are characterized by two tagging jets in the far forward and
backward regions of the detector, while the leptonic decay products of the vector
bosons are typically located in the central-rapidity range between the jets. To favor
such configurations, we demand that the charged leptons fall between the tagging
jets,

ηtag
j,min < η! < ηtag

j,max , (15)

which are well-separated in rapidity,

∆ηjj = |ηtag
j1 − ηtag

j2 | > 4 , (16)

and occupy opposite detector hemispheres,

ηtag
j1 × ηtag

j2 < 0 . (17)

Furthermore, the tagging jets are required to have a large invariant mass,

mjj > mmin
jj , (18)

where mmin
jj = 1000 GeV for the W+W−jj signal and background processes and

mmin
jj = 500 GeV for all other channels.

To illustrate the significance of the mjj cut, the invariant mass distribution of the
two tagging jets in pp → W+W−jj is shown in Fig. 3, after applying the cuts of
Eqs. (10)-(17) and requiring pT (") > 100 GeV. For reducing the tt̄+jets backgrounds,
additionally a b-veto and a central jet veto have been imposed, as discussed below.
While large invariant masses of the tagging jets are characteristic for VBF processes,
QCD-induced reactions tend to peak at small values of mjj. Requiring mjj >
1000 GeV thus efficiently suppresses contributions from tt̄ + jets and QCD V V jj
production with respect to the signal processes.

III. Leptonic cuts: In all channels, the signal processes feature energetic leptons
of high pT and large invariant mass. The decay products of the backgrounds are
less back-to-back in the transverse plane and are characterized by lower transverse
momenta. These features suggest the application of extra selection cuts specific to
each decay channel:

• ZZjj → 4" jj:

mZZ > 500 GeV ,

pT ("") > 0.2 × mZZ . (19)
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The leptons (produced by VV decay) are typically 
located in the central rapidity region between two 
tagging jets:

would be identified and studied at the LHC through the production of their intrinsic new

particles. However, the finite energy reach and large backgrounds at the LHC could make

discovering any new states very difficult.

Thus we will focus on these non-SM light Higgs scenarios, both because they are

favored by precision data and because they are perhaps the most difficult to distinguish

from the SM. To study these setups we will take a model-independent approach, employing

an effective field theory to parameterize the effects of new physics [5, 6, 7, 8, 9, 10]. We

will see that the general phenomenology of the Higgs sector is captured by the coefficients

of a small number of dimension-6 operators [11, 12], only one of which is relevant to the

vector boson fusion process we wish to study.

Figure 1: Illustration for vector boson fusion.

Vector boson fusion (VBF) is the process in which vector bosons radiated by initial

state quarks scatter into vector bosons (see Fig. 1). This process is intimately tied to

EWSB: just as the pion is a Nambu-Goldstone boson (NGB) and ππ scattering can be used

to understand chiral symmetry breaking, at high energies longitudinally polarized vector

bosons take on the behavior of the NGBs from EWSB. In the absence of a Higgs boson

or other new physics responsible for the EWSB, the scattering amplitudes probed by VBF

would violate perturbative unitarity [13, 14, 15, 16] at around 1 TeV (see the discussion in

appendix A). Furthermore, if the Higgs boson does not have the exact couplings to vector

bosons as predicted by the SM, then the necessary cancelations will not occur and one will

still observe an E2
growth in the amplitudes until new physics comes into play. It is by

measuring this growth that we can hope to observe the effects of physics beyond the SM,

even in scenarios where we only see a light Higgs-like particle [12, 17].

In this article we will introduce a novel technique designed to analyze VBF processes

and observe the E2
growth in longitudinal gauge-boson scattering amplitudes mentioned

above. We will begin by introducing our notations and framework in Section 2. To mo-

tivate our new technique, in Section 3 we will update past analyses of VBF (specifically

[18] and [19]) taking into account the effects of parton showering and jet clustering. We

will show that these analyses, which infer the E2
amplitude growth from cross section in-

creases, carry large O(100%) uncertainties due to factorization-scale ambiguities that affect

– 2 –
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Calculation Tools

(1) generate signal in the effective W approximation; (2) scenarios with different resonances 
are available by choice of input a4, a5; (3)only 2 to 2 + decay, so the BGs are only qq to 
WW, qq to tt.

(1) handle all processes up to 6 particles in final states; (2)best to generate BGs; (3) not 
strong TeV models with amplitude unitarization available; (4) too many unwanted diagrams 
(possible to modify the source code to exclude unwanted diagrams, or specify W 
polarization).

(1) handle all processes up to 6 particles in final states; (2)hard to manipulate the code to 
modify something.

Pythia

MadEvent

CalcHEP

VBFNLO

(1) Specific to generate vector boson fusion up to NLO; (2)in LO use HELAS amplitude 
generated by MadGraph; (3) possible to modify the code to add new physics parameters.



NLO Calculations?

Figure 9: Higgs mass dependence of the total pp→ jj e+νe µ−ν̄µ cross section at LO

and NLO within the cuts of Eqs. (4.1)–(4.6). Results are shown for renormalization

and factorization scales µ = 0.5 mW , mW and 2mW .

for distributions. We demonstrate this effect by showing a few experimentally relevant

distributions together with the dynamic K factor which is defined as

K(x) =
dσNLO/dx

dσLO/dx
. (4.9)

In the following the Higgs boson mass is taken as mH = 120 GeV and we show cross sections
for the continuum above mWW = 130 GeV and within the cuts of Eqs. (4.1)–(4.7). All panels
are for the scale choice µF = µR = mW .

A fairly strong shape change in going from LO to NLO is found for the tagging-jet
transverse-momentum distributions. This is shown in Figs. 10 and 11 where the larger and
the smaller of the two tagging-jet transverse momenta are shown at LO (dashed black curves)

and at NLO QCD (solid red lines), together with their ratio, the K factor of Eq. (4.9). In
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Figure 14: Transverse mass distribution for the e+νe µ−ν̄µ system in W+W−jj

events at the LHC. Curves are as in Fig. 10. The definition of MWW
T is given in

Eq. (4.10).

ment completely general experimental cuts. The size of the QCD corrections is similar to
those found for Hjj and V jj production in VBF, and corresponds to a shift of a few percent

in typical integrated cross sections expected for VBF cuts. Some distributions, however, are
affected somewhat more strongly, with dynamical K factors ranging between 0.8 and 1.2, in
particular for transverse-momentum distributions. At least as important is the stability of

the NLO result: the residual scale dependence is at the 2% level for cross sections integrated
within VBF cuts.

The numerical code is quite fast, reaching permille level statistics on distributions within
5 days of running on a standard 3 GHz PC. A 1! error on integrated cross sections is reached
in about 1 day. This high speed has been obtained by avoiding the recalculation of recurring

subamplitudes in different sub-processes contributing at a given phase-space point. A key
ingredient is a modular structure of the numerical amplitude calculation which separates the

weak-boson scattering sub-amplitudes into leptonic tensors, which can be changed without
altering the validity of the QCD corrections. Such changes could reflect the inclusion of
anomalous three- or four-vector-boson couplings or of any other new physics in weak-boson

scattering. We leave such generalizations for the future.
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Figure 8: Scale dependence of the total jj e+νe µ−ν̄µ cross section at leading and

next-to-leading order within the cuts of Eqs. (4.1)–(4.7) for pp collisions at the LHC.

The contribution from the Higgs resonance (taken as mH = 120 GeV) is excluded.

The factorization scale µF and/or the renormalization scale µR are taken as mul-

tiples of the W mass, ξ mW , and ξ is varied in the range 0.1 < ξ < 10. The NLO

curves are for µF = µR = ξmW (solid red line), µF = mW and µR = ξ mW (dashed

green line) and µR = mW and µF variable (dot-dashed blue line). The dotted black

curve shows the dependence of the LO cross section on the factorization scale. At

this order, there is no dependence on αs(µR).

Also for larger Higgs boson masses, mH
>∼ 2mW , the reduction of the scale dependence

at NLO is comparable to the light Higgs case. However, since the resonance contribution

can no longer be trivially separated from the WW continuum, we now show, in Fig. 9, the
total cross section within the cuts of Eqs. (4.1)–(4.6) as a function of mH and for different
scale choices, µ = ξmW with ξ = 0.5, 1 and 2. At NLO, the scale dependence is hardly

visible while at LO one again finds a sizable factorization scale dependence.

The small scale dependence which is observed for the total cross section at NLO is also

found for infrared-safe distributions. Typically, scale variations between 0.5 mW and 2 mW

change distributions by about 2%, with somewhat larger variations, up to 6%, sometimes
occurring in the tails of the distributions shown below.

The K factor close to unity, which was found for the total cross section, no longer persists
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The NLO effects can be well 
approximated by a proper choice of the 
factorization scale in the LO calculation.

Jager, Oleari, Zeppenfeld



 WW/WZ(SM Higgs/Higgsless KK)

Englert, Jager, Worek, Zeppenfeld

Figure 9: Invariant mass distribution of the two tagging jets (a) and cluster transverse mass
distribution of the ZZ system (b) for the pp → ZZjj → 2!2ν jj process after imposing all levels
of cuts.

Figure 10: Cluster transverse mass distribution of the W+Z system (a) and invariant mass
distribution of the two tagging jets (b) for the pp → W+Zjj process after imposing all levels of
cuts.
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Figure 7: Invariant mass distribution of the two charged leptons (a) and cluster transverse mass
distribution of the W+W− system (b) for the pp → W+W−jj process after imposing all levels
of cuts.

reduced backgrounds, so that even a relatively small number of excess signal events should
be observable. The W±Zjj channel per se is not sensitive to a scalar resonance like a
1 TeV Higgs boson. Similarly, the ZZjj mode is barely sensitive to the W± KK mode. It
is however the combined analysis of all channels that eventually allows to select between
the models as distinct realizations of electroweak symmetry breaking.

In addition to the signal and background rates listed above, we have studied various
kinematic distributions for each production process. Representative results are presented
in the following, with histograms corresponding to the cross sections listed in Tables 3−7.
Due to the large tt̄ + jets cross sections, the W+W−jj mode constitutes the biggest
challenge. In Fig. 5 (a), we have shown the invariant mass distribution of the two charged
leptons in pp → W+W−jj after the application of general selection cuts. At this level of
cuts, the tt̄ + jets background was still sizeable. If additionally all process-specific cuts of
Eq. (24) are imposed, the tt̄ + jets cross sections can be further reduced, while the signal
distributions are barely affected, cf. Fig. 7 (a). In Fig. 7 (b), the cluster transverse mass
of the produced W+W− system, defined by

m2
T (WW ) = [

√

m2(!!) + p2
T (!!) + |pmiss

T |]2 − ["pT (!!) + "p miss
T ]2 , (27)

is shown. Similar to the m!! distribution, QCD and EW V V jj backgrounds are small,
and tt̄ + jets is well under control. The Kaluza-Klein scenario we consider exhibits a
pronounced resonance peak, well above the backgrounds. The heavy Higgs cross section
is distributed more broadly in mT (WW ), but still well distinguishable.

The heavy Higgs scenario can also be well identified in the ZZjj production modes,
which are, however, less sensitive to Kaluza-Klein resonances as discussed above. Fig-
ure 8 (a) shows the invariant mass distribution of the four charged leptons in pp →
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WZ Channel (Three Site/ Higgsless)

where sw ≡ sin θW is sine of the Weinberg angle. This
formula is analogous, but not identical, to the well-known
KSFR relation [15].

FIG. 2. WZ elastic scattering cross-sections in the SM
(dotted), the Higgsless model (blue), and two ”unitarization”
models: Padé (red) and K-matrix (green).

A particularly interesting scattering channel is WZ →
WZ. In this channel, the Higgsless model predicts a se-
ries of resonances, see Fig. 1(d). In the Standard Model,
on the other hand, this amplitude is unitarized by the
t-channel Higgs exchange as in Fig. 1(f), and has no res-
onance. Conventional theories of EWSB by strong dy-
namics may contain a resonance in this channel, but it
is likely to be heavy (∼ 2 TeV for QCD-like theories)
and broad due to strong coupling. An illustration is pro-
vided by Fig. 2, showing the parton-level cross section for
this process in a Higgsless model in the saturation limit
with a 700 GeV charged MVB V ±

1 . We assume that the
V ±

1 has no significant couplings to fermions. With these
assumptions the V ±

1 width is about 15 GeV. For compar-
ison, the figure shows the cross section in the SM with
a 700 GeV Higgs, and in two phenomenological ”uni-
tarization models” which attempt to mimic the physics
of the conventional technicolor-type theories: the Padé
approximant and K-matrix schemes defined in Ref. [16]
and available in the PYTHIA general purpose event gen-
erator. (The parameters used in Fig. 2 were obtained
in [16] by ”scaling up” the parameters of the pion chiral
lagrangian; in the notation of [16], MR(µ = 2 TeV) =
−9 × 10−4, NR(µ = 2 TeV) = 1.8 × 10−3.)

A striking feature of the charged MVB resonance is
its small width: the resonance is almost a factor of 20
narrower than a SM Higgs of the same mass. This is
primarily due to the vector nature of the MVB and the
fact that it only has a single decay channel. At the same
time, the coupling between the MVB and the SM gauge
bosons is of a strength similar to the SM Higgs, as re-
quired for the unitarization of the I = 0, J = 0 channel
in the Higgsless models.

FIG. 3. Production cross-sections of V ± at the LHC.

At the LHC, the vector boson fusion processes will oc-
cur as a result of W/Z bremsstrahlung off quarks. The
typical final state for such events includes two forward
jets in addition to a pair of gauge bosons. The production
cross section of V ±

1 in association with two jets is shown
by the solid line in Fig. 3. To estimate the prospects for
the charged MVB search at the LHC, we require that
both jets be observable (we assume jet rapidity cover-
age of |η| ≤ 4.5), and impose the following lower cuts
on the jet rapidity, energy, and transverse momentum:
|η| > 2, E > 300 GeV, pT > 30 GeV. These requirements
enhance the contribution of the vector boson fusion dia-
grams relative to the irreducible background of the non-
fusion qq̄′ → WZ SM process as well as qq̄′ → V ±

1 Drell-
Yan process. The “gold-plated” final state [17] for this
search is 2j + 3#+E/T , with the additional kinematic re-
quirement that two of the leptons have to be consistent
with a Z decay [18]. We assume lepton rapidity coverage
of |η| < 2.5. The WZ invariant mass, mWZ , can be re-
constructed using the missing transverse energy measure-
ment and requiring that the neutrino and the odd lepton
form a W . The number of ”gold-plated” events (includ-
ing all lepton sign combinations) in a 300 fb−1 LHC data
sample, as a function of mWZ , is shown in Fig. 4. For
comparison, this figure also shows the predictions of the
four models discussed above, with the same assumptions
as in Fig. 2. The Higgsless model can be easily identified
by observing the MVB resonance: for the chosen param-
eters, the dataset contains 130 V ±

1 → W±Z → 3# + ν
events. The irreducible non-fusion SM background is ef-
fectively suppressed by the cuts: the entire dataset shown
in Fig. 4 contains only 6 such events. We therefore esti-
mate the discovery reach for V ±

1 resonance by requiring
10 signal events after cuts. The efficiency of the cuts for
500 GeV ≤ M±

1 ≤ 3 TeV is in the range 20 − 25%. We
then find that with 10 fb−1 of data, corresponding to 1
year of running at low luminosity, the LHC will probe the
Higgsless models up to M±

1
<∼ 550 GeV, while covering

3

the whole preferred range up to M±
1 = 1 TeV requires

60 fb−1. Note, however, that one should expect a cer-
tain amount of reducible background with fake and/or
non-isolated leptons.

Once the V ±
1 resonance is discovered, identifying it as

part of a Higgsless model requires testing the sum rules

(4) by measuring its mass M±
1 and coupling g(1)

WZV . The
coupling can be determined from the total V ±

1 produc-
tion cross section σtot. However, we are observing the V ±

1
resonance in an exclusive channel, which only yields the
product σtot BR(V ±

1 → W±Z). A measurement of the
total resonance width Γ(V ±

1 → anything) would remove
the dependence on the unknown branching fraction BR.
However, the accuracy of this measurement is severely
limited by the poor missing energy resolution. Never-
theless, a Higgsless origin of the resonance can be ruled

out if the value of g(1)
WZV , inferred with the assumption

of BR = 1, violates the bound (7).

FIG. 4. The number of events per 100 GeV bin in the
2j +3!+ν channel at the LHC with an integrated luminosity
of 300 fb−1 and cuts as indicated in the figure. The model
assumptions and parameter choices are the same as in Fig. 2.

By transferring a Z or a W± from the initial state to
the final state in Figs. 1 (d) and (e), we obtain an alterna-
tive V ±

1 production process, the associated production,
which can be used for discovery as well as testing the
sum rules (4). The total cross section for this process
is shown in Fig. 3. The W±ZZ final state, with the re-
quirement that all three gauge bosons decay leptonically,
yields a very clean 5" + E/T signature. One can then re-
construct the two Z’s and the V ±

1 resonance. The main
advantage of this purely leptonic channel would be the
superior measurement of the total width; however, the
analysis is statistics limited and the discovery reach does
not extend beyond 500 GeV, even for the high-luminosity
LHC option.

Conclusions — It has long been known that the vector
boson fusion processes will provide an important tool for
testing the strongly coupled theories of EWSB at the

LHC. This is as true for the recently proposed Higgsless
models as it is for traditional technicolor theories. As
we discussed in this letter, the observation of a light and
narrow resonance in the WZ channel would be a smoking
gun for the Higgsless models. In addition, the Higgsless
models provide a robust, definite prediction concerning
the properties of the resonance, the sum rules (4), which
can also be tested in this channel.

While we have concentrated on the WZ channel which
provides the most striking signals, other vector boson fu-
sion processes may also be useful. The neutral MVBs V 0

i
would appear as resonances in the W+W− channel; how-
ever, reconstructing these resonances requires hadronic
W decays and suffers from severe backgrounds [19]. The
ZZ channel exhibits no resonance, but could provide an
independent test of the model. These channels will be
explored in more detail in [14].
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Results from VBFNLO(wz)
50 6.2 SM and Higgsless model: LHC comparisons
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Figure 6.14: Transverse
cluster mass distribution for
W+Z → 2l/pT
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Results from VBFNLO(ww)
6.2.1 pp → W+W− → 2j + 2l + /pT

43

The evident phenomenological difference of the two models is the occurrence of a
charged, spin one resonance in the W±Z channel and the lack of resonances in ZZ
fusion, which contrasts to the Standard Model and left-right symmetric extensions
thereof. This is indeed a ’smoking gun’ of the Higgsless models. While there are
similar scalar s-channel contributions in two-Higgs-doublet models, these are strongly
suppressed as they involve (pseudo)scalar Higgs couplings to the fermion legs, which are
proportional to the fermions’ masses. In Technicolor-like theories the exchanged bound
states (techni-ρs or techni-σs) are in general heavy and very broad (typically several
100GeV) as the theory is strongly coupled. This again contrasts to the considered
Higgsless model, where the first Kaluza-Klein W appears below 1TeV with perturbative
couplings and widths of typically 10s of GeV so that they appear as sharp resonances in
the invariant mass distributions1. For this reason, the W±Z channel’s phenomenology
is particularly interesting, section 6.2.3.
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Figure 6.1: Invariant mass
distribution for WW →
2l/pT

. Effects of the detector
resolution are discarded.

6.2.1 pp → W+W− → 2j + 2l + /pT

This channel exhibits a resonance in the Standard Model as well as two resonances in
the Higgsless model, which, however, are difficult to disentangle. The reconstruction of
the invariant WW mass (fig. 6.1) requires hadronic W decays and is not possible for the
considered final state. For the massive and sharp resonances a reconstruction similar
to h → ττ [43] where the decaying W pair is taken to be massless with respect to the
Kaluza-Klein W2 is promising but fails because of the small Kaluza-Klein masses. For
heavier Kaluza-Klein spectra, the coupling is controlled by the second sum rule, so that
the second mode is weaker coupled to the SM modes (gWWZ2 ∼ m−1

2 ). Numerically,
the coupling of scenario (ii) is only 57% of the coupling of scenario (i). That is, for
Kaluza-Klein masses large enough to improve the approximation, the Kaluza-Klein is
too weakly coupled and kinematically suppressed. In addition, the integrated Higgsless

1In fact, from AdS/CFT correspondence, the Kaluza-Klein states are techni-ρs of the strongly
coupled CFT.

44 6.2 SM and Higgsless model: LHC comparisons

cross section decreases with a heavier Kaluza-Klein mass spectrum. Without the pos-
sibility to reconstruct the neutrino’s momenta, one is forced to rely on observables in
the transverse plane. The definition of the transverse mass of the 2l/pT

system

m2
T (WW ) =

(√
m2

ll + !p 2
T,ll + |/pT

|
)2

− (!pT,ll + /!pT )2 (6.2)

allows for a reconstruction (fig. 6.2) of the comparatively light resonances and does
not yield a clean reconstruction of the Kaluza Klein or the heavy Higgs. The different
distributions between the two latter cases is due to their different widths.
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The hadronic observables remain rather unaffected except for the change in the cross
section. Figures 6.3 and 6.4 show the pT spectrum of the hardest jet and the azimuthal
distribution of the two tagging jets for the 2 jet final state, respectively. The jets peak
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Higgs and the Standard Model with invariant mass cut.
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cross section decreases with a heavier Kaluza-Klein mass spectrum. Without the pos-
sibility to reconstruct the neutrino’s momenta, one is forced to rely on observables in
the transverse plane. The definition of the transverse mass of the 2l/pT

system

m2
T (WW ) =

(√
m2

ll + !p 2
T,ll + |/pT

|
)2

− (!pT,ll + /!pT )2 (6.2)

allows for a reconstruction (fig. 6.2) of the comparatively light resonances and does
not yield a clean reconstruction of the Kaluza Klein or the heavy Higgs. The different
distributions between the two latter cases is due to their different widths.
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In the WW channel, if we know 
there is a unitarity violation, how can 

we identify the unitarity violation 
scale M(WW) from the MT(ll)??



Other Scenarios?
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Figure 1: Left: regions in the (α5,α4) parameter space indicating which values exhibit vector and/or
scalar resonances in the Padé unitarisation scheme. Right: number of events per fb−1 as a function of the
di-boson invariant mass for different resonance masses studied here.

Other unitarisation procedures are possible, such as the K-matrix method [12] or the N/D method [13].
In general, resonances are not necessarily produced. In non-resonant cases, it remains vital to measure
the vector boson scattering cross section, but high luminosity and a very good understanding of back-
grounds will be required in order to measure the regularisation of the cross section.

1.2 Characteristic Signatures of Vector Boson Scattering

Discovery of the physics signals studied here will, in general, require high integrated luminosity. It
will require also extremely large samples of simulated backgrounds, fine tuning of all reconstruction
algorithms, and a good understanding of the detector performance, which will only gradually develop
after the first few years of LHC running. The main purpose of this note is not, therefore, to evaluate
with precision the discovery potential of ChL resonances, but to establish a strategy for the search of this
important signal. The main emphasis will be put on those aspects most particular to the high mass vector
boson scattering process; that is, the reconstruction of hadronically decaying vector bosons at high pT
and the reconstruction of the high rapidity tag jets.

The decay of a high mass ChL resonance will produce two highly boosted vector bosons in the central
rapidity region of the detector. For transverse momenta greater than about 250 GeV, a hadronically
decaying vector boson will be seen as one single wide and heavy jet. Methods of distinguishing such jets
from single-parton jets will be investigated with different jet algorithms.

A characteristic signature of vector boson scattering is the presence of two high rapidity and high
energy “tag” jets [14], arising from the quarks which radiate the incoming vector bosons. The process can
thus be efficiently distinguished from contributions to the production of (mostly transversely polarised)
final state vector bosons due to bremsstrahlung of these vector bosons from the quarks. In that case, the
accompanying jets are softer and more central. A further component of the signature is the suppression
of QCD radiation in the rapidity interval between the tag jets due to the fact that no colour is exchanged
between the protons in these processes [15]. This characteristic feature allows for efficient use of central
jet veto to suppress backgrounds.

The high QCD background at the LHC naturally leads us to focus on “semi-leptonic” vector boson
events; that is, those events when one W or Z boson decays leptonically, and the other decays hadron-
ically. These channels represent the best compromise in that there is only at most one neutrino, so the
diboson mass may be reconstructed with reasonable resolution, and the backgrounds can be reduced to
a manageable level by the requirement of leptons and/or missing transverse energy (/ET ). Fully-leptonic
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Summary

     Before Higgs discovery, WW scattering offers a way to 
probe the EWSB mechanism.

     Even when Higgs is discovered, WW scattering can still be 
used to distinguish SM Higgs from other models. 

     WW scattering at the LHC (Signal+BG) is reviewed, and 
new results from MC generator is in progress.



Thank You!!!



New Resonances?

While this result shows that cH is not positive in the most general case, it is still quite
useful, as it constrains the sources of negative contributions. These must either come from
the far UV, via c∞, or via a sizeable cross section in the ++ channel. We have already
mentioned that when vector boson exchange dominates the UV, one has c∞ > 0. In that
situation, negative contributions can only be due to σ++. At tree level such a contribution
can only come by integrating out an object with charge +2. Since there exists no coupling
of a vector with two equally charged objects, we conclude that only by integrating out a
scalar multiplet containing a charge +2 state can one get a negative contribution to cH at
tree level. This is what we willl prove explicitly in the next section.

C. Contributions From Heavy Scalars

In this subsection we consider effects on cH and cT , as well as the associated contribution
to cy, from integrating out heavy scalars at tree level. The treatment here on does not make
use of the composite nature of the Higgs, except when we discuss the specific contribution
from little Higgs theories toward the end of this subsection.

Since we are interested in dimension-six operators with two-derivative and four-Higgs
that are induced from integrating out a heavy scalar at the tree evel, we only need to
consider cubic interactions involving two Higgses and one heavy scalar. At leading order
these trilinears are associated with the scalar potential, since the nlσm structure implies no
trilinears involving two derivatives, as commented below Eq. (24) in Section IIIA.

Cubic interactions involving two Higgses can be classified according to the transformation
properties under SU(2)L × U(1)Y . It will be convenient to again use the SO(4) notation
introduced in Section IIIA. In this case the symmetric product "h"hT can be decomposed
either in one real singlet φs, one real triplet φa

r , or one complex triplet φa
c :

φs ∼ "h · "h = H†H,

φa
r ∼ "hT T a

LT
3
R
"h = H†σ

a

2
H, (46)

φa
c ∼ "hT T a

L(T
1
R − iT 2

R) "h = HT ε
σa

2
H,

where ε = iσ2. For custodially invariant theory φa
r and φa

c combine into a (3L, 3R): φAB ∼
"hT TA

L TB
R

"h. The invariance under the electroweak group dictates the heavy scalar field
coupling to the Higgs through the above cubic interactions can only be a real singlet Φs, a
real triplet Φa

r , or a complex triplet Φa
c . The total contribution to the effective coupling cH

and cT will be a sum from the three sectors without any interference.
Consider first the case of a real triplet Φa

r . The relevant part of the Lagrangian involving
the triplet and the Higgs scalars is

Ls = −
1

2
Φa

r!Φa
r −

1

2
m2

rΦ
a
rΦ

a
r + βrf Φa

r("h
T T a

LT
3
R
"h) + · · · . (47)

By integrating out Φa
r we find

Leff =
β2
rf

2

2
("hT T a

LT
3
R
"h)

1

!+m2
r

("hT T a
LT

3
R
"h)

=
β2
rf

2

2m2
r

("hT T a
LT

3
R
"h)

[

1−
!

m2
r

+ · · ·
]

("hT T a
LT

3
R
"h), (48)
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