
Atmos. Chem. Phys., 9, 4329–4340, 2009
www.atmos-chem-phys.net/9/4329/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

Stratospheric warming in Southern Hemisphere high latitudes since
1979

Y. Hu1 and Q. Fu2

1Department of Atmospheric Sciences, Peking University, Beijing, China
2Department of Atmospheric Sciences, University of Washington, Seattle, USA

Received: 26 November 2008 – Published in Atmos. Chem. Phys. Discuss.: 16 January 2009
Revised: 17 June 2009 – Accepted: 22 June 2009 – Published: 3 July 2009

Abstract. In the present study, we show evidence of sig-
nificant stratospheric warming over Southern Hemisphere
high latitudes and large portions of the Antarctic polar re-
gion in winter and spring seasons, with a maximum warm-
ing of 7–8◦C in September and October, using satellite Mi-
crowave Sounding Unit observations for 1979–2006. It is
found that this warming is associated with increasing wave
activity from the troposphere into the stratosphere, suggest-
ing that the warming is caused by enhanced wave-driven
adiabatic heating. We show that the stratospheric warm-
ing in Southern Hemisphere high latitudes has close corre-
lations with sea surface temperature (SST) increases, and
that general circulation model simulations forced with ob-
served time-varying SSTs reproduce similar warming trend
patterns in the Antarctic stratosphere. The simulated strato-
spheric warming is closely related to increasing wave activ-
ity in the Southern Hemisphere. These findings suggest that
the stratospheric warming is likely induced by SST warming.
As SST warming continues as a consequence of greenhouse
gas increases due to anthropogenic activity, the stratospheric
warming would also continue, which has important implica-
tions to the recovery of the Antarctic ozone hole.

1 Introduction

In the last quarter of the 20th century, one of the most dra-
matic changes in the stratosphere is severe ozone depletion in
the Antarctic spring, i.e., the so-called Antarctic ozone hole.
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Associated with severe ozone depletion, the Antarctic strato-
sphere has displayed strong cooling trends in spring and sum-
mer between the late 1970s and the late 1990s (Solomon,
1999; Randel and Wu, 1999; Thompson and Solomon,
2002). It was generally thought that the strong cooling in
the Antarctic stratosphere is mainly due to the radiative ef-
fect of severe ozone depletion (Ramaswamy et al., 1996; Ra-
maswamy et al., 2001). In addition, increasing greenhouse
gases might also contribute to the observed cooling trends
in the Antarctic stratosphere (Langematz et al., 2003; Shin-
dell and Schmidt, 2004) due to their radiatively cooling ef-
fect on the stratosphere. The Antarctic stratospheric cooling
trends may have important influences on the troposphere and
surface climate through altering atmospheric circulations and
waves. Indeed, Thompson and Solomon (2002) have linked
the Antarctic stratospheric cooling to surface warming over
the Antarctic Peninsula.

In contrast to the greatly emphasized Antarctic strato-
spheric cooling in austral spring and summer and its pos-
sible influences on tropospheric climate, here we report
stratospheric warming over a large portion of the Southern
Hemisphere (SH) high latitudes in austral winter and spring.
Warming signals in the SH high-latitude stratosphere in aus-
tral spring were identified in previous studies (Ramaswamy
et al., 1996; Randel and Wu, 1999; Johanson and Fu, 2007).
However, little attention was paid to these warming trends.
First, it is because conventional zonal and seasonal aver-
ages in these studies largely reduce magnitudes of warm-
ing trends. Second, these earlier studies focused on different
interests. Ramaswamy et al. (1996) and Randel and Wu et
al. (1999) were interested in the stratospheric cooling trends
and their relationship with stratospheric ozone depletion. Jo-
hanson and Fu (2007) mainly focused on comparison of SH
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temperature trends among satellite, radiosonde observations,
and reanalysis datasets. One of our goals in this paper is
to demonstrate that stratospheric warming trends in SH high
latitudes have equal or greater magnitudes compared to cool-
ing trends in austral spring, by showing the spatial pattern of
temperature trends in individual months.

It is well known that polar stratospheric temperatures are
determined by radiative and dynamical processes (Andrews,
et al., 1987). The radiative effects of both ozone depletion
and increasing greenhouse gases cause cooling in the strato-
sphere. Stratospheric aerosols, especially volcanic aerosols,
absorb solar radiation and warm the stratosphere. However,
it does not cause a decadal warming trend and cannot ex-
plain the spatial pattern as shown below. Thus, it is likely
that the stratospheric warming in SH high latitudes is due to
increasing wave activity. Planetary waves generated in the
troposphere propagate upward and get into the stratosphere.
Breaking of these waves causes convergence of wave fluxes,
which acts as a driving force and causes poleward merid-
ional circulation in the extratropical stratosphere, with up-
ward motion in the tropics and downward motion in high
latitudes (Holton et al., 1995). Downward motion causes
adiabatic heating in the high-latitude or polar stratosphere
because air parcels are compressed by larger pressure as al-
titude decreases. Therefore, whether wave activity has been
increased in the past few decades has to be examined. In fact,
both the Antarctic polar vortex and planetary wave activity
in the SH stratosphere displayed very unusual dynamical be-
haviour in recent years. That is, the Antarctic stratospheric
polar vortex appears to be more frequently and largely dis-
turbed by planetary waves. For example, the unique sudden
warming event occurred in the Antarctic in 2002 (Varotsos,
2004; Kr̈uger et al., 2005, and articles in the same volume as
the second paper), the vortex was very weak in 2004 due to
strong wave activity, and the vortex broke down quite early
in 2000 though the ozone hole of that year was anomalously
large.

Our main goal in the present study is twofold. First, we
document strong stratospheric warming trends in SH high
latitudes using both satellite data and reanalysis, and exam-
ine whether the warming is caused by increasing wave activ-
ity in the SH stratosphere. Second, we explore whether the
stratospheric warming is related to global greenhouse warm-
ing by carrying out general circulation model (GCM) sim-
ulations. Satellite and reanalysis datasets as well as model
setup in this study are described in Sect. 2. In Sect. 3, we
present linear trends in stratospheric temperatures derived
from satellite and reanalysis data. We also examine the re-
lationship between the stratospheric warming and Eliassen-
Palm (EP) fluxes. In Sect. 4, we explore the impact of sea
surface temperatures (SSTs) on the SH stratospheric warm-
ing with GCM simulations. Discussion and conclusions are
presented in Sect. 5.

2 Data and model setup

To detect the Antarctic stratospheric temperature changes
in the past few decades, we carry out linear trend analy-
ses using two temperature datasets. The first dataset is 28-
year (1979–2006) monthly temperature anomalies, which are
departures from mean over the base period of 1979–1998,
from satellite-borne Microwave Sounding Unit (MSU) chan-
nel 4 (T4) observations (Mears et al., 2003; Johanson and Fu,
2006, 2007). MSU T4 measures microwave radiation emitted
from the stratospheric layer between about 20 and 120 hPa,
with a peak near 70 hPa (Mears et al., 2003). The second
dataset is 28-year (1979–2006) monthly temperatures from
the National Center for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) reanaly-
sis (Kalnay et al., 1996; Kistler et al., 2001). To cal-
culate Eliassen-Palm (EP) fluxes (Andrews et al., 1987),
we also use daily wind velocity and temperature data from
NCEP/NCAR reanalysis. Student’s t-test is used to test the
statistical significance of trends. We use the 90% significance
level (approximately corresponding to the t-test value of 1.7)
as the standard for a trend to be statistically significant.

The model used here is the GCM developed at the God-
dard Institute for Space Studies (GISS-modelE). The model
has horizontal resolution of 4 by 5 degrees in latitude and
longitude. It has 23 vertical layers from the surface up to
0.02 hPa (about 80 km above the ground) with gravity-wave
parameterizations for the stratosphere. A full description of
the model, its performance and comparison with observa-
tional results can be found in Schmidt et al. (2006). Five en-
semble members of simulations using different initial condi-
tions were performed over 1950–2002, forced with observed
time-varying sea surface temperatures (SST) (Rayner et al.,
2003). To isolate the impact of SST warming on the SH
stratosphere, ozone, greenhouse gas, and aerosol concentra-
tions are all fixed at the 1950 level. Solar variability is not
considered. Like most other GCMs, GISS-modelE is unable
to produce the quasi-biennial oscillation in the tropical strato-
sphere.

3 Trends in stratospheric temperatures and wave activ-
ity

Figure 1 shows the 28-year MSU T4 trends for SH high lat-
itudes in austral winter and spring months. Warming trends
occur in all these months. In June, July, and August, the
warming trends are weak and statistically not significant.
In September and October, the warming trends are strong
and statistically significant, with maximum warming of 7–
8◦C over the 28 years. In November, cooling trends are
dominant, while warming trends are relatively week and
not significant. The warming trends are not right over the
polar cap, but centered at about 65◦ S. The temperature
trends show a wavenumber-1 like spatial pattern (a secondary
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Figure1 

 

 

Fig. 1. Temperature trends in the lower stratosphere for 1979–2006 from satellite MSU channel 4 (T4) observations. T4 has a weighting
function between about 20 and 120 hPa and peaks at∼70 hPa). The trends are shown from June to November. Color interval is 1◦C per
28 years. Contours denote t-test values. For 28 years, student’s t-test values 1.7 and 2.5 correspond to 90% and 98% confidence levels,
respectively.

wavenumber-2 pattern can also be identified in September),
with eastward shifting in these months. The warming area
in September matches the climatological location of high
temperatures in the SH stratosphere in austral winter and
spring. The spatial pattern in October resembles minor sud-
den warmings in the Arctic stratosphere (Krüger et al., 2005).
It suggests a tendency of the polar vortex shifting off the po-
lar cap. The cooling trends, especially those in October and
November, are due to Antarctic ozone depletion, as pointed
out in many previous studies (Ramaswamy et al., 1996; Ran-
del and Wu, 1999; Solomon, 1999 among others). It is no-
ticed that the stratospheric sudden warming in 2002 has an
important contribution to the warming trends in September
and October (Varotsos, 2004; Krüger et al., 2005). However,
the maximum warming trends are still up to 5–6◦C even if
the 2002 warming is excluded, and the spatial trend pattern
remains the same (see Fig. 2).

From Fig. 1d, one can find that warming trends are dom-
inant over SH high latitudes, and that the magnitudes of
warming trends are much larger than that of cooling trends.
However, zonal average would largely reduce the warming
magnitude in September. For October (Fig. 1e), warming
trends take nearly half of the SH high-latitude area and have
almost equal magnitudes to that of cooling trends (the max-
imum warming is slightly weaker than the maximum cool-
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Fig. 2. Same as Fig. 1d and e, except for that year 2002 is excluded.

ing). Zonal average would lead to weak cooling trends in this
month (see Fig. 8 in Randel and Wu (1999), which showed
zonal-mean temperature trends over 1979–1997 using MSU
T4). Due to the strong cooling in November and mismatch
of locations of warming trends in September and October,
conventional seasonal average over the three months yields
a maximum warming of about 2.5◦C over the 28 years (see
Fig. 2 in Johanson and Fu, 2007).
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Fig. 3. 28-year (1979–2006) temperature trends for September (top) and October (bottom) at stratospheric levels, derived from NCEP/NCAR
reanalysis. Color interval is 1◦C per 28 years. Contours denote student’s t-test values.

For comparison, temperature trends at different strato-
spheric levels in SH are also calculated from NCEP/NCAR
reanalysis. It is found that the trends from NCEP/NCAR re-
analysis match satellite-inferred MSU T4 trends exception-
ally well in both spatial patterns and magnitudes in all winter
and spring months. To focus on strong warming trends, we
only show results for September and October in Fig. 3. For
both months, warming trends are found at all stratospheric
layers in the reanalysis data. The spatial patterns of warming
trends are similar at these levels. Warming magnitudes in-
crease with altitudes and reach the maximum value of about
11◦C at 30 hPa. At 70 hPa, the maximum warming for both
months is greater than 7◦C (see Fig. 3b and g). One can
find that the spatial patterns of warming trends tilt toward the
pole with increasing altitudes. In particular, more than half
of the polar region is dominated by warming trends in Oc-
tober. Again, the 2002 sudden warming does not affect the
results (results not shown).

Stratospheric warming in SH high latitudes are also re-
flected in changes of geopotential height because warming
at a layer must lead to an increase in geopotential height
aloft. To demonstrate this, we plot trends in geopotential
heights at stratospheric levels for September and October
(Fig. 4). The spatial patterns are similar to that of tem-
perature trends. Magnitudes of geopotential height trends
increase with altitudes. At 20 hPa, the maximum positive
trends for both months are greater than 600 m. The positive
trends in September are stronger than in October. The center

of positive trends also show tilting toward the pole as altitude
increases, similar to that of temperature trends.

It is likely that the stratospheric warming has direct link-
age with the warming in the Antarctic troposphere in winter
and spring, derived from both radiosonde data (Turner et al.,
2004) and MSU data (Johanson and Fu, 2007). The tropo-
spheric warming trends in austral spring, which are weaker
compared to the stratospheric warming, are also mainly over
the eastern side of the Antarctic continent (Johanson and Fu,
2007), consistent with the locations of stratospheric warming
trends. At current stage, we are unaware how the warming
trends are linked between the stratosphere and troposphere.

The stratospheric warming shown above cannot be ex-
plained by radiative effects of increasing greenhouse gases
and ozone depletion. It is because increasing greenhouse
gases in the atmosphere leads to surface and tropospheric
warming but stratospheric cooling. Ozone depletion during
the past few decades has also contributed to stratospheric
cooling, especially in the Antarctic lower stratosphere in
spring and summer.

It is well known that polar stratospheric temperatures are
also crucially determined by planetary-scale waves that are
generated in the troposphere (Andrews et al., 1987). As plan-
etary waves propagate upward into the stratosphere, breaking
of these waves drives a meridional residual circulation with
rising motion in the tropics, poleward flow at mid-latitudes,
and downward motion in polar regions (i.e., “Brewer-Dobson
circulation”). The polar stratospheric temperature is thus
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Fig. 4. Same as Fig. 3, except for trends in geopotential heights. Color interval is 100 geopotential meters per 28 years.

determined by a balance between radiative cooling and dy-
namic heating from induced vertical motion due to plane-
tary wave dissipation. Therefore, the observed stratospheric
warming is likely caused by increased wave activity from the
troposphere into the stratosphere. The remarkable agreement
of warming trends between MSU T4 and NCEP/NCAR re-
analysis allows us to use the reanalysis to examine decadal
changes in wave activity.

To show how changes in wave fluxes cause the strong
warming over the SH high-latitude stratosphere in Septem-
ber and October, we plot the 28-year trends in EP flux
vectors (arrows) and EP flux divergence (colors) averaged
over August-September-October (ASO) in Fig. 5, using
NCEP/NCAR reanalysis. We include EP fluxes in August
because wave fluxes in the previous month also contribute to
dynamical heating in the month considered (Hu and Tung,
2002). The direction of arrows represents the tendency
of wave propagation over 1979–2006. Arrows are gener-
ally upward between 50◦ S and 90◦ S, indicating enhanced
wave fluxes from the troposphere into the stratosphere. Ar-
rows from the upper troposphere to the stratosphere between
30◦ S–50◦ S are equatorward, suggesting enhanced equator-
ward wave propagation. EP flux divergence show negative
trends in the stratosphere and upper troposphere between
about 45◦ S and 70◦ S. The negative trends indicate enhanced
EP flux convergence in these regions. The significant en-
hancement of EP flux convergence in the stratosphere sug-
gests an intensified Brewer-Dobson circulation and thus en-
hanced dynamical heating in the polar stratosphere. On the

other hand, EP flux divergence shows strong positive trends
in the middle troposphere between about 30◦ S and 70◦ S.
The positive trends are indicative of increased wave activity
generation.

To quantitatively show increases of wave fluxes in the
stratosphere for August, September and October, respec-
tively, in Fig. 6 we plot the time series of total eddy-
heat fluxes at 30 hPa in middle and high latitudes for these
months. Here, eddy-heat flux is equivalent to the vertical
component of EP fluxes. For all three months, eddy-heat
fluxes show increases over the 28 years. For August and
September, the trends in eddy-heat fluxes are strong and sta-
tistically significant, with net increases of 48.4% and 42.1%,
respectively. For October, the trend is relatively weak and not
significant, with a net increase of 10%. Calculations of eddy-
heat fluxes are done for June and July. It shows very weak
increases of less than 10%. Similar results are also found at
other stratospheric levels.

Changes in eddy-heat fluxes have close correlation with
temperatures in the warming area. Figure 7a shows the time
series of eddy-heat fluxes at 30 hPa, averaged over August
and September (solid straight line). Superimposed on the
plot is the time series of MSU T4 temperature for Septem-
ber, averaged over the area within which warming trends are
larger than 6 K for the 28 years (dashed-line). The averaged
eddy-heat fluxes have significant positive trend, with a net
increase of 45%. Correlation coefficient between the two
is about 0.8. Note that heat flux in July is not included in
calculating the correlation coefficient because it has a very
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Figure 5 
Fig. 5. 28-year trends in EP fluxes and EP flux divergence averaged
over August-September-October and derived from NCEP/NCAR
reanalysis. Arrows, color shading, and dashed contours indicate
trends in EP flux vectors, EP flux divergence, and student’s t-test
values. To show the trends at higher levels, EP flux vectors are di-
vided by the background air density. The scale length of arrows,
1 cm, represents 1.0×108 m3 s−2 per 28 years. Because the vertical
component of EP fluxes is about two orders smaller than the hor-
izontal component, the vertical component is multiplied by 100 to
display changes in EP flux vectors in the vertical direction. Trends
in EP flux divergence are shown with a color interval of 20 m2 s−2

per 28 years, with blue colors for negative trends (enhanced EP flux
convergence) and yellow-red colors for positive trends (enhanced
EP flux divergence).

weak and insignificant trend. Figure 7b shows the time se-
ries of eddy-heat fluxes at 30 hPa, averaged over August-
September-October, and averaged MSU T4 temperature for
October. Over the three months, the averaged eddy-heat
fluxes also show a significant positive trend, with a net in-
crease of 30% over the 28 years. The correlation between
eddy-heat fluxes and temperature is about 0.4. Though the
correlation coefficient is much lower than that in Fig. 7a, its
statistical significance is above the 90% significance level.
The close correlation suggests that the observed stratospheric
warming is caused by wave-driven dynamical heating.

The much stronger warming in September and October
than in other months coincides with the seasonality of the
planetary wave activity in the SH stratosphere. From Fig. 6,
one can find that eddy-heat fluxes in September and Octo-
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Figure 6 

 

Fig. 6. Time series of total eddy-heat fluxes at 30 hPa, area-
weighted between 90◦ S and 40◦ S, for August(a), September(b)
and October(c), derived from NCEP/NCAR reanalysis. Solid line
is the time series of eddy-heat fluxes, and dashed-line denotes the
linear regression. Marked values are the net increases in eddy-heat
fluxes over the 28 years (percentages) and student’s t-test (t). In cal-
culating eddy-heat flux, we use potential temperature, rather than
temperature.

ber are much larger than that in August. The average values
of eddy-heat fluxes over the 28 years are about 400, 550,
and 600 K m/s for August, September, and October, respec-
tively. This is consistent with the results in previous observa-
tional results (Randel, 1988), which showed that the ampli-
tudes of wavenumber 1 and 2 reach the maxima in September
and October in the SH stratosphere. It is because the strong
polar night jet suppresses upward propagation of planetary
waves in winter months (e.g., June, July, and August) and
easterly winds in summer months tend to prevent upward
propagation of planetary waves. It suggests that enhanced
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Fig. 7. Time series of total eddy-heat fluxes at 30 hPa from
NCEP/NCAR reanalysis (solid line) and averaged temperatures in
the warming area enclosed by the contour of 6◦C per 28 years from
MSU T4 (dashed-line). In plot(a), eddy-heat fluxes are averaged
over August and September, and the averaged temperature is for
September. In plot(b), eddy-heat fluxes are averaged over August-
September-October, and the averaged temperature is for October.
In both plots, the dashed-dotted straight line is the linear regression
for eddy-heat fluxes. Values marked in the plots are the net increase
in eddy-heat fluxes over the 28 years (percentages), student’s t-test
values (in brackets), and correlation coefficients between tempera-
ture and eddy heat fluxes (r).

wave-driven adiabatic heating is more significant in the pe-
riod when planetary wave activity is strong. Though the in-
crease in wave fluxes in October is relatively weak, strong
increases in wave fluxes in September and August contribute
largely to the warming in October.

An important feature in Fig. 1 is the eastward shifting of
the warming trend pattern, especially the shifting between
September and October. One possible explanation is that the
shifting might be related to the increase in the wave activ-
ity of travelling planetary waves, which have nearly equal
amplitudes to that of stationary waves. To examine this, we
separate stratospheric eddy-heat fluxes into two parts: trav-
elling and stationary wave fluxes, following Randel (1988).
It is found that travelling wave fluxes have only a relatively
weak increase, less than 10% (figure not shown). This weak
increase can hardly explain the strong warming in October
and its eastward shifting. In a very recent work by Lin et
al. (2009), they showed that the eastward shifting of warm-
ing trend pattern between September and October is due to
a phase shift of climatological-mean center of high temper-
atures in the SH stratosphere in October in the past few
decades. They found that the effect of the phase shift can
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Fig. 8. Relationship between stratospheric warming and global SST
changes in September. Correlation coefficients between a base-
point temperature of MSU T4, averaged over the area enclosed by
the contour of 6◦C per 28 years, and global observed SST over
1979–2006. Color interval is 0.3. In calculating the correlation co-
efficients, a 3.5-year filter is used to remove high-frequency varia-
tions in both SST and MSU T4. For 28 years, correlation coefficient
of 0.3 approximately marks the 90% significance level.

account for 84% of the observed temperature trends in Octo-
ber. The reason that caused such a shift of the climatological-
mean spatial pattern of stratospheric temperatures remains an
open question.

Increasing wave fluxes in the middle and high-latitude
stratosphere would also cause more ozone to be transported
from low to high latitudes (Fusco and Salby, 1999; Fischer et
al., 2008). Because the polar night jet tends to block air trans-
port across the polar vortex edge, ozone-rich air is accumu-
lated outside the polar vortex. Thus, enhanced wave flux con-
vergence leads to more ozone accumulation outside the polar
vortex, which may also contribute to the observed warming
by absorbing more ultraviolet radiation. To examine this, we
calculate the trends in total ozone using the satellite Total
Ozone Mapping Spectrometer/Solar Backscatter Ultraviolet
observations. A weak ozone increase of∼5–6 Dobson Units
for 1979–2006 is found in the warming areas in September
and October (figure not shown), which is too small to explain
the observed warming radiatively.

4 Simulations with SST forcing

An important question is what causes the increased plan-
etary wave activity. Early studies suggested that changes
in SSTs might lead to changes in SH wave activity, which
consequently modulate SH atmospheric circulations (Hur-
rell and Loon, 1994). Recent studies on the 2002 Antarc-
tic major warming showed that strong wave activity origi-
nated from the tropical troposphere (Nishii and Nakamura,
2004). In modelling studies of SST influences on the North
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Figure 9 Fig. 9. Temperature trends at 70 hPa from GCM simulations. The trends are shown from June to November, derived from 5-ensemble
simulations. Color interval is 0.5◦C per 24 years. Contours denote t-test values.

Atlantic oscillation (NAO), Hoerling et al. (2001) pointed out
that the decadal trends of NAO are originated from tropical
SST warming. Studies by Hoerling et al. (2004) and Lau et
al. (2005, 2006) further suggested that tropical SST warm-
ing in the region of Indian and Western Pacific oceans plays
the major role in forcing extratropical tropospheric changes.
Therefore, a plausible mechanism responsible for the in-
creasing wave activity and the observed stratospheric warm-
ing is SST changes.

To verify the relationship between the stratospheric warm-
ing and SST changes, we first examine the correlation of the
MSU T4 in September, averaged over the warming area en-
closed by the contour of 6◦C per 28 years, with observed
global SST (Rayner et al., 2003) for 1979–2006. Figure 8a
shows the spatial distribution of correlation coefficients in
September. Significant correlations are found mainly over
the Tropical Indian Ocean and Western Pacific warm pool
regions, Southern and Northern Extratropical Pacific, and
Northern Subtropical Atlantic. Correlation between strato-
spheric temperatures in NCEP/NCAR reanalysis and SST
has nearly the same spatial pattern. All these areas show
relatively large SST warming trends (Lau et al., 2006). It
suggests that the stratospheric warming is largely related to
SST warming.

To examine whether the high-latitude stratospheric warm-
ing is a response to SST warming, we carry out GCM simu-
lations with prescribed SST and sea ice, using GISS-modelE.

Five ensemble members of simulations were performed over
1950–2002, forced with observed monthly time-varying SST
(Rayner et al., 2003). Ozone, well-mixed greenhouse gas
concentrations, and all other atmospheric compositions are
fixed at the 1950 level to isolate the impact of time-varying
SST. Figure 9 shows the trends in ensemble-mean monthly
temperatures from GCM simulations at 70 hPa for 1979–
2002. Warming trends are found over the Antarctic in all
winter and spring months, with strong warming in ASO.
The lack of stratospheric cooling in GCM simulations (as
compared with observations) is because ozone depletion and
increasing greenhouse gases are not included in the simu-
lations. The spatial distribution of simulated temperature
trends show a wavenumber-1 pattern, with eastward shift-
ing (A secondary wavenumber-2 pattern can also be seen
in Fig. 9). The locations of simulated maximum warming
trends in August and September match observations very
well, while that in October does not due to the lack of east-
ward shifting. The ensemble-mean maximum warming trend
occurs in September and October, which is about 3.5◦C over
1979–2002. In June, July, and November, the warming
trends are relatively weak, about 1.0◦C for the 24 years. It
appears that the seasonality of the simulated warming trends
is consistent with observations. Compared with MSU T4
trends (about 0.29◦C per decade), the simulated warming
trends are weaker (about 0.15◦C per decade), which is about
half in magnitudes. However, individual simulations show
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Figure 10 

 

Fig. 10.Same as Fig. 5, except for simulated EP flux trends over 24
years (1979–2002).

more realistic warming trends. For example, the maximum
warming can be as large as about 6◦C over the 24 years in
individual simulations. It is found that the reduction of the
warming in ensemble mean is largely because of the location
mismatch of maximum warming trends between individual
simulations.

To demonstrate whether the simulated stratospheric warm-
ing in SH high latitudes is related to increasing wave fluxes,
we show the trends in simulated EP flux vectors and EP flux
divergence (see Fig. 10). Similar to that in Fig. 5, the ar-
rows are generally upward at high latitudes in both the tropo-
sphere and the stratosphere, and the stratosphere and meso-
sphere all show enhanced convergence of EP fluxes (i.e., neg-
ative trends in EP flux divergence). These suggest that the
simulated stratospheric warming is indeed related to increas-
ing wave fluxes due to SST forcing. The differences from
Fig. 5 are: the length of the arrows in the stratosphere is
much shorter (note that both have the same scale length),
and the arrows in the middle and low-latitude upper tropo-
sphere are poleward, rather than equatorward. The former
suggests smaller increase in wave fluxes, which may explain
the weaker warming in simulations. The latter is indicative
of that increasing wave activity is originated from the tropics.

Figure 11 shows time series of simulated total eddy-heat
fluxes at 30 hPa and in middle and high latitudes for August,
September, and October. The positive trend for August is
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Fig. 11. Same as Fig. 6, except for simulated eddy-heat fluxes at
30 hPa.

strong and significant, with a net increase of 34.5% over 24
years, while the trends for September and October are rela-
tively weak and statistically not significant. The net increases
of eddy-heat fluxes are 7.8% and 13.6% for September and
October, respectively. Compared with that in Fig. 5, the sim-
ulated eddy-heat flux increases are much smaller. This again
explains why the simulated warming trends are weaker than
observations.

Figure 12a shows time series of averaged total eddy-heat
fluxes over August and September (solid line) and September
temperature at 70 hPa, averaged in the warming area. The
correlation coefficient between them is as high as 0.9. The
averaged increase of eddy-heat flux over the two months is
19%, about half of that in reanalysis. Figure 12b shows time
series of averaged total eddy-heat flux over ASO and Octo-
ber temperature at 70 hPa, averaged in the warming area. The
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Figure 12 Fig. 12. Same as Fig. 7, except for simulated eddy-heat fluxes and
temperatures. The averaged temperature is within the warming area
enclosed by the contour of 2.5◦C per 24 years.

correlation coefficient between them is high as well (about
0.8). Because simulations do not show eastward shift of
warming trends in October, the warming in October is mainly
caused by increasing wave activity, and it thus has a much
higher correlation compared to that in reanalysis.

5 Discussion and conclusions

We have shown that the SH high-latitude stratosphere has
been warming in winter and spring months since 1979. The
warming trends are particularly strong in September and Oc-
tober, and warming magnitude is equal to that of cooling
trends. Results from MSU T4 data show that the maxi-
mum warming in the two months is as large as 7–8◦C over
1979–2006. In NCEP/NCAR reanalysis, warming trends are
found at all stratospheric levels, and the maximum warming
is about 11◦C at 30 and 20 hPa. The spatial distributions of
temperature trends show a wavenumber-1 like pattern, shift-
ing eastward. In September and October, warming trends are
located over the eastern side of the Antarctic continent, and
warming centers tilts toward the pole as altitude increases.

The stratospheric warming is closely related to increasing
wave fluxes in the SH stratosphere. Our calculations show
significant increased EP fluxes and enhanced EP flux conver-
gence in the extratropical stratosphere. The enhancement of
EP flux convergence leads to intensified residual meridional
circulation and thus stronger downward motion in SH high
latitudes, which causes enhanced adiabatic heating. These

suggest that the warming is due to enhanced wave-driven
dynamical heating. Warming trends are also found in the
Arctic stratosphere in boreal early winter months (November
and December) (Hu et al., 2005). They showed that the Arc-
tic stratospheric warming is also closely related to increasing
wave fluxes in the Northern Hemisphere.

The close correlation between stratospheric temperatures
in the warming region and SST suggests that the stratospheric
warming is connected to SST warming. GCM simulations
forced by observed time-varying SST can reasonably repro-
duce the seasonality and spatial patterns of observed warm-
ing trends. The simulations also show increasing wave ac-
tivity in the stratosphere. Using different GCM simulation
datasets, Hu and Pan (2009) showed that the observed warm-
ing in the stratospheric Arctic in Hu et al. (2005) can also
be reproduced by SST forcing. The shortcoming of the sim-
ulations is that the magnitude of ensemble-mean warming
trends is about half of observations. The weaker warming is
consistent with the weaker increase in wave activity, which is
also about half of observations. Because SST warming is due
to increasing greenhouse gases (Knutson and Manabe, 1998;
IPCC, 2007), the SH high-latitude stratospheric warming is
an integral part of global greenhouse warming.

Previous studies suggested that tropical SST warming, es-
pecially SST warming over tropical Indian and western Pa-
cific oceans, plays a major role in forcing changes on atmo-
spheric waves and circulations in the extratropics through re-
mote atmospheric connections (Hoerling et al., 2001, 2004;
Lau et al., 2005, 2006). These works mainly focused on ex-
tratropical responses on tropical SST warming in the tropo-
sphere. Our simulation results indeed show increasing wave
fluxes originated from the tropospheric tropics (Fig. 10).
While our simulation result is consistent with the argument
in previous studies, it is different from EP flux vector trends
in reanalysis, which suggest a source of increasing wave ac-
tivity in the extratropical troposphere. How SST warming
causes increasing wave activity in both the extratropical tro-
posphere and stratosphere and how is the relative importance
of tropical SST warming need further investigations in fu-
ture simulation works. In addition, the ensemble-mean sim-
ulation results shown here are mainly for comparison with
observations. We plan to carry out detailed analyses on the
simulation results, including vertical structures of the sim-
ulated warming trends, inter-ensemble variability of trends,
and comparison with simulations forced by climatological
SSTs.

In the present study, we have only tested SST forcing
on wave activity and stratospheric warming in SH high lat-
itudes. Other external forcing, such as increasing green-
house gases and ozone depletion through their impact on
stratospheric cooling, solar variability, aerosols and others,
may also have important influences on increasing wave ac-
tivity through altering atmospheric thermal structures. It is
known that the increase of greenhouse gases is largely re-
sponsible for the warming trends in SST and its coupled
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tropospheric temperatures during the last three decades. Us-
ing a simple GCM, Eichelberger and Hartmann (2005) have
shown that increasing greenhouse gases alone can cause in-
creasing wave activity and an intensified Brewer-Dobson
circulation, implying stratospheric polar warming. They
found that the increase in wave activity is caused by sharper
temperature contrast between the tropics and extratropics,
with stronger warming in the upper tropical troposphere and
weaker warming in higher latitudes. The sharper temper-
ature contrast causes stronger baroclinic waves and conse-
quently leads to increasing activity in synoptic and planetary
waves. Butchart and Scaife (2001) and Butchart et al. (2006)
also showed intensification of the Brewer-Dobson circula-
tion in full atmospheric GCM simulations forced by both in-
creasing greenhouse gases and time-varying SSTs. However,
coupled atmosphere-ocean GCM simulations for the Inter-
governmental Panel on Climate Change Fourth Assessment
Report failed to reproduce the observed high-latitude strato-
spheric warming, as pointed out by Lin et al. (2009). In ad-
dition, El Nino and Southern Oscillation may also contribute
to the interannual variability of the observed temperatures,
which needs to be considered in future studies.

The observed strong stratospheric warming in September
and October may have important implications for ozone-hole
recovery because the Antarctic ozone hole mainly occurs in
those two months. It is well understood that extremely low
temperatures in Antarctic winter and spring are one of the
critical conditions for severe ozone depletion and the forma-
tion of the Antarctic ozone hole (Solomon, 1999). Low po-
lar temperatures lead to the formation of polar stratospheric
clouds (PSC), on which heterogeneous chemical reactions
involving man-made chlorine take place and result in rapid
ozone depletion. The cold conditions also cause the strong
Antarctic vortex that provides an isolated environment for
polar ozone depletion (McIntyre, 1989). As SST warming
continues as a consequence of increasing greenhouse gases,
stratospheric warming in SH high latitudes will also con-
tinue. Although the warming area is not right over the po-
lar cap, the warming may reduce PSC formation in part of
the Antarctic polar region, which slows down heterogeneous
chemical reaction rates. Consequently, the warming would
cause reduction of the severity and duration of the Antarctic
ozone hole. Moreover, the associated increasing wave ac-
tivity in the SH stratosphere would also cause the Antarctic
polar vortex weakened and more ozone transported into the
polar region from low latitudes. These will all benefit the re-
covery of the Antarctic ozone hole, in addition to the decline
of ozone depleting substances (Weatherhead and Andersen,
2006; WMO, 2007).
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