CEPC and MC Simulation H \rightarrow *ee*, $\mu\mu$

Qiang Li

Based on arXiv:1705.04486, 1711.06807, and 1804.00125

- CEPC
- CEPC Samples
- ISR and Beamstrahlung
- Whizard
- ISR within MadGraph
- $\mathbf{H} \rightarrow ee$
- $H \rightarrow \mu\mu$
- Outlook

- Circular electron-positron collider
- 240-250 GeV
- 10 years Luminosity: 5 ab-1

Pre-CDR

Improved recently by <u>Dan Yu</u>et.al. with MVA technique

Tracker resolution verified in Delphes by Chen Cheng et.al.

Background part

Signal part

- 2 fermions
- 4 fermions

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \rightarrow \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \rightarrow \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$	Hacker	$\oplus 1 \times 10^{-3}/(p_T \sin \theta)$
$H \rightarrow b\overline{b}, c\overline{c}, gg$	$BR(H \rightarrow b\overline{b}, c\overline{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \ \mu m$
$H \rightarrow q\bar{q}, VV$	${ m BR}(H o q \bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{\rm jet}/E \sim 3 - 4\%$
$H \rightarrow \gamma \gamma$	${ m BR}(H o \gamma \gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%$ (GeV)

Released November 2018

HEP-CEPC-DR-2018-02 IHEP-EP-2018-01 IHEP-TH-2018-01

CEPC Conceptual Design Report

Volume II - Physics & Detector

http://cepc.ihep.ac.cn/

The CEPC Study Group October 2018

405 pages

CEPC CDR, Vol. 2 — Physics and Detector

- ➡ Executive Summary
- 1. Introduction
- 2. Overview of the Physics Case for CEPC
- 3. Experimental Conditions, Physics Requirements and

Detector Concepts

- 4. Tracking System
- 5. Calorimetry
- 6. Detector Magnet System
- 7. Muon Detector System
- 8. Readout Electronics, Trigger and Data Acquisition
- 9, Machine Detector Interface and Luminosity Detectors
- 10. Simulation, Reconstruction and Physics Object

Performance

- **11. Physics Performance with Benchmark Processes**
- 12. Future Plans and R&D Prospects
- 13. Summary
- Glossary
- Author List

Joao. Costa

CEPC: EWK Precision

Including detector performance

Assumes: 2-year run at Z-pole and 1-year run at WW threshold

W Mass from Threshold Scan

Similar to LEP technique Use 3 √s points: 157.5, 161.5 and 162.5 GeV

Beam energy spread: 0.13-0.1% E_{CM} uncertainty: 0.5 MeV

 $L = 2.6 \text{ ab}^{-1} \rightarrow \Delta M_W \sim 1 \text{ MeV}$

Working on publication together with FCC-ee (Paolo Azzurri)

Today 2 pm Session

CEPC Detector

CEPC CDR: Particle Flow Conceptual Detector

Major concerns being addressed

- 1. MDI region highly constrained L* = 2.2 m Compensating magnets
- 2. Low-material Inner Tracker design
- 3. TPC as tracker in high-luminosity Z-pole scenario
 - 4. ECAL/HCAL granularity needs Passive versus active cooling Electromagnetic resolution

Magnetic Field: 3 Tesla

CEPC Software

Simulation Software

Based on standard tools

Root data format DD4hep Geant4

New hit-based Fast Simulation

FATRAS (Fast ATLAS TRAck Simulation) Reconstruction Software Considering new tracking tool

> ACTS (A Common Tracking Software)

Porting of PFA tools: Pandora and Arbor

Developing other algorithms: vertex, long-lived charged particles, particle identification in jets

CEPC Software

CEPC timeline

Higgs Signal

e⁻

 ν_e

e

Xin Mo et.al

Background

Classification of 4 fermions

Cross sections [fb]

	240GeV	250GeV
qq	54662	50216
μ⁺μ⁻	4685	4405
single Z	4538	4734
single W	5086	5144
W^+W^-	16004	15484
ZZ	1079	1033
ZH	203	212
W fusion	5.36	6.72
Z fusion	0.50	0.63

Process	Cross section	Nevents in 5 ab ⁻¹
Higgs bo	son production, cross se	ection in fb
$e^+e^- \rightarrow ZH$	212	1.06×10^6
$e^+e^- \rightarrow \nu \bar{\nu} H$	6.72	$3.36 imes 10^4$
$e^+e^- \rightarrow e^+e^-H$	0.63	$3.15 imes 10^3$
Total	219	$1.10 imes 10^6$

Background	processes,	cross	section	in	pb	
------------	------------	-------	---------	----	----	--

$e^+e^- \rightarrow e^+e^-$ (Bhabha)	25.1	$1.3 imes 10^8$
$e^+e^- \rightarrow qq$	50.2	$2.5 imes 10^8$
$e^+e^- \rightarrow \mu\mu$ (or $\tau\tau$)	4.40	$2.2 imes 10^7$
$e^+e^- \rightarrow WW$	15.4	$7.7 imes 10^7$
$e^+e^- \rightarrow ZZ$	1.03	$5.2 imes 10^6$
$e^+e^- \rightarrow eeZ$	4.73	$2.4 imes10^7$
$e^+e^- \rightarrow e\nu W$	5.14	2.6×10^7

The Bhabha process

- Leading background
- Measurements for luminosity

Cut	σ [fb]	Error [fb]
10GeV	2705545	O(10 ⁴)
5GeV	11062568	O(10 ⁴)
1GeV	276518660	O(10 ⁶)
0.5GeV	1077946300	O(10 ⁷)

The WHIZARD Event Generator

The Generator of Monte Carlo Event Generators for Tevatron, LHC, ILC, CLIC, CEPC, FCC-ee, FCC-hh, SppC and other High Energy Physics Experiments

W,HIggs,Z And Respective Decays

Structured Beams

Hadron Colliders structured beams

- LHAPDF interface
- CERN-/PDFLIB support no longer available
- Most prominent PDFs directly included
- ISR and FSR (two different own implementations, interface to PYTHIA) (cf. Talk S. Schmidt)
- Matching matrix elements/showers (MLM) (cf. Talk S. Schmidt)
- Underlying event/multiple interactions (cf. Talk H. Boschmann)

Lepton Colliders structured beams

- ISR (implemented: Skrzypek/Jadach, Kuraev/Fadin, incl. *p*_T distributions)
- arbitrarily polarized beams (density matrices)
- Beamstrahlung (CIRCE module)
- Photon collider spectra (CIRCE2 module)
- external beam spectra can be read in (files/generating code)
- FSR (e.g. YFS) not (yet) implemented (charged mesons/hadrons)
- Hadronic events/hadronic decays
 - through PYTHIA interface (or HERWIG or Sherpa)

Beamstrahlung

Generator of Unwanted Interactions for Numerical Experiment Analysis Program Interfaced to GEANT

Macroscopic em interactions. One bunch bent by the field of the other bunch. There will be special kind of synchrotron radiation

At CEPC, this effect is small

	ISR [fb]	ISR & Beamstrahlung [fb]
$\sigma(e^+e^- \to ZH)$	212	211
$\sigma(e^+e^-\!\rightarrow\!\nu\bar{\nu}H)$	6.72	6.72
$\sigma(e^+e^- \!\rightarrow\! e^+e^-H)$	0.63	0.63
$\sigma(e^+e^-\!\rightarrow\!q\bar{q})$	50216	50416
$\sigma(e^+e^- \to W^+W^-)$	15484	15440
$\sigma(e^+e^-\!\rightarrow\! ZZ)$	1033	1030

Qinglei Xiu, Hongbo Zhu, Xinchou Lou

Xin Mo, Gang Li, Manqi Ruan, Xinchou Lou

Whizard cepc

Parameters	Symbol	LEP2	CEPC	ILC250	ILC500
Center of mass energy	E_{cm} [GeV]	209	240	250	500
Bunch population	$N \; [\times 10^{10}]$	58	37.1	2	2
Horizontal beam size at IP	$\sigma_x \; [\mathrm{nm}]$	270000	73700	729	474
Vertical beam size at IP	$\sigma_y \; [\mathrm{nm}]$	35 0 0	160	7.7	5.9
Bunch length	$\sigma_z \; [\mu \mathrm{m}]$	16000	2260	300	300
Horizontal beta function at IP	$\beta_x \; [\mathrm{mm}]$	1500	800	13	11
Vertical beta function at IP	$\beta_y \; [\mathrm{mm}]$	50	1.2	0.41	0.48
Normalized horizontal emittance at IP	$\gamma \epsilon_x \; [\mathrm{mm} \cdot \mathrm{mrad}]$	9.81	1594.5	10	10
Normalized vertical emittance at IP	$\gamma \epsilon_y \; [\mathrm{mm} \cdot \mathrm{mrad}]$	0.051	4.79	0.035	0.035
Luminosity	$L \left[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1} \right]$	0.013	1.8	0.75	1.8
Beamstrahlung parameter	Υ_{av} [×10 ⁻⁴]	0.25	4.7	200	620

Qinglei Xiu, Hongbo Zhu, Xinchou Lou

The beamstrahlung is usually characterised by the beamstrahlung parameter Υ :

$$\Upsilon = \frac{2}{3} \frac{h\omega_c}{E}$$

where $\omega_c = \frac{3}{2}\gamma^3 c/\rho$ denotes the critical energy of synchrotron radiation, ρ the bending radius of the particle trajectory and E the beam particle energy before radiation. The higher the Υ , the more beamstrahlung photons with higher energies will be emitted. Assuming Gaussian charge distributions for the colliding beams, the average Υ can be estimated with the following formula:

$$\Upsilon_{av} \approx \frac{5}{6} \frac{N r_e^2 \gamma}{\alpha (\sigma_x + \sigma_y) \sigma_z}$$

where r_e is the classical electron radius, γ the Lorentz factor of the beam particles, α the fine structure constant, σ_x/σ_y the transverse size of the bunch and σ_z the bunch length.

The beam-beam interactions have been simulated with Guinea-Pig++ (Generator of Unwanted Interac-tions for Numerical Experiment Analysis Program Interfaced to GEANT), which allows detailed studies of the emission of the beamstrahlung photons, the incoherent pair production and the hadronic events

Initial State Radiation

lepton-collider processes are strongly affected by electromagnetic initial-state radiation (ISR).

WHIZARD implements ISR in a <u>standard structure</u> function formalism that **resum the corrections from infrared (leading) and collinear (3rd order)** radiation and implements them in kinematics and dynamics, if requested.

-x

$$\begin{aligned} f_0(x) &= \epsilon (1-x)^{-1+\epsilon} \\ f_1(x) &= g_1(\epsilon) f_0(x) - \frac{\epsilon}{2} (1+x) \\ f_2(x) &= g_2(\epsilon) f_0(x) - \frac{\epsilon}{2} (1+x) \\ &- \frac{\epsilon^2}{8} \left(\frac{1+3x^2}{1-x} \ln x + 4(1+x) \ln(1-x) + 5 + x \right) \\ f_3(x) &= g_3(\epsilon) f_0(x) - \frac{\epsilon}{2} (1+x) \\ &- \frac{\epsilon^2}{8} \left(\frac{1+3x^2}{1-x} \ln x + 4(1+x) \ln(1-x) + 5 + x \right) \\ &- \frac{\epsilon^3}{48} \left((1+x) \left[6 \operatorname{Li}_2(x) + 12 \ln^2(1-x) - 3\pi^2 \right] + 6(x+5) \ln(1-x) \\ &+ \frac{1}{1-x} \left[\frac{3}{2} (1+8x+3x^2) \ln x + 12(1+x^2) \ln x \ln(1-x) \\ &- \frac{1}{2} (1+7x^2) \ln^2 x + \frac{1}{4} (39-24x-15x^2) \right] \right) \\ g(\epsilon) &= \frac{\exp\left(\epsilon(-\gamma_E + \frac{3}{4})\right)}{\Gamma(1+\epsilon)} \end{aligned}$$

Parameter	Default	Meaning
isr_alpha	0/intrinsic	value of α_{QED} for ISR
isr_order	3	max. order of hard-collinear photon emission
isr_mass	0/intrinsic	mass of the radiating lepton
isr_q_max	$0/\sqrt{s}$	upper cutoff for ISR
?isr_recoil	false	flag to switch on recoil/ p_T
?isr_keep_energy	false	recoil flag to conserve energy in splitting

$$x = 1 - (1 - x')^{1/\epsilon}$$

MC Mapping to avoid inefficiency See more in Sec.15.6 in Whizard Manual

Initial State Radiation

./bin/whizard zh.sin

```
process proc = "e+", "e-" => "Z", "H"
compile
sqrts = 250 GeV
beams = "e+", "e-" => isr
integrate(proc)
simulate (proc) {
n_events = 2000
$sample = "my_events"
sample_format = lhef
```

<pre>Initializing integration for process proc: Beam structure: e+, e- Beam data (collision): e+ (mass = 5.1099700E-04 GeV) e- (mass = 5.1099700E-04 GeV) sqrts = 2.50000000000E+02 GeV</pre>	<pre>Initializing integration for process proc: Beam structure: e+, e- => isr Beam data (collision): e+ (mass = 5.1099700E-04 GeV) e- (mass = 5.1099700E-04 GeV) sqrts = 2.50000000000E+02 GeV</pre>
<pre>Process [scattering]: 'proc' Library name = 'default_lib' Process index = 1 Process components: 1: 'proc_i1': e+, e- => Z, H [omega]</pre>	<pre>Process [scattering]: 'proc' Library name = 'default_lib' Process index = 1 Process components: 1: 'proc_i1': e+, e- => Z, H [omega]</pre>
It Calls Integral[TD] Error[TD] Err[%] ACC Eff[%]	It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%]
VAMP: parameter mismatch, discarding grid file 'proc_m1.vg' 1 800 2.4007857E+02 5.62E-02 0.02 0.01* 93.68 2 800 2.4016919E+02 4.74E-02 0.02 0.01* 50.86 3 800 2.4018463E+02 4.98E-02 0.02 0.01 65.36 3 2400 2.4014992E+02 2.93E-02 0.01 0.01 65.36	VAMP: using grids and results from file 'proc_m1.vg' 1 1000 2.1561167E+02 3.04E+00 1.41 0.45* 45.91 2 1000 2.1558059E+02 1.98E+00 0.92 0.29* 27.42 3 1000 2.1076954E+02 1.59E+00 0.75 0.24* 51.51
4 9984 2.4015210E+02 4.29E-03 0.00 0.00* 65.35 5 9984 2.4015829E+02 4.29E-03 0.00 0.00* 65.35	3 3000 2.1306671E+02 1.15E+00 0.54 0.29 51.51
6 9984 2.4015343E+02 4.24E-03 0.00 0.00* 65.35	<pre>VAMP: using grids and results from file 'proc_m1.vg' 4 10000 2.1186554E+02 5.10E-01 0.24 0.24 49.07</pre>
6 29952 2.4015462E+02 2.46E-03 0.00 0.00 65.35	5 10000 2.1033709E+02 5.27E-01 0.25 0.25 48.71 6 10000 2.1245617E+02 4.96E-01 0.23 0.23* 45.38

No ISR: ~240fb

With ISR: ~212fb

MadGraph for CEPC

User friendly

High precision simulation

Advanced for pp colliders

Note: stdhep package should be adjusted to match CEPC framework

MadGraph for CEPC

c/

С

С

Effective Photon approximation Source/PDF/PhotonFlux.f

Improving the Weizsäcker-Williams Approximation in **Electron-Proton Collisions** hep-ph/9310350

$$f_{\gamma}^{(e)}(y) = \frac{\alpha_{em}}{2\pi} \left[2m_e^2 y \left(\frac{1}{q_{max}^2} - \frac{1}{q_{min}^2} \right) + \frac{1 + (1 - y)^2}{y} \log \frac{q_{min}^2}{q_{max}^2} \right]$$
If Naïvely starting from here, and change y to 1-x.

-> Large instability! Singular when x -> 1

$$f_e(x)dx = \frac{\alpha}{2\pi} \left[\frac{1+x^2}{1-x}\right] \log \frac{Q}{m_e} dx$$

arXiv:1002.0204

PhotonFlux.f × Equivalent photon approximation structure function. c/* * */ Improved Weizsaecker-Williams formula c/* * */ c/* V.M.Budnev et al., Phys.Rep. 15C (1975) 181 * */ c/* provided by Tomasz Pierzchala - UCL real*8 function epa_electron(x,q2max) integer i real*8 x,phi f real*8 xin real*8 alpha real*8 f, g2min,g2max real*8 PI data PI/3.14159265358979323846/ data xin/0.511d-3/ !electron mass in GeV alpha = .0072992701 // x = omega/E = (E-E')/Eif (x.lt.1) then q2min= xin*xin*x*x/(1-x) if(q2min.lt.q2max) then f 🗧 alpha/2d0/PI* (2d0*xin*xin*x*(-1/q2min+1/q2max)+ & (2-2d0*x+x*x)/x*dlog(q2max/q2min)) & else f = 0. endif else f= 0. endif write (*,*) x,dsqrt(q2min),dsqrt(q2max),f **if** (f .lt. 0) f = 0 epa_electron= f end

MadGraph for CEPC

Singular when x -> 1, -> ISR structure function as in Whizard

15.6.1 Physics V

Whizard Manual

The ISR structure function is in the most crude approximation (LLA without α corrections, i.e. ϵ^{0})

$$f_0(x) = \epsilon (1-x)^{-1+\epsilon}$$
 with $\epsilon = \frac{\alpha}{\pi} q_e^2 \ln \frac{s}{m^2}$, (15.27)

Including ϵ , ϵ^2 , and ϵ^3 corrections, the successive approximation of the ISR structure function read

$$f_0(x) = \epsilon (1-x)^{-1+\epsilon}$$
 (15.33)

$$f_1(x) = g_1(\epsilon) f_0(x) - \frac{\epsilon}{2}(1+x)$$
(15.34)

$$f_2(x) = g_2(\epsilon) f_0(x) - \frac{\epsilon}{2}(1+x) - \frac{\epsilon^2}{8} \left(\frac{1+3x^2}{1-x} \ln x + 4(1+x) \ln(1-x) + 5 + x \right)$$
(15.35)

$$\begin{aligned} f_3(x) &= g_3(\epsilon) f_0(x) - \frac{\epsilon}{2}(1+x) \\ &- \frac{\epsilon^2}{8} \left(\frac{1+3x^2}{1-x} \ln x + 4(1+x) \ln(1-x) + 5 + x \right) \\ &- \frac{\epsilon^3}{48} \left((1+x) \left[6\operatorname{Li}_2(x) + 12 \ln^2(1-x) - 3\pi^2 \right] + 6(x+5) \ln(1-x) \right. \\ &+ \frac{1}{1-x} \left[\frac{3}{2}(1+8x+3x^2) \ln x + 12(1+x^2) \ln x \ln(1-x) \right. \\ &\left. - \frac{1}{2}(1+7x^2) \ln^2 x + \frac{1}{4}(39-24x-15x^2) \right] \right) \end{aligned}$$
(15.36)

e⁺ e⁻ → W⁺ W⁻ @250GeV CEPC

-> Improved by MC mapping, should adjust the phase space generating code

LICENSE	Create LICENSE	a year ago
README.md	Update README.md	6 months ago
initpy	for mg262	6 months ago
🗎 genps.f	Update genps.f	6 months ago
Dpdg2pdf.f	for mg262	6 months ago
🗎 reweight.f	for mg262	6 months ago

A plugin for MGV26 to include Initial State Radiation

Put it under MG/Plugin.

After generating a process, output to a directory:

output EE_ISR YourDirectory

The only difference from nominal way is "EE_ISR" added above

Note: Master branch is being developed; Branch mg262 is frozen and can work with MG262

Similar checks have also been done for other processes including $e^+e^- \rightarrow W^+W^-$, W^+W^-Z

Non-Standard Higgs

CMS Run1: 95% CL upper limit as 0.19% <u>FCC-ee:</u> resonant s-channel can be sensitive to around 2 times SM prediction, but depends much on beam energy control

Signal Samples from MG; Bkg samples from CEPC official productions

$H \rightarrow ee$

Distributions of $p_{\text{Te}^+e^-}$, $p_{\text{Ze}^+e^-}$, $M_{e^+e^-}$ and M_{recoil} for signals and backgrounds.

Category	signal	2ferr	mions	single ZorW	single Z	single W
total	50000	4181	94802	1259165	7913405	17190655
$N_{e^+} \ge 1, N_{e^-} \ge 1$	47418	3682	22471	978594	3480494	2260761
$120 \text{ GeV} < M_{e^+e^-} < 130 \text{ GeV}$	34463	1954	192	71193	126094	151950
$90 \text{ GeV} < M_{recoil} < 93 \text{ GeV}$	12362	6108	39	3564	6954	7255
$46 \text{ GeV} < p_{\text{Te^+e^-}} < 63 \text{ GeV}$	8582	6816	;	1863	1861	3652
$-42 \text{ GeV} < p_{\text{Ze}^+e^-} < 41 \text{ GeV}$	8511	6372	2	1783	1750	3468
$\Delta \phi < 166^{\circ}$	7404	5131	-	1696	1651	3233
$\cos_{e^+} \ge -0.07, \cos_{e^-} \le 0.14$	3564	241		86	48	161
Category	WW		ZZ	WWorZZ	total back	ground
total	491157	769	4967152	21902983	520543931	
$N_{e^+} \ge 1, N_{e^-} \ge 1$	640839	9	758732	814608	45756499	
$120 \text{ GeV} < M_{e^+e^-} < 130 \text{ GeV}$	26731		7593	55196	2392949	
$90 \text{ GeV} < M_{recoil} < 93 \text{ GeV}$	1783		1464	2434	84543	
$46 \text{ GeV} < p_{\text{Te}^+e^-} < 63 \text{ GeV}$	868		682	1297	17039	
$-42 \text{ GeV} < p_{\text{Ze}^+e^-} < 41 \text{ GeV}$	837		647	1247	16104	
$\Delta \phi > 166^{\circ}$	702		566	1182	14161	
$\cos_{e^+} \ge -0.07, \cos_{e^-} \le 0.14$	20		178	70	804	

Signal Efficiency: 10.4% wo ISR; 7.1% w ISR

The invariant mass spectrum of e +e – in the inclusive analysis. The dots with error bars represent data from CEPC simulation. The solid (blue) line indicates the fit. The dashed (red) shows the signal (assuming B(H – \rightarrow e +e –)=0.024%) and the long-dashed (green) line is the background.

ТТ					
п	Detector	Signal	luminosity(fb ⁻¹)	\sqrt{s} (TeV)	Significance or Precision
\rightarrow	ILC	vvH	500	1	2.75
	arXiv:1603.04718 arXiv:0911.0006	qqH	250	0.25	1.1
μμ		vvH	250	0.25	1.8

ATL-PHYS-PUB-2013-014 CMS NOTE-13-002

		µ-hat error			
	ℒ(fb⁻¹)	Scenario I	Scenario 2		
ATLAS	300	± 0.39	± 0.38		
CMS	300	± 0.42	± 0.40		
ATLAS	3000	± 0.16	± 0.12		
CMS	3000	± 0.20	± 0.14		

ATLAS scenarios: 1- full sys 2- no theory sys CMS scenarios: 1- run-1 sys 2- reduced sys

The observed (expected) upper limit is 2.8(2.9) times the Standard Model prediction. ATLAS-CONF-2017-14

Inclusive analysis

 Cut-based 	Category	signal	ZZ	WW	ZZorWW	SingleZ	2f
	Preselection	207.3	311312	129869	501590	63658	1740371
	120 <dium<130< td=""><td>189.7</td><td>5479</td><td>17126</td><td>57405</td><td>1868</td><td>52525</td></dium<130<>	189.7	5479	17126	57405	1868	52525
	90.8 <recoilu<93.4< td=""><td>118.4</td><td>1207</td><td>868</td><td>2115</td><td>164</td><td>1157</td></recoilu<93.4<>	118.4	1207	868	2115	164	1157
	25 <diupt<62.4< td=""><td>109.5</td><td>951</td><td>697</td><td>1675</td><td>121</td><td>439</td></diupt<62.4<>	109.5	951	697	1675	121	439
	-55.2 <diupz<55.2< td=""><td>107.1</td><td>897</td><td>647</td><td>1613</td><td>112</td><td>391</td></diupz<55.2<>	107.1	897	647	1613	112	391
	cosum<0.28	69.7	480	55	277	55	164
	cosup>-0.28	58.3	348	29	142	44	116
	puu>-0.996	58.0	346	27	142	43	70
	efficiency	28.0%					

• MVA(BDTG) :muon momentum and angles

•ZqqHuu analysis

Cut-bacad							
Cut-based	Category	signal	ZZ	WW	ZZorWW	SingleZ	2f
	Preselection	207.3	390775	183751	463361	101164	0
	120 <invariant mass<130<="" td=""><td>141.6</td><td>3786</td><td>181</td><td>227</td><td>244</td><td>0</td></invariant>	141.6	3786	181	227	244	0
	jet1m<4.2 jet2m<2.8	133.0	3216	111	0	9	0
	dijm>76.0	127.5	2917	2	0	8	0
	90.9 <recoilu<93.5< td=""><td>78.7</td><td>893</td><td>0</td><td>0</td><td>0</td><td>0</td></recoilu<93.5<>	78.7	893	0	0	0	0
	20 <diupt<62.3< td=""><td>74.9</td><td>743</td><td>0</td><td>0</td><td>0</td><td>0</td></diupt<62.3<>	74.9	743	0	0	0	0
	-58 <diupz<58< td=""><td>74.2</td><td>714</td><td>0</td><td>0</td><td>0</td><td>0</td></diupz<58<>	74.2	714	0	0	0	0
	cosup>-0.94	73.0	691	0	0	0	0
	cosum<0.94	71.6	665	0	0	0	0
	efficiency	50.6%					

TMVA step1 (MLP): jet1m,jet2m,dijm,recoil

Significance (o)					
	Inclusive	$\mathbf{Z} ightarrow \mathbf{q} \mathbf{q}$	$Z \rightarrow vv$		
MVA	7.37	8.17	2.62		
Cut	7.67	8.12	1.91		

Together with optimization results on tracker size and magnetic field in CDR

 $1.04\substack{+0.13\\-0.13}$

Improved from +-17% in pre-CDR

The HL-LHC project started as an international endeavour involving 29 institutes from 13 countries. It began in November 2011 and two years later was identified as one of the main priorities of the European Strategy for Particle Physics, before the project **was formally approved by the CERN Council in June 2016**.

'The High-Luminosity LHC will extend the LHC's reach beyond its initial mission, bringing new opportunities for discovery, measuring the properties of particles such as the Higgs boson with greater precision, and exploring the fundamental constituents of the universe ever more profoundly,' said CERN Director-General Fabiola Gianotti.

Feasibility & Optimized Parameters

Feasibility analysis: TPC and Passive Cooling Calorimeter is valid for CEPC

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.