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Abstract

Using ab initio molecular dynamics simulation, we investigate the supercritical phenomenon
associated with the liquid-liquid phase transition of hydrogen by studying the isothermal response
functions, such as electric conductivity, molecular dissociation coefficient and isothermal compressi-
bility, with respect to pressure. We find that, along each isotherm in the supercritical region, each of
these response functions shows a maximum, the location of which is different for different response
functions. As temperature decreases, the loci of these maxima asymptotically converge to aline of zero
ordering field, known as the Widom line along which the magnitude of the response function maxima
becomes larger and larger until it diverges as the critical point is approached. Thus, our study provides
apossible way to locate the liquid-liquid critical point of hydrogen from the supercritical region at
lower pressures. It also indicates that the supercritical phonomenon near the critical point of hydrogen
is arather general feature of second-order phase transition, it is not only true for classical systems with
weak interactions but also true for highly condensed system with strong inter-atomic interactions.

Most substances have only one liquid state. Recent studies indicate that a category of substances with anomalous
properties, such as water [1], phosphorus [2], and silicon [3], have two liquid states, alow density liquid and a
high density liquid. The liquid-liquid phase transition (LLPT) between two liquids and its terminal point—the
liquid-liquid critical point (LLCP)—are considered as the origin of different anomalies, such as density anomaly
and negatively sloped melting curve, thus have been attracting extensive attentions [4—12]. In these systems, the
LLPT and the LLCP are typically buried in deep supercooled region which is difficult to detect in experiment due
to crystallization. Recent studies showed that the Widom line, defined as the line of zero ordering field, can be
used to trace the LLCP from the supercritical region [7, 11, 13]. This is because the response functions display
maxima in the one-phase region, and converge to a single line—the Widom line in the vicinity of the critical
point at which all response functions diverge [14].

High pressure hydrogen, which plays a prominent role in planetary science and condensed matter physics, is
another example of materials showing indication of LLPT from atomic hydrogen to molecular hydrogen upon
cooling along constant pressure [ 15-18]. According to previous studies [19, 20], the LLCP, if exists, locates at
rather high pressure which is difficult to detect experimentally. The question of specific interest here is whether
the liquid-liquid critical phenomenon of matters that are highly condensed and have strong inter-atomic
interactions can be investigated by tracing the Widom line in supercritical region proposed in classical systems
[7, 8]. Particularly, whether the phenomenon ofliquid hydrogen, e.g., continuous and discontinuous
metallization and dissociation at different phase regions, can be rationalized in terms of the critical and
supercritical phenomenon of a second-order critical point.

Using ab initio Born—Oppenheimer molecular dynamics (BOMD), we explore the supercritical region of the
LLPT in high pressure hydrogen. We investigate the response functions, e.g., isothermal compressibility «r,
response functions of the direct current (DC) electric conductivity 6 and molecular dissociation coefficient f,
with respect to pressure in the supercritical region. We find that these response functions show maxima upon

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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compression along constant temperature, with the maximum for different response functions located at
different pressures. As temperature decreases, the loci of these maxima asymptotically approach one another
and converge to a single line, resembling the Widom line in the vicinity of the LLCP observed in classical systems
[7, 14] below which all response functions diverge. This indicates that the supercritical phonomenon in the
vicinity of a LLCP is a rather general feature of second-order phase transition, it is not only true for classical
systems with weak interactions but also true for highly condensed systems with strong inter-atomic interactions.
In particular, we find that the different phenomenon of hydrogen at high temperatures, e.g., molecular
dissociation and continuously metallic transition, are associated with supercritical phenomenon in the vicinity
of a LLCP. Meanwhile, it also provides a possible method to experimentally locate the LLCP of hydrogen by
tracing the terminal point of the Widom line in supercritical region.

Employing density-functional theory (DFT) and using the Vienna ab initio simulation package [21, 22], we
perform ‘Born—Oppenheimer-type’ molecular dynamics (MD) simulations on a supercell containing 250
atoms. A (2 X 2 X 2) Monkhorst—Pack grid is employed for the Brillouin zone integration. Its convergence has
been checked using (3 X 3 X 3)and (4 X 4 X 4) grids. Other technical details include: (1) PAW
pseudopotentials and an energy cutoff of 500 eV for the expansion of the electronic wave functions, and (2) a
0.5 fs time step employed along with 10 000 steps (5 ps) for each MD simulation. NVT-ensemble with Nosé—
Hoover chain is employed in our simulation [23].

Figure 1(a) shows the equation of state of hydrogen based on BOMD simulations for temperature varying
from T'=2000 to 2500 K. Along isotherms, volume V' shows a discontinuous drop at temperatures lower than
2300 K, an indication of the first-order LLPT of hydrogen. For temperatures higher than 2300 K, Visa
continuous function of P, indicative of a continuous transition in this region. These are consistent with the
simulation results reported in [15] that the system undergoes a first-order transition below 2000 K and shows no
evidence of such transition at 3000 K [16].

By calculating the frequency-dependent macroscopic dielectric function (without local field effect) at each
snapshot using the Kohn—Sham orbitals [24], we determine the DC electric conductivity o as the zero frequency

limit of the real part of frequency dependent electric conductivity determined by using the following relation

Ime(w)
4

ensure a well-sampling of the electric properties) from each BOMD simulation, we calculate the evolution of o as

afunction of the pressure along constant temperatures. As can be seen from figure 1(b), similar to the behavior
of volume, ois a discontinuous function of pressure along isotherms T' < 2300 K, while for T' > 2300 K, it
shows a continuous increase with pressure, for instance, from a few (£ cm)~!at 61 GPato 2600 (£2 cm)~!at
79 GPafor T'=2500 K. This sharp increase in the electric conductivity is consistent with the experimental
observation of a continuous decrease in the electric resistance by four orders of magnitude from 93 to 140 GPa
though at lower pressures [27, 28].

Defining a hydrogen as molecular hydrogen when the distance to its nearest neighbor is less than a certain

derived from the Kubo—Greenwood equation [25, 26], 6 () = @ X . Randomly taking 50 snapshots (to

value 7, = 0.8 A (the first minimum in pair correlation function) and as atomic one otherwise, we characterize
the structure change of hydrogen liquid by the fraction of populations of molecular and atomic hydrogen [12].
We denote the fraction of the molecular hydrogen, f (atomic hydrogen, 1 — f) and present its behavior asa
function of pressure along different isotherms in figure 1(c). Similar to the behavior above, the fraction of
molecular hydrogen shows discontinuous change along isotherms for T < 2300 K, while it changes
continuously with increasing pressure for T > 2300 K. This is consistent with the continuous molecular
dissociation at high temperatures reported in [15].

To gain more insight to the relation between the continuous and discontinuous transition, we calculate the
response functions of thermodynamic, electric and structural properties. These quantities are isothermal
compressibility, k1 = —% (%)T’ derivative of electric conductivity do/dP and molecular dissociation
coefficient df /dP, as shown in figure 2.

We observe three characterics. Firstly, each response function shows a maximum along each isotherm, but
the position of the peak shifts to higher pressure as temperature decreases. For instance, k7 exhibits a maximum
at different pressures for different isotherms (figure 2(a)). Upon decreasing temperatures, this peak position
shifts to higher pressure, e.g, from P ~ 72 GPaat 2500 Kto P ~ 74 GPaat 2400 K. Similarly, for the DC electric
conductivity and molecular dissociation coefficient, their derivatives with respect to pressure do/dP
(figure 2(b)) and df /dP (figure 2(c)) also show a peak along each isotherm. Secondly, the magnitude of the peak
of each response function increases as temperature decreases and tends to diverge near 2300 K. For instance, the
peak of k7 becomes sharper as temperature decreases from 2500 to 2300 K. Thirdly, for different response
functions, the loci of their maxima are different. For example, at 2500 K, the peak position resides at ~68 GPa
for do/dP and ~70 GPa for df /dP, clearly different from ~72 GPa for k7. In addition, such differences in
pressure become smaller as the loci of the response maxima converge to one line in the vicinity of 2300 K. The
loci of the response function maxima in the supercritical region of the (P, T) phase diagram are shown in
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Figure 1. Physical properties such as volume, conductivity and fraction of molecular hydrogen population as a function of pressure.
(a) Equation of state for hydrogen along isotherms based on ab initio BOMD simulations. A cliff starts to appear in the V=P curve as
temperature decreases. (b) The dc electronic conductivity calculated using the Kubo—Greenwood formula along T= 2000, 2200, 2300,
2400 and 2500 K. (c) Structure changes, the fraction of the molecular hydrogen (filled symbol) and dissociation coefficient (open
symbol), along constant temperature.

figure 3. As temperature decreases, the loci of different response function maxima asymptotically merge to a
single line—the Widom line in the vicinity of the LLCP from supercritical region and terminate at a LLCP
located between (2300 K, 77 GPa) and (2200 K, 81 GPa) within resolution, at which all response functions
diverge.

The above analysis provides a simple picture for the LLPT in hydrogen under high pressures, which is
consistent with [15]. The difference is that we approach the LLCP using supercritical phenomenon from the
supercritical region. That is, instead of tracing the LLCP by the terminal point of the first-order LLPT line, we
determine the LLCP by investigating the supercritical phenomenon along the Widom line, loci of response
functions maxima in the vicinity of the LLCP. This allows us to identify the difference between the insulating-to-
metallic and molecular-to-atomic transitions in the supercritical region and numerically locates the critical
point. For instance, according to our study, previously reported continuous transitions of hydrogen at high

3
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Figure 2. Response functions with respect to pressure along constant temperatures. For temperatures above 2300 K, the thermal
response functions with respect to pressure, such as the isothermal compressibility k7*** (a), the derivative of the electronic
conductivity do/dP™** (b), and the change in hydrogen molecular dissociation coefficient df /dP (c), show maxima but at different
pressures. The peak of the response function maxima becomes sharper and sharper as the critical point is approached. All response
functions converge to and diverge at the LLCP.

temperatures, insulating-to-metallic and molecular-to-atomic transitions which corresponding to the response
of the electric conductivity and molecular dissociation coefficient respectively, are different transitions in the
supercritical region. Our results clarify this difference and also find the two transitions are both connected to the
LLCP. We point out that this difference gradually disappears as the LLCP is approached, indicating the same
origin for the different continuous transitions of hydrogen observed at high temperatures. We note that our
results are based on simulations using the PBE exchange-correlation functional for the description of the
electronic interactions with the nuclear quantum effects neglected due to the limitation of the computational
cost we can afford. Some recent studies using electronic structures generated with other exchange-correlation
functionals within DFT or quantum Monte-Carlo method have revealed that a more delicate treatment of the
electronic exchange-correlation interactions may lead the transition region to higher pressures [29-31]. We
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Figure 3. The P-T phase diagram for liquid hydrogen. As shown in the inset, the loci of different response function maxima, k7
(openccircle), (do/dP)™** (open square), (df /dP)™* (open diamond), are different. This difference in pressure along each isotherm
for two continuous transitions, metal-to-insulator and molecular-to-atomic, becomes smaller and disappears as the liquid-liquid
critical point (filled circle) is approached from the supercritical region, at which the peak of the response function maxima also
diverge. Thus we can locate the LLCP of hydrogen by tracing the converging of response function extrema from the supercritical
region. Below the LLCP, the response functions (e.g.,xr, do/dP, df /dP) diverge as the first-order LLPT line (filled square) is crossed.
We note that melting curves below 200 GPa (brown curve) and above 500 GPa (pink curve) are from [32] and [33]. The LLPT
transition line (violet curve) is from [ 15]. Phase boundaries between different phases (green curve) are from [34].

emphasis that this study is to present an alternative approach which one can employ to investigate the LLPT of
hydrogen from the supercritical region at high temperatures and low pressures. For the influence of going
beyond PBE and including nuclear quantum effects, we resort the readers to [15, 17, 19, 29-31].

To conclude, we investigate the phase diagram and supercritical phenomenon of hydrogen in the
supercritical region of the LLCP. This is important for the interpretation of experimental data performed at high
temperatures and low pressures. Firstly, earlier experimental measurements on electric conductivity are
performed at ~3000 K [16, 27, 28]. According to the above picture, this continuous transition is associated with
the supercritical phenomenon of the LLCP in the supercritical region of the phase diagram. In contrast,
discontinuous transitions at low temperatures and high pressures, e.g., discontinuous insulating-to-metallic
transition and molecular dissociation, are due to first-order phase transition below the LLCP in the two phase
region. Secondly, the difference between molecular dissociation and insulator-to-metal transition in the
continuous transition region indicates that they are rigorously the same only at the LLCP and in the first-order
LLPT region. One needs to be aware of their difference when transitions in the supercritical region are studied.
Thirdly, we provide a possible approach to locate the LLCP of hydrogen by tracing the loci of the Widom line in
the supercritical region. This indicates that the supercritical phenomenon in the vicinity of the LLCP of
hydrogen is a rather general feature of second-order phase transition, it is not only true for classical systems with
weak interactions but also true for highly condensed system with strong inter-atomic interactions.
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