Running Couplings in the SM Grand Unified Theory

C.-P. Yuan

Michigan State University

Typesetting: prepared by Jianghao Yu at MSU

Running Couplings in the SM

- Define

$$
\begin{equation*}
\alpha_{i}=\frac{g_{i}^{2}}{4 \pi} \tag{1}
\end{equation*}
$$

with $i=1,2,3$ for $U(1)_{Y} \times S U(2)_{L} \times S U(3)_{C}$.

- The one-loop renormalization group equations are

$$
\begin{equation*}
\frac{d g_{i}}{d \ln Q}=-b_{i} \frac{g_{i}^{3}}{(4 \pi)^{2}}, \quad \text { or } \quad \frac{d \alpha_{i}}{d \ln Q}=-b_{i} \frac{\alpha_{i}^{2}}{2 \pi} . \tag{2}
\end{equation*}
$$

- In the SM,

$$
\begin{align*}
& b_{3}=\frac{33}{3}-\frac{4}{3} n_{g}, \tag{3}\\
& b_{2}=\frac{22}{3}-\frac{4}{3} n_{g}-\frac{1}{6} n_{h}, \tag{4}\\
& b_{1}=-\frac{4}{3} n_{g}-\frac{1}{10} n_{h}, \tag{5}
\end{align*}
$$

where
$n_{g}=$ no. of generations $=3$ (in the SM),
$n_{h}=$ no. of Higgs doublet $=1$ (in the SM),
for $Q \gtrsim 1 \mathrm{TeV}$.

- The solution of RG equation

$$
\begin{equation*}
\frac{1}{\alpha_{i}(Q)}=\frac{1}{\alpha_{i}(\Lambda)}-\frac{b_{i}}{2 \pi} \ln \left(\frac{Q}{\Lambda}\right) \tag{6}
\end{equation*}
$$

where Λ is some high energy scale.

- If $\alpha_{1}(\Lambda)=\alpha_{2}(\Lambda)=\alpha_{3}(\Lambda)$, i.e., unification of gauge couplings, then

$$
\begin{equation*}
\frac{1}{\alpha_{3}(Q)}=(1+B) \frac{1}{\alpha_{2}(Q)}-B \frac{1}{\alpha_{1}(Q)} \tag{7}
\end{equation*}
$$

where $B=\frac{b_{3}-b_{2}}{b_{2}-b_{1}}$.

- The value of $\alpha_{i}\left(Q=M_{Z}\right)$ are

$$
\begin{align*}
\frac{1}{\alpha_{3}\left(M_{Z}\right)} & =8.50 \pm 0.14 \tag{8}\\
\frac{1}{\alpha_{2}\left(M_{Z}\right)} & =29.57 \pm 0.02 \tag{9}\\
\frac{1}{\alpha_{1}\left(M_{Z}\right)} & =59.00 \pm 0.02 \tag{10}
\end{align*}
$$

Thus,

$$
B=0.716 \pm 0.005 \pm 0.03 \quad \text { (from experimental data). }
$$

- This value does not agree with the SM prediction which gives

$$
\begin{align*}
B_{S M} & \equiv \frac{b_{3}-b_{2}}{b_{2}-b_{1}} \\
& =\frac{\frac{33}{3}-\frac{22}{3}+\frac{1}{6} n_{h}}{\frac{22}{3}-\frac{2}{30} n_{h}} \\
& \simeq 0.53 \text { for } n_{h}=1 . \tag{11}
\end{align*}
$$

To have $B=0.716$, it needs $n_{h}=6$.

- $B_{S M}$ does not depends on the number of generators $\left(n_{g}\right)$. It's because the quarks and leptons of each generation fill out multiplets of the SM or GUT gauge group.
- The SM can be embeded in the grand unified
symmetry group $S U(5)$, where

$$
\begin{equation*}
S U(5) \supset S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} . \tag{12}
\end{equation*}
$$

- The SM generators (as 5×5 Hermitian matrices):

$$
\begin{align*}
S U(3)_{C} & :\left(\begin{array}{cc}
\lambda_{3 \times 3}^{a} & \\
& 0_{2 \times 2}
\end{array}\right), \quad a=1,2 \cdots 8, \\
S U(2)_{L} & :\left(\begin{array}{cc}
0_{3 \times 3} & \\
& \frac{\sigma^{i}}{2}
\end{array}\right), \quad i=1,2,3, \quad(13) \tag{13}\\
U(1)_{Y} & : \quad \sqrt{\frac{3}{5}}\left(\begin{array}{cc}
-\frac{1}{3} 1_{3 \times 3} \\
& \frac{1}{2} 1_{2 \times 2}
\end{array}\right) \equiv \sqrt{\frac{3}{5}} Y,
\end{align*}
$$

where the convention of the normalization is such that $\operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b}$.

- The symmetry-breaking can be caused by the vacuum expectation value of a Higgs field in the
adjoint representation of $S U(5)$,

$$
\langle\Phi\rangle=v\left(\begin{array}{cc}
-\frac{1}{3} 1_{3 \times 3} & \tag{14}\\
& \frac{1}{2} 1_{2 \times 2}
\end{array}\right)
$$

which commutes with the SM generators.

- Since $\langle\Phi\rangle$ does not commute with the off-diagonal generators, it gives mass to those heavy gauge bosons and breaks $S U(5)$ to $S U(3)_{C} \times S U(2)_{L} \times$ $U(1)_{Y}$.
- For every generation, the SM matter fields are the form of the followings:

$$
\overline{5}:\left(\begin{array}{c}
\bar{d} \tag{15}\\
\bar{d} \\
\bar{d} \\
e \\
\nu
\end{array}\right)_{L} \quad 10:\left(\begin{array}{ccccc}
0 & \bar{u} & \bar{u} & u & d \\
& 0 & \bar{u} & u & d \\
& & 0 & u & d \\
& & & 0 & \bar{e} \\
& & & & 0
\end{array}\right)_{L} .
$$

Here, there is no right-handed ν 's.

- In the $S U(5)$ gauge theory,

$$
\begin{equation*}
g_{3}=g_{2}=g_{1}=g_{\Lambda}, \tag{16}
\end{equation*}
$$

where

$$
\begin{array}{rlrl}
g_{3} & =g_{s}, & \text { strong interaction } S U(3)_{C}(17) \\
g_{2} & =g, & \text { weak interaction } S U(2)_{L}, & (18) \\
g_{1} & =\sqrt{\frac{5}{3}} g^{\prime}, & U(1)_{Y} . \tag{19}
\end{array}
$$

Because the $S U(5)$ covariant derivative is

$$
\begin{equation*}
D_{\mu}=\partial_{\mu}-i g_{\Lambda} V_{\mu}^{a} T^{a}, \tag{20}
\end{equation*}
$$

where g_{Λ} is the $S U(5)$ gauge coupling, and Λ is the unification scale.

