Lepton Colliders

C.–P. Yuan

Michigan State University

Typesetting: prepared by Jianghao Yu at MSU

PHY905-004

Lepton Colliders

Consider e^-e^+ colliders:

Name	$\sqrt{s}({\sf GeV})$	$L(10^{30}cm^{-2}s^{-1})$	Years	Detectors	Location
LEP	110	24	89-95	ALEPH, L3,	CERN
	161-209	100	96-00	DELPHI, OPAL	
SLC	100	3	92-98	SLD	SLAC
BEPC	4.4	12.6	89-05	BES	China
	4.2	1000	07-now		
Tristan	64	37	89-95	TOPAZ	Japan
				AMY, VENUS	

Refer to PDG (High-energy collider parameters: e^+e^- colliders) for details.

- Event number N is given by $N = \sigma \mathcal{L}$, where σ is cross section and \mathcal{L} is integrated luminosity.
- 1 barn is 10^{-24}cm^2 .

PHY905-004

Inclusive Rates

Total cross section

$$R = \frac{\sigma \left(e^- e^+ \to \text{hadrons} \right)}{\sigma \left(e^- e^+ \to \mu^- \mu^+ \right)}.$$
 (1)

At leading order (LO),

$$\sigma\left(e^{-}e^{+} \to \text{hadrons}\right) = \sum_{q_{i}=u,d,s,\cdots} \sigma\left(e^{-}e^{+} \to q_{i}\bar{q}_{i}\right), \quad (2)$$

where the mass of the quark (q_i) has to be small than $\sqrt{s}/2$, and \sqrt{s} is the center-of-mass energy of e^-e^+ .

PHY905-004

For example, at $\sqrt{s}=8~{\rm GeV}$,

Note: Quark has three colors $(N_C = 3)$. $(SU(3)_C)$ Hence,

$$R = (3) \cdot \left[\left(\frac{2}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 + \left(\frac{2}{3}\right)^2 \right]$$

= $3 \cdot \frac{10}{9} = \frac{10}{3}.$ (3)

PHY905-004

C.–P. Yuan (MSU)

4

C.–P. Yuan (MSU)

R in Light-Flavor, Charm, and Beauty Threshold Regions

Figure 40.7: R in the light-flavor, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are the same as in Fig. 40.6. Note: CLEO data above $\Upsilon(4S)$ were not fully corrected for radiative effects, and we retain them on the plot only for illustrative purposes with a normalization factor of 0.8. The full list of references to the original data and the details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. The computer-readable data are available at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2007) See full-color version on color pages at end of book.

PHY905-004

Exclusive Observables-Jets

- There is no free quark
 - QCD confinement
- Quarks have to hadronize into hadrons
 - Final state fragmentation
- For large \sqrt{s} , final state hadrons like to move together and form two jets.
- The following figure is an example of real data collected from the DELPHI detector on the Large Electron-Positron (LEP) collider at CERN. Here a quark pair is seen as a pair of hadron jets in the detector.

PHY905-004

PHY905-004

<u>Jets</u>

- The characteristic feature of the two jets can be described by the q_i and \bar{q}_i partons in the final state
 - Parton-hadron duality
- For example: for $\sqrt{s} = 8$ GeV, some of the kinematic distributions of the quark jet are given below.

9

PHY905-004

C.–P. Yuan (MSU)

10

Project-2

- Use CalcHEP or MadGraph to calculate the leading order P_T and cos θ distributions of the quark (q_i) jet for e⁻e⁺ → q_iq̄_i at √s = 8GeV.
- Repeat the above task for $q_i = u, d, s, c$ and compare their results.
- Calculate their total cross sections.

<u>Jets</u>

- Jet has not only momentum, energy, but also mass and distinct profile.
- At NLO,

Is this a two-jet or three-jet events?

- Jet algorithm is needed to compare theory to data.
- The particle multiplicity of gluon jet (hadronization) is different from quark jet (hadronization).

PHY905-004

Approximately, their ratio (for gluon and light quark jets with the same energy) is

$$\simeq \frac{C_A}{C_F} = \frac{N_C}{(N_C^2 - 1)/2N_C} = \frac{3}{4/3} = \frac{9}{4}.$$
 (4)

This was checked in the 3-jet event. The following figure shows the event signature at OPAL at LEP.

PHY905-004

PHY905-004

Soft and Collinear Gluons

In perturbative QCD, the process involved in an outgoing quark with gluon radiation,

where the propogator takes the form

$$\frac{1}{(p+k)^2} \simeq \frac{1}{2p \cdot k},\tag{5}$$

15

for $k^2 = 0$ and $p^2 \simeq 0$.

The calculation blows up when

• $k \rightarrow 0$, (soft gluon), which requires the inclusion of

PHY905-004 C.–P. Yuan (MSU)

virtual corrections

to cancel all the soft singularities.

 k || p, (collinear gluon). We could define an infraredsafe observables (such as a "cone jet") to compare to data (which is always finite). Namely, we do not distinguish

