Lepton Colliders

C.-P. Yuan

Michigan State University

Typesetting: prepared by Jianghao Yu at MSU

Lepton Colliders

Consider $e^{-} e^{+}$colliders:

Name	$\sqrt{s}(\mathrm{GeV})$	$L\left(10^{30} \mathrm{~cm}^{-2} s^{-1}\right)$	Years	Detectors	Location
LEP	110	24	$89-95$	ALEPH, L3,	CERN
	$161-209$	100	$96-00$	DELPHI, OPAL	
SLC	100	3	$92-98$	SLD	SLAC
BEPC	4.4	12.6	$89-05$	BES	China
	4.2	1000	$07-$ now		
Tristan	64	37	$89-95$	TOPAZ	

Refer to PDG (High-energy collider parameters: $e^{+} e^{-}$colliders) for details.

- Event number N is given by $N=\sigma \mathcal{L}$, where σ is cross section and \mathcal{L} is integrated luminosity.
- 1 barn is $10^{-24} \mathrm{~cm}^{2}$.

Inclusive Rates

Total cross section

$$
\begin{equation*}
R=\frac{\sigma\left(e^{-} e^{+} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{-} e^{+} \rightarrow \mu^{-} \mu^{+}\right)} \tag{1}
\end{equation*}
$$

At leading order (LO),
$\sigma\left(e^{-} e^{+} \rightarrow\right.$ hadrons $)=\sum_{q_{i}=u, d, s, \cdots} \sigma\left(e^{-} e^{+} \rightarrow q_{i} \bar{q}_{i}\right)$,
where the mass of the quark $\left(q_{i}\right)$ has to be small than $\sqrt{s} / 2$, and \sqrt{s} is the center-of-mass energy of $e^{-} e^{+}$.

For example, at $\sqrt{s}=8 \mathrm{GeV}$,

$$
\begin{aligned}
& \sigma\left(e^{-} e^{+} \rightarrow \text { hadrons }\right) \\
= & \sum_{q_{i}=u, d, s, c} \sigma\left(e^{-} e^{+} \rightarrow q_{i} \bar{q}_{i}\right) \\
= & \sum_{q_{i}=u, d, s, c}
\end{aligned}
$$

$$
(>)
$$

Note: Quark has three colors $\left(N_{C}=3\right) .\left(S U(3)_{C}\right)$ Hence,

$$
\begin{align*}
R & =(3) \cdot\left[\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}\right] \\
& =3 \cdot \frac{10}{9}=\frac{10}{3} . \tag{3}
\end{align*}
$$

R in Light-Flavor, Charm, and Beauty Threshold Regions

Figure 40.7: $\quad R$ in the light-flavor, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV . The curves are the same as in Fig. 40.6. Note: CLEO data above $\Upsilon(4 S)$ were not fully corrected for radiative effects, and we retain them on the plot only for illustrative purposes with a normalization factor of 0.8 . The full list of references to the original data and the details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. The computer-readable data are available at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2007) See full-color version on color pages at end of book.

Exclusive Observables-Jets

- There is no free quark
- QCD confinement
- Quarks have to hadronize into hadrons
- Final state fragmentation
- For large \sqrt{s}, final state hadrons like to move together and form two jets.
- The following figure is an example of real data collected from the DELPHI detector on the Large Electron-Positron (LEP) collider at CERN. Here a quark pair is seen as a pair of hadron jets in the detector.

Jets

- The characteristic feature of the two jets can be described by the q_{i} and \bar{q}_{i} partons in the final state - Parton-hadron duality
- For example: for $\sqrt{s}=8 \mathrm{GeV}$, some of the kinematic distributions of the quark jet are given below.

Project-2

- Use CalcHEP or MadGraph to calculate the leading order P_{T} and $\cos \theta$ distributions of the quark $\left(q_{i}\right)$ jet for $e^{-} e^{+} \rightarrow q_{i} \bar{q}_{i}$ at $\sqrt{s}=8 \mathrm{GeV}$.
- Repeat the above task for $q_{i}=u, d, s, c$ and compare their results.
- Calculate their total cross sections.

Jets

- Jet has not only momentum, energy, but also mass and distinct profile.
- At NLO,

Is this a two-jet or three-jet events?

- Jet algorithm is needed to compare theory to data.
- The particle multiplicity of gluon jet (hadronization) is different from quark jet (hadronization).

Approximately, their ratio (for gluon and light quark jets with the same energy) is

$$
\begin{equation*}
\simeq \frac{C_{A}}{C_{F}}=\frac{N_{C}}{\left(N_{C}^{2}-1\right) / 2 N_{C}}=\frac{3}{4 / 3}=\frac{9}{4} . \tag{4}
\end{equation*}
$$

This was checked in the 3 -jet event. The following figure shows the event signature at OPAL at LEP.

Soft and Collinear Gluons

In perturbative QCD, the process involved in an outgoing quark with gluon radiation,

where the propogator takes the form

$$
\begin{equation*}
\frac{1}{(p+k)^{2}} \simeq \frac{1}{2 p \cdot k} \tag{5}
\end{equation*}
$$

for $k^{2}=0$ and $p^{2} \simeq 0$.
The calculation blows up when

- $k \rightarrow 0$, (soft gluon), which requires the inclusion of
virtual corrections

to cancel all the soft singularities.
- $k \| p$, (collinear gluon). We could define an infraredsafe observables (such as a "cone jet") to compare to data (which is always finite). Namely, we do not distinguish

1 parton
from

- Jet functions

