Prospects for SUSY at the LHC

Howard Baer University of Oklahoma OUTLINE

- ★ LHC details
- ★ Sparticle production
- ★ Sparticle decay
- \star Event generation
- \star LHC reach and year 1
 - Multi-muons + jets
 - RT-S dijet signal
- \star precision measurements

The role of the CERN Large Hadron Collider (LHC)

- The LHC is a proton-proton collider (*pp*)
- Each beam will have $E = 3.5 \rightarrow 7$ TeV (trillion electron volts)
- Center-of-mass energy $E \equiv \sqrt{s} = 7 \rightarrow 14 \text{ TeV}$
- The collider is on a circular tunnel 27 km in circumference
- It is nearly ready: turn-on expected in November 2009!
- Protons are not fundamental particles: made of quarks q and gluons g
- The quark and gluon collisions should have enough energy to produce TeV-scale superparticles at a large enough rate that they should be detectable above SM background processes
- LHC should be able to discover SUSY or other new physics: but probably can't rule SUSY out if just a Higgs or nothing new is found

Layout of the LHC:two main detectors: Atlas and CMS

The Atlas detector

The CMS (Compact Muon Solenoid) detector

Parton model of hadronic reactions

For a hadronic reaction,

$$A + B \rightarrow c + d + X,$$

where c and d are superpartners and X represents assorted hadronic debris, we have an associated subprocess reaction

$$a + b \rightarrow c + d,$$

whose cross section can be computed using the Lagrangian for the MSSM. To obtain the final cross section, we must convolute the appropriate subprocess production cross section $d\hat{\sigma}$ with the parton distribution functions:

$$d\sigma(AB \to cdX) = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b f_{a/A}(x_a, Q^2) \ f_{b/B}(x_b, Q^2) \ d\hat{\sigma}(ab \to cd).$$

where the sum extends over all initial partons a, b whose collisions produce the final state c + d.

Parton Distribution Functions (PDFs)

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Calculating subprocess cross sections/decay rates in QFT

- The fundamental calculable object in QM is the $amplitude \ \mathcal{M}$ for a process to occur
- A pictorial representation of $\mathcal M$ is given by a $\mathit{Feynman}\ \mathit{diagram}$
- Feynman rules for many theories can be found in standard texts: *e.g.* Peskin& Schroeder, *Introduction to Quantum Field Theory*
- In the MSSM, an additional complication occurs due to presence of *Majorana* spinors
- Methods for handling these given *e.g.* in *Weak Scale Supersymmetry* (HB, X. Tata), or book by M. Drees, Godbole& Roy
- $\bullet\,$ total amplitude ${\cal M}$ is sum of all different ways a process can occur
- \mathcal{M} is a complex number; $|\mathcal{M}|^2$ gives probability
- must normalize and sum (integrate) over all momentum configurations to gain cross section, usually in *femtobarns*:

Calculating subprocess cross sections/decay rates in QFT

$$d\hat{\sigma} = \frac{1}{2\hat{s}} \frac{1}{(2\pi)^2} \int \frac{d^3 p_c}{2E_c} \frac{d^3 p_d}{2E_d} \delta^4 (p_a + p_b - p_c - p_d) \cdot F_{\text{color}} F_{\text{spin}} \sum |\mathcal{M}|^2,$$

- Must sum (integrate) over all final state momentum configurations
- May be done analytically for simple processes $e.g. \ 2 \rightarrow 2$
- Usually done using Monte Carlo method for $n\geq 3$
- Monte Carlo well suited for adding on particle decays so one has really $2 \rightarrow n$ processes where n can be very large
- Convolution of subprocess cross section with PDFs must be done numerically, since PDFs distributed as *subroutines*

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Production at LHC

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Squark decays

$$\begin{split} \widetilde{u}_L & \to & u\widetilde{Z}_i, \ d\widetilde{W}_j^+, \ u\widetilde{g}_i, \\ \widetilde{d}_L & \to & d\widetilde{Z}_i, \ u\widetilde{W}_j^-, \ d\widetilde{g}_i, \\ \widetilde{u}_R & \to & u\widetilde{Z}_i, \ u\widetilde{g}, \\ \widetilde{d}_R & \to & d\widetilde{Z}_i, \ d\widetilde{g}. \end{split}$$

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Chargino decays

$$\begin{split} \widetilde{W}_{j} &\to W\widetilde{Z}_{i}, \ H^{-}\widetilde{Z}_{i}, \\ &\to \widetilde{u}_{L}\overline{d}, \ \overline{\widetilde{d}}_{L}u, \ \widetilde{c}_{L}\overline{s}, \ \overline{\widetilde{s}}_{L}c, \ \widetilde{t}_{1,2}\overline{b}, \ \widetilde{b}_{1,2}t, \\ &\to \widetilde{\nu}_{e}\overline{e}, \ \overline{\widetilde{e}}_{L}\nu_{e}, \ \widetilde{\nu}_{\mu}\overline{\mu}, \ \overline{\widetilde{\mu}}_{L}\nu_{\mu}, \ \widetilde{\nu}_{\tau}\overline{\tau}, \overline{\widetilde{\tau}}_{1,2}\nu_{\tau}, \text{ and} \\ &\widetilde{W}_{2} &\to Z\widetilde{W}_{1}, \ h\widetilde{W}_{1}, \ H\widetilde{W}_{1} \text{ and } A\widetilde{W}_{1}. \end{split}$$

Charginos may decay to a lighter neutralino via

$$\widetilde{W}_{j} \to \widetilde{Z}_{i} + f \overline{f}' , \qquad (1$$

$$\underbrace{\widetilde{W}_{1}}_{\widetilde{V}_{e}} , \underbrace{\widetilde{V}_{e}}_{\widetilde{Z}_{1}} , \underbrace{\widetilde{W}_{1}}_{\widetilde{V}_{e}} , \underbrace{\widetilde{W}_{1}}_{\widetilde{V}_{e}} , \underbrace{\widetilde{W}_{1}}_{\widetilde{Z}_{1}} , \underbrace{\widetilde{W}_{1}}_{\widetilde{V}_{e}} , \underbrace{\widetilde{W$$

Neutralino decays

$$\widetilde{Z}_{i} \rightarrow W \widetilde{W}_{j}, \ H^{-} \widetilde{W}_{j}, \ Z \widetilde{Z}_{i'}, \ h \widetilde{Z}_{i'}, \ H \widetilde{Z}_{i'}, \ A \widetilde{Z}_{i'} \rightarrow \tilde{q}_{L,R} \bar{q}, \ \overline{\tilde{q}}_{L,R} q, \ \tilde{\ell}_{L,R} \bar{\ell}, \ \overline{\tilde{\ell}}_{L,R} \ell, \ \tilde{\nu}_{\ell} \bar{\nu}_{\ell}, \ \overline{\tilde{\nu}}_{\ell} \nu_{\ell}.$$

If 2-body modes are closed, then the neutralino can decay via

Sparticle cascade decays

A realistic picture of what SUSY matter looks like at LHC

- ★ Counting different flavor states (which are potentially measurable), there are well over 1000 subprocess reactions expected at LHC from the MSSM
- \star on average, each sparticle has 5-20 decay modes
- **\star** rough estimate of distinct SUSY $2 \rightarrow n$ processes:
 - $\sim 1000 \times 10 \times 10 \sim 10^5$
 - this is actually a gross underestimate since each daughter of a produced sparticle has multiple decay modes, and so on...
- \star the way forward: Monte Carlo program
 - calculate *all* prod'n cross sections: generate according to relative weights
 - calculate all branching fractions, and generate decays according to them
 - interface with parton shower, hadronization, underlying event
 - computer generated events should look something like what we would expect from the MSSM at the LHC

Event generation for sparticles

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Event generations for SUSY

- ★ Isajet (HB, Paige, Protopopsecu, Tata)
 - IH, FW-PS, n-cut Pomeron UE
- ★ Pythia (Sjöstrand, Lönnblad, Mrenna)
 - SH, FW-PS, multiple scatter UE, SUSY at low $\tan\beta$ only
- ★ Herwig (Marchesini, Webber, Seymour, Richardson,...)
 - CH, AO-PS, Phen. model UE, Isawig, Spin corr.!
- ★ SUSYGEN (Ghodbane, Katsanevas, Morawitz, Perez)
 - mainly for e^+e^- ; interfaces to Pytha
- ★ SHERPA (Gleisberg, Hoche, krauss, Schalicke, Schumann, Winter)
 - $C + + \operatorname{code}$ for various $2 \to n$ processes
- ★ CompHEP, CalcHEP, Madgraph: for automatic Feynman diagram evaluation: interface via LHA

Briefly: particle interactions with detector

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

SUSY scattering event: Isajet simulation

$$\begin{split} & m_0 = 100 \; \text{GeV}, \, m_{1/2} = 300 \; \text{GeV}, \, \tan\beta = 2, \, A_0 = 0, \, \mu < 0, \\ & m(\tilde{q}) = 686 \; \text{GeV}, \, m(\tilde{g}) = 766 \; \text{GeV}, \, m(\tilde{\chi}^0_{\;\;2}) = 257 \; \text{GeV}, \\ & m(\tilde{\chi}^0_{\;\;1}) = 128 \; \text{GeV}. \end{split}$$

Charged particles with $p_t > 2$ GeV, $|\eta| < 3$ are shown; neutrons are not shown; no pile up events superimposed.

Search for SUSY at LHC: model dependent

★ GMSB

- ★ AMSB
 - MM-AMSB (mirage mediation)
 - hypercharged-AMSB (HCAMSB)
 - deflected AMSB
 - deflected mirage mediation
- ★ gravity-mediated models
 - mSUGRA or CMSSM
 - NUHM1, NUHM2
 - non-universal gaugino masses: MWDM, BWCA, LM3DM, HM2DM, ...
 - normal scalar mass hierarchy $(m_0(1,2) > m_0(3))$
 - compressed SUSY

★ Split SUSY, pMSSM, NMSSM, ···

Right or wrong, most analyses work in mSUGRA model

• $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$

Search for SUSY at CERN LHC

- \star $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$, $\tilde{q}\tilde{q}$ production dominant for $m \stackrel{<}{\sim} 1$ TeV
- \star lengthy cascade decays are likely

 - $1\ell + \not\!\!\! E_T + \mathsf{jets}$
 - $OS \ 2\ell + E_T + jets$
 - $-SS2\ell + E_T + jets$
 - $3\ell + \not\!\!E_T + \mathsf{jets}$
- ★ BG: W + jets, Z + jets, $t\bar{t}$, $b\bar{b}$, WW, 4t, ...
- \bigstar Grid of cuts gives optimized S/B

Pre-cuts and cuts

- ★ $N_j \ge 2$ (where $p_T(jet) > 40$ GeV and $|\eta(jet)| < 3$
- **\star** Grid of cuts for optimized S/B:
 - $-N_j \ge 2 10$

 - $E_T(j1) > 40 1000 \text{ GeV}$
 - $E_T(j2) > 40 500 \text{ GeV}$
 - $-S_T > 0 0.2$
 - muon isolation
- $\bigstar~S>10$ events for $100~{\rm fb^{-1}}$
- $\bigstar \ S > 5\sqrt{B}$ for optimal set of cuts

Sparticle reach of LHC for 100⁻¹ **fb**

HB, Balazs, Belyaev, Krupovnickas, Tata: JHEP 0306, 054 (2003)

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Sparticle reach of all colliders with relic density

HB, Belyaev, Krupovnickas, Tata: JHEP 0402, 007 (2004)

Sparticle reach for various integrated luminosity

 $N_{jets} \ge 2$ (with E_T^{miss} cuts, optimized)

HB, Barger, Lessa, Tata (2009)

Direct and indirect detection of neutralino DM

HB, Belyaev, Krupovnickas, O'Farrill: JCAP 0408, 005 (2004)

Issues in early search for SUSY: beam energy

Early SUSY discovery at LHC with just 0.1 fb⁻¹?

- - dead regions
 - "hot" cells
 - cosmic rays
 - calorimeter mis-measurement
 - beam-gas events
- Expect SUSY events to be rich in jets, *b*-jets, isolated ℓ s, τ -jets,....
- HB, Prosper, Summy, PRD77, 055017 (2008); HB, Lessa, Summy, PLB674, 49 (2009)
- HB, Barger, Lessa, Tata, JHEP0909, 063 (2009)

D0 saga with missing E_T

Possible SM sources of multi-muon events: $\sqrt{s} = 10$ **TeV**

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Simple cuts: ≥ 4 jets plus isolated muons: no $\not\!\!E_T$ -cut

- SPT2 point: $(m_0, m_{1/2}, A_0, \tan\beta, sgn(\mu)) = (450 \text{ GeV}, 170 \text{ GeV}, 0, 45, +1)$
- note: dis-allowed by \widetilde{Z}_1 CDM but allowed for mixed a/\tilde{a} CDM

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Require $n(jets) \ge 4$ and $\mu^+\mu^-$ pair: no $\not\!\!E_T$

Require $n(jets) \ge 4$ and $\mu^{\pm}\mu^{\pm}$ pair: no $\not\!\!E_T$

Require $n(jets) \ge 4$ and 3μ : no $\not\!\!E_T$

Cuts optimized with $n(jets) \ge 2$ and $n(\mu) \ge 2$: no $\not\!\!\!E_T$

Randall-Tucker-Smith dijet signal

- ★ propose simplest thing: can we see SUSY in di-jet channel
- ★ knee-jerk reaction: no, QCD di-jet BG is too large
- ★ reality: SUSY di-jets from squark pair production: do not lie in one plane
- ★ L. Randall and Tucker-Smith exploit this: PRL101 (2008) 221803
 - $\Delta \phi(j1, j2)$
 - $\alpha = E_T(j2)/m(jj)$
 - $MT2(jj+\not\!\!\!E_T)$ (though not needed)

Randall-Tucker-Smith dijet signal

• $(m_0, m_{1/2}, A_0, \tan\beta, sign(\mu) = 350, 500, 0, 45, +1)$ at $\sqrt{s} = 10$ TeV

• We require that $E_T(j_1) + E_T(j_2) > 700$ GeV, but make no restriction on $\not\!\!E_T$.

Cuts optimized for Randall-Tucker-Smith dijet signal

Precision measurements at LHC

- $M_{eff} = E_T + E_T(j1) + \dots + E_T(j4)$ sets overall $m_{\tilde{g}}, m_{\tilde{q}}$ scale
- $m(\ell \bar{\ell}) < m_{\widetilde{Z}_2} m_{\widetilde{Z}_1}$ mass edge
- $m(\ell \bar{\ell})$ distribution shape
- combine $m(\ell \bar{\ell})$ with jets to gain $m(\ell \bar{\ell} j)$ mass edge: info on $m_{\tilde{q}}$
- further mass edges possible $e.g. m(\ell \bar{\ell} j j)$
- Higgs mass bump $h \to b\bar{b}$ likely visible in $\not\!\!E_T + jets$ events
- in favorable cases, may overconstrain system for a given model
- ★ methodology very p-space dependent
- **\star** some regions are very difficult *e.g. HB/FP*

Conclusions

- \star mSUGRA: right or wrong?
- **★** LHC slepton pair reach to $m_{\tilde{\ell}} \sim 350 \text{ GeV}$
- **\star** LHC clean trilepton from $\widetilde{W}_1 \widetilde{Z}_2$ production (no spoiler modes)

★ LHC reach via cascade decay to multi-leptons

- reach at $\sqrt{s}=10~{\rm TeV}~{\rm vs.}~\sqrt{s}=14~{\rm TeV}$
- early reach via OS, SS, 3μ or jj events without need for $\not\!\!E_T$ cut
- \bigstar Precision measurements possible for LHC

Paige, Hinchliffe *et al.* **case studies:**

- examined many model case studies in mSUGRA, GMSB, high $\tan\beta...$
- classic study: pt.5 of PRD55, 5520 (1997) and PRD62, 015009 (2000)
- $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu) = (100, 300, 0, 2, 1)$ in GeV
- dominant $\tilde{g}\tilde{g}$ production with $\tilde{g} \to q\tilde{q}_L \to qq\tilde{Z}_2 \to q_1q_2\ell_1\tilde{\ell} \to q_1q_2\ell_1\ell_2\tilde{Z}_1$ (string of 2-body decays)
- can reconstruct 4 mass edges; allows one to fit four masses: $m_{\tilde{q}_L}, \ m_{\tilde{Z}_2}, \ m_{\tilde{\ell}}, \ m_{\tilde{Z}_1}$ to 3 - 12%
- can also find Higgs h in the SUSY cascade decay events
- if enough sparticle masses measured, can fit to MSSM/SUGRA parameters

• rough estimate of $m_{\tilde{g}}, m_{\tilde{q}}$ can be gained from max of M_{eff}

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

$m(\ell^+\ell^-)$ mass edge from $\widetilde{Z}_2 \to \ell^+\ell^-\widetilde{Z}_1$

• kinematically, $m(\ell^+\ell^-) < m_{\widetilde{Z}_2} - m_{\widetilde{Z}_1}$

• for
$$\widetilde{Z}_2 \to \widetilde{\ell}^+ \ell^- \to (\ell^+ \widetilde{Z}_1) \ell^-$$
, have

$$m(\ell^+ \ell^-) < m_{\widetilde{Z}_2} \sqrt{1 - \frac{m_{\widetilde{\ell}}^2}{m_{\widetilde{Z}_2}^2}} \sqrt{1 - \frac{m_{\widetilde{Z}_1}^2}{m_{\widetilde{\ell}}^2}} < m_{\widetilde{Z}_2} - m_{\widetilde{Z}_1}$$

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009

$m(b\bar{b})$ Higgs mass bump in SUSY jets $+ \not\!\!E_T$ events

Howie Baer, Karlsruhe/Freudenstadt meeting, October 1, 2009