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Motivation
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In Sec. 2.2.4, we pointed out that although the Kohn-Sham eigenvalues provide a
cood zeroth order approximation for the single particle excitation energies, LDA
fails for a good description of the fundamental band gaps in semiconductors and
insulations. On the other hand, many-body Green function theory provides the
formal basis for evaluating the experimentally observed quasiparticle band structure.
This chapter presents a short overview of the Green function method in the many-
body electronic system, with a special emphasis on the GW approximation. This
will set up the theoretical framework for our numerical implementation and the
analysis of the results presented in this thesis.



The Green Function
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The single-particle Green function is defined as:

G(r,t;r' ) = —i <N

T {@5 (r, t) (r’,t')}‘ N> | (4.1)

where v (r,t) and ¢ (r,) are the quantum field operators describing the annihila-
tion and creation of one electron at position r and time ¢. The operator T is the
time-ordering operator, which reorders the field operators in ascending time order
from right to left. |IV) is the groundstate eigenfunction of the N electrons system.
Making use of the Heaviside function (Appendix J), and the commutation relations
for Fermionic operators, Eq. 4.1 can be rewritten as:

Glr v t) = —i <N ‘q;, (. ) Of (e, 1)

N> Ot —t)
(4.2)
+i <N

O (! )0 (r, t)‘ N> O —1).

making evident that for ¢t > t' (¢ < t') the Green function describes the propagation
of an added electron (hole) in the system.



The Green Function

In the Heisenberg representation, the field operator is written as:
O (r,t) = e (r) e, (4.3)

where H is the Hamiltonian operator and v (r) is the field operator in the Schrodinger
representation.

Inserting Eq. 4.3 into Eq. 4.2 and making use of the completeness relation in
the Fock-space:

oo

1= ZZ In,s) (n,s|, (4.4)

n=0 s

where |n, $) corresponds to the s-th eigenstate of the the n-electron system, we can
transform Eq. 4.2 into:

G 16,1 = =i Y (V] ()] N 1, e (BB
ot (1) N> O —t)+iy. <N

(B —Ex ) -1) (N — 1.5

. <N +1,s of (r)

N—1,5>

J()| V) —1).

(4.5)

Here, E'y stands for the ground state energy of the N-electron system, and E%
for the s-th excited state energy of the N £ 1 electronic system.



The Green Function

Using the excitation energy e, and amplitude v (r) defined by:
ee=Ey,—Ex , 0.(r)=(N|U(r)|N+1,s), for e, > p
6o =FEn—Fy_, . U (r)=(N—=150(x)|N), fore, <p, (4.6)

where p is the chemical potential of the N-electron system (u = Eni1 — Ey =
Ex — Ex_1+O(N™1), we can further simplify Eq. 4.5 into the form:

G(rxst—t) = —i)y o (r)y] (@) e
[S] (t —tYO(e,—p) =0t =)0 (u—-e¢). (4.7)

Performing a Fourier transform to the frequency axis, we obtain the spectral, or
Lehmann [85], representation:

G (r,r',w) = lim Z@u () [ A G M_> + Ol 65_> ] . (4.8)
n—0t w—(es—1n)  w— (€5 +1in)

The key feature of Eq 1.8 is that the Green function has single poles corre-
sponding to the exact excitation energies of the many-body system. For excitation
energies larger (smaller) than the chemical potential, these singularities lie slightly
below (above) the real axis in the complex frequency plane (Fig. 4.1).

It can be easily shown that in the non-interacting case, Eq. 4.8, reduces to:

, O (e, — €p) O (ep — €5)
N li n ) ' ‘ +
GO (I‘/ r /b(.) T;EE)EL Z 2 C/Qn ) [LU L (En — ZT]) =+ W — (En —+ Z']’]) ( 9)

where €, (¢, ) is the eigenvalue (eigenfunction) of the single particle Hamiltonian and
e is the Fermi energy.
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Figure 4.1: Position of the poles of the Green function (Eq. 4.8) in the complex
frequency plane. Those corresponding to the unoccupied states are slightly below
the real frequency axis while those corresponding to the occupied states are slightly
above it.



The Dyson Equation

The time evolution of the field operator, in the Heisenberg representation is given
by the equation of motion:

. 8 0 . 0 ~
=t (v ) = [0 () H| (4.10)

with the Hamiltonian operator given by:
- A 1 n
#o= [ ) |59 Vi 0] 6

//(J]rdtdr'dit"guT Ot ) o (et )0 () U (1), (4.11)

where v (r,t;r',t") = 0 (t —t') /|r — 1'| is the Coulomb interaction. By evaluating
the Commutatm in Eq. 4.10, the equation of motion for the single particle Green
function can be obtained:

[z£+ —V? — nxt(r)](}(r,t;r’,t’)

ot
fi [ ar T VI [6 006 ) () 6 (0.0 ) Ve 1.6
—5(r—r)5(t—) (412)

the quantity in the integrand of the second term is the two-particle Green function.
Following the same procedure to obtain the equation of motion for the two-particle
Green function will give a term depending on the three-particle Green function, and so on.



The Dyson Equation

To break this hierarchy, the mass-operator is introduced, defined by:
/drldtlf\ff (v,t;r1,6) G (v, ty; 0 ) =

— / driv (v — 1) (N|T [zjﬁ (r1.) 0 (r1, 1) ¥ () 0 (r’,t')} INY. (4.13)

Eq. 4.12 can then be rewritten:

o 1
[Z’a n §v2 Vi (r)] G (r7 t; r,, t’) —]dl‘ldtlf\f[ (I‘; tiry, tl) G (rh t1; I", t,) (4_14)

=o(r—1)o(t—1).
Since the Hartree interaction is a one-particle operator, it is usually separated from
the mass operator M to define the self-energy, ¥ = M — Vj;. Replacing the mass-
operator in Eq. 4.14 we arrive at:

[i% — Ho (r)] G (r,tr'. 1) _/drldtlz (v, t;11,00) G (1, L1517, 1)

(4.15)
=o0(r—r")o(t—1t),
where:
Ho (1) = —%VQ + Viw (1) 4+ Vit (r). (4.16)

In the Hartree approximation Eq. 4.15 becomes:

[2% — Hy (r)] Go (v, ;0 ) =0 (r—1")o(t—1). (4.17)



The Self Energy: Hedin’s equation

Multiplying Eq. 4.15 by Gy on the left and using the hermiticity of the single
particle operator together with Eq. 4.17, and integrating, yields the well-known
Dyson equation:

G (v, ;e 1) =G (v, ;0" 1) +

/f dl‘ldtldrgdtg Go (I‘, t; ro, tg) > (1‘2, 752; rq, tl) G (1‘1, t1; I“’7 t,) .

(4.18)
Recurrently replacing G on the right-hand side by Gy + GoXG! leads to the series
expansion:
G =Gy + GG+ GpXGoxGo + ... (419)

'In this symbolic notation. products imply an integration, as a product of matrices with con-
tinuous indices, i. e. AB = [ A(1,3)B(3,2)d3

which shows that the single-particle propagator G(r,t;r',t') is equal to the “free”
particle propagator G (r, ¢;r', ') plus the sum of the probability amplitudes of prop-
agating from (r,t) to r', ¢’ after single, double, etc.. scattering processes, with X
playing the role of the scattering potential. Diagrammatically, this relation is shown as: _ + 4+ 4+

where the double plain arrow represents the interacting Green function, the plain
arrow represents the non-interacting one.



The Self Energy: Hedin’s equation

For an electron propagating in a solid or molecule, the origin of the scattering pro-
cesses lies in the Coulomb interaction with the Fermi sea. Thus, it is natural to
expand the self-energy in terms of the bare Coulomb interaction. In the diagrams
below, we show examples of some simple (low order) scattering processes. Dia-
gram (a) is a first order scattering process that describes the propagating electron
exchanging instantanecously, via the Coulomb interaction, its position with one elec-
tron from the Fermi sea. It corresponds to the exchange interaction. Solving the
Dyson equation (4.15) including only this term in the self-energy and updating the
Green function self-consistently yields the Hartree-Fock approximation. In diagram
(b) the interaction of the probe electron with the Fermi sea excites an electron out
of it, generating an electron-hole pair, which annihilate each other at a later time,
interacting again with the probe electron. This second order scattering process,
called “bubble” diagram, represents an electron repelling another from its neighbor-
hood, thus generating a positive charge cloud around it. It is the simplest dynamical
screening processes. In diagram (c), the excited electron in the electron-hole pair
of diagram (b) further excites another electron-hole pair from the Fermi sea, chang-
ing the positive charge cloud around the probe electron again. Nevertheless, the
long-range of the bare Coulomb interaction results in a poor convergence of this
expansion for the self-energy, in fact, it diverges for metals.

o---



The Self Energy: Hedin’s equation

In 1965, L. Hedin [8] proposed a different approach for obtaining the self-energy,
by expanding it in terms of a dynamically screened Coulomb potential instead of

the bare one. The derivation using the functional derivative technique can be found

in Ref. [8, 86, 87]. Here, we just present the resulting set of equations:

I'(1.2,3) =4d(1.2)0(2,3) +/'a’(4,.5,6*7) %G(i(i)(?(?ﬁ)?(&?ﬁ)
| (4.20a)
P(1,2) = / 7(2.3)G(4,2)T(3,4,1)d (3,4) (4.20b)
W(l.2) =v(1,2) +/H A)v(4,2)d(3,4) (4.20c)
Y (1,2) = / (3,4)G (1,37) W (1,4) T (3,2,4). (4.20d)

where we used 1 = (ry,¢;) to simplify the notation. T' is a vertex function, P the
polarizability and W the dynamically screened Coulomb potential. In Eq. 4.20a the
vertex function is written in terms of a four point kernel (given by the functional
derivative of the self-energy). Replacing the self-energy by the expression in Eq.
4.20d would allow to expand the vertex function in terms of the screened Coulomb
potential. For the aim of this thesis, it will nevertheless be sufficient to represent it

by a filled triangle:

[8] L. Hedin, Phys. Rev. 139, A796 (1965).

[86] L. Hedin and S. Lundqvist, Solid State Phys.:
tions 23, 1 (1969).

Advances in Research and Applica-

[87] F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).



The Self Energy: Hedin’s equation

Eq. 4.20b, 4.20¢, and 4.20d can then be represented diagrammatically as:

' d% (1,2
'(1,2,3)=0(1,2)d(2,3) +/d(4,5,6,7) \(—,)G(4,6)G(7,5)F(6,7,3)
0G (4,5)
(4.20a)
P(1,2) = —i / G(2,3)G(4,2)I(3,4,1)d (3,4) (4.20b)
W(1,2)=v(1,2)+ / W (1,3)P(3,4)v(4,2)d(3,4) (4.20¢)
. ¥ (1,2) z/d(3,4)c(1,3+) W (1,4)T(3,2.4). (4.20d)
The set of equations 4.20, together with the Dyson equation (4.18), constitute
—  e—- _V_ — et the definitive solution of the quantum mechanical many-body problem. One just

needs to solve them self-consistently to obtain the single-particle Green function
of the interacting system (see Fig. 4.2). However, a direct numerical solution is

prevented by the functional derivative in Eq. 4.20a, and, as usual, one has to rely

on approximations. This will be the subject of the second part of this chapter.
and

G = Gy + GoXG]
N
W G

where the double wiggly line represents the screened Coulomb potential.
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The Self Energy: GW approximation

I'(1.2,3)=6(1.2)0(2, 3)+/-d(4,5,6,7) %G({G)G(?,E))F(G,?,B)
| (4.20a) I'(1,2,3) =4(1,2)0(2.3) (4.25a)
P(1,2) = /'0(2 3) G (4, 2) T (3,4,1)d (3, 4) (4.20D) P1,2) = =iG(1,2) G (2,1), (4.25b)
» W(l.2)=v(1,2) +/d(3*4) W(1.3)P(3.4)v(4.2), (4.25¢)
W(1,2) =v(1,2) +/n P(3.,4)v(4.2)d (3,4) (4.20¢)
¥ (1,2) =iG(1,2) W (17,2) . (4.25d)
Y (1,2) = / (3,4) G (1,37) W (1,4) T (3,2,4). (4.20d)

Diagrammatically, the three-point T'" function is collapsed into a point. The ele-
mentary unit in this set of equations is the bubble diagram of the polarizability
operator:

This approximation for the polarizability is known as the random-phase approxi-
mation (RPA). Physically, it represents the polarization generated by the creation
and annihilation of a dressed electron-hole pair, while the interaction between the
(dressed) electron and hole is neglected. In other words, scattering processes where
the electron or the hole in the electron-hole pair interact with the medium are taken
into account. For example, the process represented by the following diagram:

(0

can be mcluded. However, processes like:

where the electron and the hole

interact with each other are neglected.

The screened Coulomb interaction resulting from Eq. 4.25¢ is the same as in Eq.

4.20c¢:

W

Except that now the polarizability

is represented in the RPA.



The Self Energy: GW approximation

In Eq. 4.25d, the self-energy is written as a product of the Green function and
the screened Coulomb interaction, diagrammatically:

etc. through the screened Coulomb potential. Also processes like:

O 4

The shape of this diagram is similar to the Hartree-Fock approximation, with the in- ~ aI® included through the interacting Green function. However, diagrams like:
stantaneous bare Coulomb potential replaced by the dynamically screened Coulomb
one. This approximation to the self-energy includes processes represented, for ex-
ample, by the diagrams:

_ O where the added electron interacts with that of the electron hole pair, are neglected.
- and & oo

G = Go+ GG

G

> =iGW P = —iGGq]

N\[W = v + WPy
/ ¢ P




The G, W,

method

Assuming one counts on an effective single-particle potential V*°(r), which contains
some of the exchange-correlation effects in a many-body system and approximates

reasonably well the self-energy, 1. e., the solutions of the single particle equation,

A~

Her(r)@i(r) = €ipi(r) (4.26)

with

- I o o, . e
H.g(r) = §v2 4+ Vi (r) + V() 4 V(1) (4.27)
are such that ¢;(r) = ¥s(r) and ¢ = R(es) (1s(r) and €, are the solutions of Eq.
4.23). The quasiparticle equation (4.23) can be rewritten,

. .
§V2 4+ Vit (1) + V(1) + V€ (r)] e (r) + / dr'AY (v 1’5 e) g (1) = e (1)
(4.28)

where

AY (r,r'ye) = X (r,r'ie) = V() o(r — 1'). (4.29)

Since, according to our assumptions, the correction due to AY. are small, one
can obtain the quasiparticle energies applying first order perturbation theory:

ti(r) = pi(r)

v o 4.30
€;" =€ + (i (r1) [R[AX (r1, 121 €/")] 5 (r2)) - ( |

Taking the self-energy in the GIW approximation, and further assuming that the
non-interacting Green function G corresponding to H.g 1s a good approximation to
the interacting one, the self-energy can be calculated through:

Po(1.2) = —iGy (1.2) Gy (2,1), (1.31a)
Wo (1,2) = v (1,2) + / d(3,4) Wy (1.3) P (3,4) v (4,2), (4.31b)
2 (1,2) = iGo (1,2) Wy (17,2) . (4.31¢)

usually known as the GyWy approximation.



GW versus HF
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GW versus HF
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FIGURE 10 | Pictorial representation of the Hartree—Fock (left panel) and GW (right panel) approximations. Hartree—Fock eigenvalues reflects
electron addition or removal with respect to a rigid system, in the GW approximation the system responds dynamically. (Credits to Andrea
Cucca, 2017).



GW versus HF
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FIGURE 2 | Typical electron removal spectral function matrix
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independent-particle result such as HF: it consists of one sharp peak.
The interacting spectral function, given by the fat dots, exhibits a
broad quasi-particle peak and a satellite due to excitations of the
many-body system. Shown are also the imaginary (continuous line)
and shifted real (dotted line) parts of the self-energy. The quasi-
particle peak appears where the shifted real part crosses zero. Relative
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Flowchart of a GW code

€k = Enk T <%9n.k (ry) R [Z (1"11 I e??.jk)]

;o
=5 / Go(ry,rosw + ) Wo(ra, 1y w')do’,

vis

Z(I‘l, I'QZLU)

“n -k(rl)%ﬁ; .k(r2)

W — €nk + ”]

Go([’l. rg:w) = Z

nk

Wo(ry, rasw) = /5‘1(1"1,rg:_w)'l,'(rg,rg)drg-

g(ry,rosw) =1— / v(ry,r3) P(ry, ro; w)drs,

P(rl«.I'QQW) = _QT
v

Go([‘l, o)W + ’uu")Go(I‘g, r; w")d

— V(1)) 3 (1) — 1) [ o (),

(5.2)

(5.1)

The self-energy can be separated into the exchange and correlation terms. If we

define:

(5.3)

(5.4) where v(r), r9) =

I-’L'rg(]f'l, o w‘) = I-’Vo([‘l, s w‘) — ’U(I‘l, I‘Q), (57)

is the bare Coulomb potential, the exchange and correlation

1
r1—r2|

term of the self-energy can be calculated from:

W' (5.6)

separately.

;o
Z‘X(rl. I‘Q) = E / Go(I‘l. ['Qlwl)'b’(['g, rl)dw'
7
occ (5.8)
= nalr)u(ry,T1) @) (r2)
n.k
. 1 .
Yry, rosw) = 9 / Go(ry, ro;w + W)W (ry, 15 w')dw'’ (5.9)
7



Flowchart of 2 GW code
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Bethe-Salpeter Equation in a Nutshell

1. Dielectric Function, —ANEFH RTG530 H Fra o

System subject to an external perturbation

—1
‘4 Vtot — & Vext
Viot = Vext + Ving

E—='D

EELS R index
/ \A

Abs X-ray

I'1 I'o; UL/ / I'1 Is. w I'g I'z)dlf'a (54)



Bethe-Salpeter Equation in a Nutshell
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1. Dielectric Function,

on . . : >
P = 5 Irreducible polarizability [(1,2,3)=6(1,2)6(2.3) +/d(4,5,6,7) ?2(1,’2)(;(4, 6)G (7.5)T(6.7,3)
Vtot 0G (4,5)
(4.20a)
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Bethe-Salpeter Equation in a Nutshell
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Irreducible polarizability

1. Dielectric Function,
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Bethe-Salpeter Equation in a Nutshell

The macroscopic dielectric tensor is linked to the micro-
scopic inverse dielectric matrix by
1

M/~
e (q, w) = — , (5)
a Clllg% le~1(q., ®)]lc=0.6'=0

where G and G’ are reciprocal lattice vectors. Usually, the
random-phase approximation (RPA) is adopted in describing
the dielectric matrix [65], using

A e*

|G + q||G’ + q]

£6.6/(q, @) = 8.6 — Xe.c (@ ®).  (6)
x"(q. @) is the so-called independent-particle irreducible po-
larizability, because under RPA the system’s response to the
total field (induced and incident field) resembles the case of
noninteracting systems [66].

¥
IPA-RPA (without local field effects) < RPA < BSE

Albrecht et al., Phys. Rev. Lett. 80, 4510 (1998).

If one neglects the local field effects [67], 1.e., contributions
from the off-diagonal matrix elements of g g/ (q, @) to its
inverse matrix, one has

eM(q, w) = }li_TR) £0,0(q. w). (7)

This approximation is the so-called “neglecting local filed

effects” and also referred to as independent particle approx-

imation (IPA). In so doing, the imaginary part of macroscopic
Absorption Spectrum of Silicon

IP-RPA vs GW-RPA vs BSE vs exp.
60 T T [ T I

s Exp.
50 - \ = == [P-RPA ]
/ . . - GW-RPA
BSE




Time-dependent DFT

Correlated electron motion plays a significant role in the spectra described in the
previous chapters. Further, placing an atom, molecule or solid in a strong laser field
reveals fascinating non-perturbative phenomena, such as non-sequential multiple-
ionization (see Chap. 18), whose origins lie in the subtle ways electrons interact with
each other. The direct approach to treat these problems is to solve the (non-relativistic)
time-dependent Schrodinger equation for the many-electron wavefunction ¥ (z):

oY (1)
ar

HOW (1) =i H(t) =T + Vee + Vext(7) (4.1)
for a given initial wavefunction ¥ (0). Here, the kinetic energy and electron—electron
repulsion, are, respectively:

N

N

~ 1 ~ 1 1

T=—-> V) and Ve=2> —— (4.2)
i=1

2 |r,‘—rj|'

t9 |

and the “external potential” represents the potential the electrons experience due to
the nuclear attraction and due to any field applied to the system (e.g. laser):

N
Vext(f) = Z Vext(Fi, 1). (4.3)

i=1
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For example, vex (r;, ) can represent the Coulomb interaction of the electrons with
a set of nuclei, possibly moving along some classical path,

Ny

Z,
Vet (r, 1) = = ) TR (4.4)

v=1

where Z, and R, denote the charge and position of the nucleus v, and N, stands
for the total number of nuclei in the system. This may be useful to study, e.g.,
scattering experiments, chemical reactions, etc. Another example is the interaction
with external fields, e.g. for a system illuminated by a laser beam we can write, in
the dipole approximation,

N n Z
V

Vext (1) = Ef (1) sin(@)r - o — TR (4.5)
v=1 vV

where o, w and E are the polarization, the frequency and the amplitude of the laser,
respectively. The function f(z) is an envelope that describes the temporal shape of
the laser pulse. We use atomic units (¢> = h = m = 1) throughout this chapter; all
distances are in Bohr, energies in Hartrees (1 H=127.21 eV = 627.5 kcal/mol), and
times in units of 2.419 x 10~s.

Solving Eq. 4.1 is an exceedingly difficult task.
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function of the oxygen atom, even on a coarse grid. Physically, we are instead inter-
ested in integrated quantities, such as one- or two-body probability-densities, which,
traditionally can be extracted from this foreboding ¥. However, a method that could
yield such quantities directly, by-passing the need to calculate ¥, would be highly
attractive. This is the idea of density-functional theories. In fact, in 1964, Hohen-
berg and Kohn (1964), proved that all observable properties of a static many-electron
system can be extracted exactly, in principle, from the one-body ground-state density
alone. Twenty years later, Runge and Gross extended this to time-dependent systems,
showing that all observable properties of a many-electron system, beginning in a
given initial state ¥ (0), may be extracted from the one-body time-dependent density
alone (Runge and Gross 1984). What has made (TD)DFT so incredibly successful is
the Kohn—Sham (KS) system: the density of the interacting many-electron system is

obtained as the density of an auxiliary system of non-interacting fermions, living in
a one-body potential. The exponential scaling with system-size that the solution to
Eq. 4.1 requires is replaced in TDDFT by the much gentler N* or N? scaling
(depending on the implementation) (Marques 2006), opening the door to the quantum
mechanical study of much larger systems, from nanoscale devices to biomolecules.
(See Chaps. 19-21 for details on the numerical issues). Although the ground-state
and time-dependent theories have a similar flavor, and modus operandi, their proofs
and functionals are quite distinct.
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4.2 One-to-One Density-Potential Mapping

The central theorem of TDDFT (the Runge—Gross theorem) proves that there is a one-
to-one correspondence between the external (time-dependent) potential, vexc(r, ),
and the electronic one-body density, n(r, 1), for many-body systems evolving from
a fixed initial state ¥y (Runge and Gross 1984). The density n(r, t) is the probability
(normalized to the particle number N) of finding any one electron, of any spin o, at
position r:

nir,t)=N Z /d3l‘2---/d3l‘N|lI/(l‘U,I‘202---I‘NO'N,[)|2 (4.6)
0,02..0N " *

The implications of this theorem are enormous: if we know only the time-dependent
density of a system, evolving from a given initial state, then this identifies the external
potential that produced this density. The external potential completely identifies the
Hamiltonian (the other terms given by Eq. 4.2 are determined from the fact that
we are dealing with electrons, with N being the integral of the density of Eq. 4.6
over r.) The time-dependent Schrodinger equation can then be solved, in principle,
and all properties of the system obtained. That is, for this given initial-state, the
electronic density, a function of just three spatial variables and time, determines all
other properties of the interacting many-electron system.
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This remarkable statement is the analogue of the Hohenberg-Kohn theorem for
ground-state DFT, where the situation is somewhat simpler: the density-potential
map there holds only for the ground-state, so there is no time-dependence and no
dependence on the initial state. The Hohenberg-Kohn proof is based on the Rayleigh-
Ritz minimum principle for the energy. A straightforward extension to the time-
dependent domain is not possible since a minimum principle is not available in this
case.

Instead, the proof for a 1-1 mapping between time-dependent potentials and
time-dependent densities is based on considering the quantum-mechanical equation
of motion for the current-density, for a Hamiltonian of the form of Eqs. 4.1-4.3.
The proof requires the potentials vey(r, 1) to be time-analytic around the initial
time, i.e. that they equal their Taylor-series expansions in 7 around r = 0, for a finite
time interval:

o0

Vext(r, 1) = Z kizvext.k(r)tk- 4.7)

k=0
The aim is to show that two densities n(r, t) and n’(r, t) evolving from a common
initial state ¥y under the influence of the potentials vex (r, ) and vgxt (r, r) are always
different provided that the potentials differ by more than a purely time-dependent

function:

Vext (F', 1) # Uéxt(rs ) + c(1). (4.3)
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The above condition is a physical one, representing simply a gauge-freedom. A purely
time-dependent constant in the potential cannot alter the physics: if two potentials
differ only by a purely time-dependent function, their resulting wavefunctions differ
only by a purely time-dependent phase factor. Their resulting densities are iden-
tical. All variables that correspond to expectation values of Hermitian operators are
unaffected by such a purely time-dependent phase. There is an analogous condi-
tion in the ground-state proof of Hohenberg and Kohn. Equation 4.8 is equivalent

to the statement that for the expansion coefficients vey x (r) and véxt_ ¢ (r) [where,

asin Eq. 4.7, vl (r, 1) = > 72, %véxt‘k(r)tk ] there exists a smallest integer k > 0
such that
ak
/ /
Uex‘[‘k(r) - Uext‘k(r) — 8tk [Uext(r, f) - Uext(r, t)] ?é COﬂSt. (4.9)
=0

The initial state ¥ need not be the ground-state or any stationary state of the initial
potential, which means that “sudden switching™ is covered by the RG theorem. But
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The first step of the proof demonstrates that the current-densities

Jr t) = (WO)|j)|w@) (4.10)
and
jirt) = WO o) (4.11)
are different for different potentials vey¢ and véxt. Here,
N
j(r) = iZ[va(r—r-)+5(r—r-)v-] (4.12)
,] 21 [ ) [} [} .

i=1

is the usual paramagnetic current-density operator. In the second step, use of the
continuity equation shows that the densities n and n’ are different. We now proceed
with the details.
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Step 1 We apply the equation of motion for the expectation value of a general operator

Q(t),
d . 30 A 4
E('P(HIQ(HIW(I)) = (¥ ()| (E —i[Q(1), H(r)]) [W(1)), (4.13)

to the current densities:

9 B . R .
Ej("’ t) = E(%P(t)lj(r)lw(r)) = —i(Y()|[j(r), HOIY (1)) (4.14a)

s

8 _ d /. “ I . / % Y/ !/
51”(1‘, 0= (P OO 0) = =i OI (1), H O (@), (4.14b)

and take their difference evaluated at the initial time. Since ¥ and ¥’ evolve from
the same initial state

U(i=0)=v'(r=0) =, (4.15)
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and the corresponding Hamiltonians differ only in their external potentials, we have

= —(W[](r), HO) — B (0)]|%)
=0

= — no(r)V [vext (r, 0) — v}, (1, 0)] (4.16)

9
i —j'r.0]

where no(r) is the initial density. Now, if the condition (4.9) is satisfied for k = 0O the
right-hand side of (4.16) cannot vanish identically and j and j" will become different
infinitesimally later than 7 = 0. If the smallest integer k for which Eq. 4.9 holds is
greater than Zero, We use Eq. 4.13 (k + 1) times. That 1S asfork =0 above where
we used Q(r) = j(l‘) in Eq 4. 13 fork =1, we take Q(r) = —1[J (r), H(t)] for
general k, Q(t) — (—i)k [[[] (r), H(t)] H(t)] H(r)] meaning there are k nested
commutators to take. After some algebra':

9\ k1
(‘—) [jr.t) —j'(r, 0]

- = —no(r)Vwe(r) #0 (4.17)

1=0

with

9 k
wi(r) = (—) [Vext (T, 1) — Ve (7, 1)] (4.18)

ot

=0
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Once again, we conclude that infinitesimally later than the initial time,

Jr oty # j'(r. 0. (4.19)

This first step thus proves that the current-densities evolving from the same initial
state in two physically distinct potentials, will differ. That is, it proves a one-to-one
correspondence between current-densities and potentials, for a given initial-state.
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Step 2 To prove the corresponding statement for the densities we use the continuity
equation

on(r,t)
ot

=—V.j(r,t) (4.20)

to calculate the (k 4 2)nd time-derivative of the density n(r, t) and likewise of the
density n’(r, r). Taking the difference of the two at the initial time r = 0 and inserting
Eq. 4.18 yields

8 k+2
(E) [n(r,t) —n'(r,n]

Now, if there was no divergence-operator on the r.h.s., our task would be complete,
showing that the densities n(r, r) and n'(r, r) will become different infinitesimally
later than ¢+ = 0. To show that the divergence does not render the r.h.s. zero, thus
allowing an escape from this conclusion, we consider the integral

=V . [no(r)Vwi(r)]. (4.21)
=0

/‘ Frag()[Vwi(r)]? = — / & rwg(r)V - [no(r)Vuwy(r)]

+ %dS [no(r)wi(r)Vwy (r)], (4.22)

where we have used Green'’s theorem. For physically reasonable potentials (i.e. poten-
tials arising from normalizable external charge densities), the surface integral on the
right vanishes (Gross and Kohn 1990) (more details are given in Sect.4.4.1). Since
the integrand on the left-hand side is strictly positive or zero, the first term on the
right must be strictly positive. Thatis, V -[no(r)Vwy (r)] cannot be zero everywhere.
This completes the proof of the theorem.

We have shown that densities evolving from the same initial wavefunction ¥
in different potentials must be different. Schematically, the Runge-Gross theorem
shows

Yo Vext & n. (4.23)

The backward arrow, that a given time-dependent density points to a single time-
dependent potential for a given initial state, has been proven above. The forward arrow
follows directly from the uniqueness of solutions to the time-dependent Schrodinger
equation.

Due to the one-to-one correspondence, for a given initial state, the time-dependent
density determines the potential up to a purely time-dependent constant. The wave-
function is therefore determined up to a purely-time-dependent phase, as discussed
at the beginning of this section, and so can be regarded as a functional of the density
and initial state:

W (1) = e COw [, W), (4.24)
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As a consequence, the expectation value of any quantum mechanical Hermitian oper-
ator Q(t) is a unique functional of the density and initial state (and, not surprisingly,
the ambiguity in the phase cancels out):

Qln, Wol(1) = (¥[n. Yol(1)| Q)% [n, Po)(1)). (4.25)

We also note that the particular form of the Coulomb interaction did not enter
into the proof. In fact, the proof applies not just to electrons, but to any system of
identical particles, interacting with any (but fixed) particle-interaction, and obeying
either fermionic or bosonic statistics.
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4.3 Time-Dependent Kohn—-Sham Equations

Finding functionals directly in terms of the density can be rather difficult. In partic-

ular, it is not known how to write the kinetic energy as an explicit functional of the

density. The same problem occurs in ground-state DFT, where the search for accu-

rate kinetic-energy density-functionals is an active research area. Instead, like in the

ground-state theory, we turn to a non-interacting system of fermions called the Kohn—

Sham (KS) system, defined such that it exactly reproduces the density of the true

interacting system. A large part of the kinetic energy of the true system is obtained

directly as an orbital-functional, evaluating the usual kinetic energy operator on the —1 -1

KS orbitals. (The rest, along with other many-electron effects, is contained in the Vextln, Wol(r, 1) <— n(r,t) <— vgsln, @ol(r, ).
exchange-correlation potential.) All properties of the true system can be extracted
from the density of the KS system. N

nr.0) =2 lg;r. 0l (4.20)

j=I
with orbitals ¢ (r, t) satisfying the time-dependent KS equation
2

0 \Y
i j(r.1) = [—7 + vksln: ®ol(r, r)} @;(r.1). (4.27)

Analogously to the ground-state case, vgs is decomposed into three terms:

‘ nr,’r)
vks[n: @ol(r. 1) = vexi[n; Yol(r, 1) + / dPr'———— + ve[n: W, Pol(r, 1),

P
(4.28)
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where vey[n; Wol(r, 1) is the external time-dependent field. The second term on
the right-hand side of Eq. 4.28 is the time-dependent Hartree potential, describing
the interaction of classical electronic charge distributions, while the third term is
the exchange-correlation (xc) potential which, in practice, has to be approximated.
Equation 4.28 defines the xc potential: it, added to the classical Hartree potential,
is the difference between the external potential that generates density n(r, 1) in an
interacting system starting in initial state ¥, and the one-body potential that generates
this same density in a non-interacting system starting in initial state @.




