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Chapter 1

Density functional theory

1.1 The band gap problem

1.1.1 Derivative discontinuity of .

According to the Hohenberg-Kohn theorem

—u (1.1)

FZZPH‘I’O (W]

) ) (1.2)
(O)r = pi(W|OW;)
F[n(r)] = 1\4inf‘—>n(r) <T + ‘A/ee>F (13)
/n(r)dr:]V[er 0<w<1)
(1.4)
=n(r) = (1 — w)np(r) + wnprpa(r)
EM+w)=(1-w)Ey +wENi1
OF
7 [No+6 = Eng+1 — Eny = —A
N (1.5)
OF
a—NlNU—(S =En, — Eng-1=—1
For non-interacting systems
OF
a—N|N0+6 = ELUMO (1.6)
0B
oI No—8 = EHOMO
Epteset = Ey[Ng — 1) 4+ Ey[No + 1] — 2E,[No] =1 — A (1.7)
. OF OFE
deriv __ 7: v _ v
Egap™ = a}ﬂo{ ON | Nt T 5N |N°5N} (1.8)
KS
= Egap + Bxc
ps(r,r) = nigi(r)e; (r') (1.9)
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1.1. The band gap problem Chapter 1
E = xc[ps(rar/)] (1.10)
Eg:;iv = <¢N0+1| I:IE'H |¢N0+1> - <¢N0| I:IE'H |¢N0>
- 1 (1.11)
Heg = 7§V2+U+1}J+1A)XC
0E
~ / — XC
eolrr’) = = (1.12)
Eep=1—A
=[E(N—-1)— E(N)]—-[E(N)— E(N +1)]
= [—en(N)] = [-en+1(N + 1)] (1.13)
= [en+1(N) = en(N)] + [en+1(N +1) = en 41 (V)]
= €gap T D
5Exc 5Exc
A — o] B o] ‘ (114)
dp(r) N+6 dp(r) N—§
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Chapter 2

GW Approximation

This chapter is mostly thought as a summary of the equations needed for the application of the GW approxima-
tion (GWA) to the Wien2k code. For the derivation of the approximation please refer to the original work of L.
Hedin [28],and L. Hedin andS. Lundqvist [29] as well as the extensive reviews of L. Aryasetiawan [8] and L.
Aryasetiawan and O. Gunnarsson [9].

2.1 Summary of GW equations

Electronic band structures of a solid as probed by the photoemission (for occupied states) and its inverse process
(for unoccupied states) are described by quasi-particle (QP) energies ESE ) and wave functions U, (r) which are
solutions of the following Dyson-type QP equation
v2
- + Vexs (r) + VH(r)] U, (r) + / S (1,13 En1) Ui (2 A’ = Epie Ui (1) 2.1

Vext (1) is the external potential accounting for the interaction between electrons and nuclei. Vii(r) is the Hartree)
potential resulted from classical Coulomb repulsion. All non-classical electron-electron interaction effects are
included in the non-local energy-dependent exchange-correlation self-energy term X*(r, r’; w).

In the G W)y approach the quasiparticle (qp) energy E,x is calculated from the perturbation theory using the
Kohn-Sham orbital energies as the zero-th order approximation

V2

- + Vet (r) + Vi (r)} U,k (1) + Vie (1) Uik (1) = €0k Pk (1) 2.2)

gnk = €pk + an (Gnk) <1/Jnk| Z(enk) - ‘/;(C |wnk> (23)

where €, are the DFT eigenvalues, ),k (r) are the DFT eigenfunctions and V. (r) is the DFT exchange correlation
potential. Z, is the qp renormalization factor, defined by:

Zu (eni0) = ll - (% (] Em) |wnk>) ] 2.4)

and accounts for the fact that X is evaluated at the DFT energy rather that the qp energy. X(rq,ra;w) is the
non-local, energy dependent selfenergy, which in the GW approximation is given by

Y(ry, rojw) = QL/Go(rl,rg;w—l—w')Wo(rg,rl;w')dw' (2.5)
s
W: screened
Coulomb
>=GW : = .
R -+ +‘G
p—— -

G: propagator
Figure 2.1: Illustration of the GW approximation.
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2.1. Summary of GW equations Chapter 2
Go(r1,ro;w) is the DFT Green’s function defined by:
occ unocc
v, v* v, v*
Go(rth;w) _ Z k(rl) nk(rQ) + Z k(rl) nk(rQ) (26)

W—€nk — 1 w—€ ]
nk nk n nk nk+77

where 1) is a positive infinitesimal. Wy(ra, r1;w) is the dynamically screened Coulomb potential given by:

Wo(r1,ra;w) :/8_1(I'1,I'3;L¢J)U(I‘3,r2)dr3

ol rz) = ke

g(ry,rosw) =1-— /U(rl,rg)P(r3,r2;w)dr3

and P(ry,r2;w) is the polarization, which in the random phase approximation (RPA) is written:

P(I‘l, rg;w) = 72i /Go(rl, rolw + w/)Go(I‘Q, rl;w‘)dw'
T
The self energy can be separated into a static and a dynamic part. If we define:
W (r1,ro5w) = Wo(ry, ro;w) — v(ry,r2)

then we have the dynamic term:

Y(ry,ro5w) = i /Go(rl,rg;w + W)W (ra, r1;w')dw’

and the static one, _
)
%% (rq,12) =5 /Go(rl, ro;w )v(re, r1)dw’

occ

- Z Uk (r1)v(re, 1) ¥y (r2)
nk
which clearly corresponds to the Fock or bare exchange operator. Equation 14.39 is then
E(I‘l, I‘Q;CLJ) = Zz(rl, 1‘2) + Ec(rl, ro; w)

where ¢ represents the dynamic correlation of the quasi-particles.

To summarize

gnk = €nk T an <€nk) §R [<¢nk’ E<€Hk) - ‘/XC ‘wnk”

Znclend) = [1%(%%@(@%@) ]

Z(rl,rg;w) = i/Go(rl,rg;wer’)Wo(rg,rl;w/)dw’

occ \pn \p* unocc \pn \p*
Golr,r2;w) = ZM+ 3 Wk (r1) Wi (r2)

W —€pk — 1N W — €nk + 1

nk nk
W()(I‘l,rg;w) = /sfl(rl,rg;w)v(rg,rg)drg
e(ry,rojw) = 1f/v(r1,r3)P(r3,r2;w)dr3
P(rl,rg;w) = fQL/GO(rl,rg;w+w’)G0(r2,r1;w‘)dw/
™

gnk = €k T R [<¢nk’ E<gnk>> - ‘/XC ‘wnkﬂ

14

is the bare Coulomb potential and e(ry, ra; w) is the dielectric function defined by:

2.7)

(2.8)

2.9)

(2.10)

(2.11)

(2.12)

(2.13)



Chapter 2 2.2. Energy-only selfconsistent GW

Y(r,roiw) = %/Go(rl,rg;w+w’)WO(r2,r1;w’)dw’
Wo(r,ro;w) = /sfl(rl,rg;w)v(rg,rg)drg

g(ry,ro;w) = 1*/1}(T1,I‘3)P(I‘3,r2;w>dr3
P(ri,ro;w) = f%/Go(rl,rg;w+w')G0(r2,r1;w‘)dw'

2.2 Energy-only selfconsistent GW

Ethl)_ nk <¢nk‘2 ( nk) X( ‘¢nk> (214)

2.3 Matrix form of the GW equations

Let’s suppose we have a complete set of orthonormal basis functions {x(r)} which fulfill Bloch’s theorem. From
Appendix A.1.2, Eq. (A.7), we can write the Coulomb potential in matrix form:

vij(a // X3 (r1)) 1‘17r2)XJ(P2)d3T2d3T1 (2.15)

If we define the matrix elements
M. (k,q) = / X () Wi (0) g (x)dPr (2.16)
1%

The polarization for imaginary frequencies is given by (see Appendix 9):
BZ occ unocc

e =33 S e ] el o

The dielectric function defined in Eq. 2.8 diverges at g = 0 (See Appendix ??) thus, we have to resort to the
symmetrized dielectric function as defined in Eq. 10.2 obtaining:

€(d, iw) = 0;5 — szl )Pim (a, iw)v;, (q) (2.18)

Using Eq. 11.3 we have:
1
Wii(q,iw) szl Elm Q,iw) — Oy | V2 Uy (2.19)

The correlation term of the self-energy (see Appendix 12.2) is then

Zk(iw) :<\I/nk|Ec(r1, r2;iw) W)

€nktq — W / J
S S a3 [ Wt ) g

7 n’

(2.20)

(For details on the calculation of the frequency integral see Appendix ??).And the exchange term is (See
Appendix ??):

Yk :<‘I’nk|zz(1‘1, r2)|¥ok)
oce < 2.21)

:_zsz V3 M) 01

For the details on the BZ-Integration of eqs. 2.20 and 2.21 see Section 10. The correlation term is fitted by a
function of the form:

15



2.4. On the k- and g-points grid Chapter 2

~ m a;
30k (iw) = / 222
i) ; i (222)
using nonlinear least squares methods and then analytically continued to the real frequency axis. Thus we have:
= 2.23
Z w + ¢ )
J
and
9 g (w)——iiaj (2.24)
dw T L (w4 by)2 ‘
J
Finally, the qp energies are obtained from Eq. 2.14 as:
Enx = enx + Znx {ifﬂ((enk) + 50— (W V2T (01) [ W) (2.25)
with (as in eq. 13.3):
-1
Znk = |1 0 5 (w) (2.26)
e aw nk €nk ‘

Note that only equations 2.15 and 2.16 depend on the selection of the basis functions. We will revisit them in
the next chapter, after defining the basis set.

2.4 On the k- and g-points grid

In order to calculate the polarization Pij’ (q,47) we need a grid of k-points that allows us the use of the tethraedron
method for the integration. On the other side, to calculate the self-energy, the q-points grid should also be suitable
for such integration. One way to avoid having to run 1apwl several times is selecting the set of g-points such that
{k} = {k + q}. For the equality to hold, the I"-point has to be included in the {q}-set.

On the other side, the inclusion of the I'-point has the disadvantage that the dielectric matrix, as well as the
bare and screened Coulomb potentials diverge as q — 0. For the first case, the problem is solved by using
the symmetrized dielectric matrix, which does not diverge (See Appendix ??). The divergence of the Coulomb
potential can not be avoided, but it can be integrated... (See Appendix 12.3)

24.1 GyW, based on LDA+U
Formally, the only difference between LDA-based and LDA+U -based GoW) is the contribution of 5VU.

Enk = €pk + R <"/)nk| E(E‘nk) - ch - 5‘7U |"/)nk>:|

To see the relation between LDA and LDA+U based GoW, more expllcltly, we notice that the KS eigen-energies

obtained from LDA+U, denoted as eLEA+U contain a contribution from 5VU so that

7I;EAJrU (x| — _V2 VDA 4 51 [tni) (2.27)

—-LDA
=€px T+ 5VUnk

where e2PA are the LDA KS eigen-energies calculated using LDA+U wave functions. If we expand the self-

energy around eLDA instead of eLDA+U,

Enk —E}IEA-HJ + 5Enk(5 )
~elDA LSV 4 08 (EER4) (2.28)
+ 05 Ene™) (Enie — E™)

the final quasi-particle energies can be written as

Enk =™ + Znie (E0™) {52711( (&™) + 6VUnk}
e + Zok (Gh) [Zok (Ee™) — Vil -

(2.29)

16



Chapter 2 2.4. On the k- and g-points grid

LDA+U _ —LDA -
€ =€ + 0V

5nk: Ekl]zA—’_U + an (61:1]3A+U> |:Enk (61:1]3A+U> - ‘/Tflic o 5VU”k}
= e+ Zue () [Ba (e™) — Vi |
LDA

Under the assumption that 3%$ (E) can be well approximated as a linear function of the energy around €,,)*,
there are mainly two origins for the U-dependence of GoWj quasi-particle energies on top of LDA+U: 1) the
difference between LDA+U and LDA wave functions, and 2) the change of screened Coulomb interaction W)
due to the variation of the energy spectrum. The second factor can be exemplified by the clamped-ion static

macroscopic dielectric function,
1

em(0) = [limgoe ' (q,9,w = 0)] (2.30)

calculated from LDA+U wave functions at different U. Since both factors depend on U in an indirect manner, we
expect that the band gap from GoW, depends on U in a much weaker way than in case of the LDA+U, where the
splitting between occupied and unoccupied d/ f-bands is approximately equal to U.
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Chapter 4

Symbols and Notation

In this chapter we enumerate the symbols used throughout the text for clarity. Sometimes, within the text, the
arguments of the functions are not written, just to shorten the notation. The symbols are enumerated in alphabetical
order, first Arabic characters, then Greek ones.

4.1 Normalization schemes used for wavefunctions

To differentiate different normalization schemes for wavefunctions (including basis functions used to expand wave
functions), we use the following convention: wave functionsl normalized in the whole crystal volume (V) is
denoted as normal sysmbols; wavefunctions normalized in the unit cell volume are denoted by using symbols with
a tilde.

/ drx® (X% () = 61 j0q.q
s

“.1)
[ i 0% (1) = 60
Q
Wavefucntions with the two normalization are related by
— iq-R .o Cl
X (r) = 1/226“ R) 4.2)

4.2 Notations used

a Index running over atoms in the unit cell

+ G) Expansion coefficient of the LAPW basis function ®¥ (r) for the function u (7)Y}, (7) inside the MT-
Sphere of atom s (See equations 5.6, 5.9, 5.12, 5.16 and 5.20).

7% (k) Expansion coefficient of the LAPW eigenfunction function ¥,,i(r) for the function uf ()Y, () inside the
MT-Sphere of atom s (See equations 6.30).

+ G) Expansion coefficient of the LAPW basis function ®¥ (r) for the function @¢(r)Yj,, (7) inside the MT-
Sphere of atom s (See equations 5.6, 5.12 and 5.16).

e (k) Expansion coefficient of the LAPW eigenfunction function U, (r) for the function @ (r)Y},, (7) inside the
MT-Sphere of atom s(See equations 6.30).

+ G) Expansion coefficient of the LAPW basis function ®, (r) for the function uf (r, E2)Y},, (7) for local orbitals
inside the MT-Sphere of atom s (See equations 5.16 and 5.20).

(k) Expansion coefficient of the LAPW eigenfunction function ¥,i(r) for the function uf (r, E2)Yi, (7) for
local orbitals inside the MT-Sphere of atom s(See equations 6.30).

DL Radial integral of the mixed basis radial function and a product of u;’s. See equation 6.8

E,,; Augmentation energy for the radial function v,

GiM “mm Gaunt coefficient, see equation ??

G Reciprocal lattice vector
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yie!

s o~

3

M}, (k,q)

i (r®, Ear)

vi;(q)

|4

Virr

werk, Im(r)

Yim (0, »)

€i

YanLm(r®)

Points in the reciprocal space, not belonging to the reciprocal Bravais lattice, usually they belong to the First
Brillouin zone, otherwise, it is clearly stated.

Reciprocal lattice vector

Integral of an IPW of wave vector G over the interstitial region of the unit cell.

Angular momentum quantum number.

Angular momentum quantum number of the mixed basis functions.

Unified notation for the set of indexes {aN LM }.

Quantum number corresponding to the z-component of the angular momentum.

Quantum number corresponding to the z-component of the angular momentum of the mixed basis function.

The "overlap" of the i-th. mixed basis function with the product of the n-th. LAPW eigenfunction at k and
the conjugate of the m-th LAPW eigenfunction at k — q. See equation ??.

Principal quantum number of the radial mixed basis functions.
Number of cells in the crystal.

IPW of wave vectorq + G

Orthogonalized IPW of wave vector q + G

Points in the reciprocal space, not belonging to the reciprocal Bravais lattice, usually they belong to the First
Brillouin zone, otherwise, it is clearly stated.

Bravais lattice vector.

Muffin-Tin Sphere radius of atom a.

Real space vector in general coordinate system

Length of r.

Unit vector in the direction of r, also used to symbolize angular coordinates of r.
Position of atom a in the unit cell.

Real space vector in the local coordinate system of atom a (r® = T, 1(r — r,)).
Length of r?.

Unit vector in the direction of r®, also used to symbolize angular coordinates of r?.

; Coefficient of the G component of the i-th orthogonalized IPW.

; Coefficient of the G component of the i-th orthogonalized IPW normalized to 1.

Rotation operator to the local coordinate system of the atom a.

The regular solutions of the radial Schrodinger equation in the spherically averaged effective crystal potential
around site r,. (The radial part of the augmentation functions)

The matrix elements of the Bare Coulomb potential in the mixed basis.
Volume of the crystal.

Volume of the Muffin-Tin Sphere of atom a.

Radial part of the n-th LAPW eigenfunction at k

Spherical Harmonic function of indexes [, m. Usually written a as Y, (7). We use always the Condon and
Shortley convention.

i-th eigenvalue of the IPW overlap matrix

Muffin Tin Mixed basis function
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Yan s (r?)
@ (r)
U, (1)
VaNLMm(T?)
i (r)
i (r)

Q

X
X
4.3

il.

iii.

Vi.

vil.

viii.

iX.

Xi.
Xii.

xiii.

Xiv.

XV.
XVi.

XVii.

XViii.

Bloch sum of Muffin Tin Mixed basis function

The (L)APW+lo basis function.

The (L)APW+lo eigenfunction of band » and wave vector k
The radial part of the Mixed Basis Functions

Mixed basis function.

Orthogonalized Mixed basis function.

Volume of the unit cell.

Programming conventions

Strict ANSI Fortran90 should be used. Features marked as obsolescent in FO0/95 should be avoided (i.e.
assigned format specifiers, labelled do-loops, statement functions).

Modules should be used in place of common blocks for declaring global variables.

use statements should include the only option and the corresponding list of global variables used by the
subroutine, unless all the variables in the module are used.

Any code should be written in lower-case form, starting from column 6. An extra indentation of 2 columns
should be added inside each loop level. The length of each line should be kept to fewer than 75 characters
using the & character for line continuation.

Every function or subroutine, no matter how small, should be in its own file named rout ine. £90, where
routine is the function or subroutine name. It is recommended that the routines are named so as to make
their purpose apparent from the name alone.

Use of implicit none is mandatory.

Each passed argument should have its intent option defined, and a short description of its purport should
be added as comment in the same line.

All called procedures within the subroutine (intrinsic or external) should be explicitly declared.

Declarations of the form datatype=N, as well as doble precision or double complex should
be avoided. The form datatype (N) should be used.

Each variable should be declared separately, and, when possible, its purpose should be described in a short
comment on the same line.

Subroutines should be "plentifully" commented. If you are not sure, whether or not a comment should be
added here... do it.

The use of goto statements should be kept to a minimum. Only if it is impossible to avoid it. They should
be used for exiting loops only and always point to a cont inue statement.

Local allocatable arrays must be deallocated on exit of the routine to prevent memory leakage.

Every function or subroutine must be documented with the Protex source code documentation system.
This should include a short I&TEX description of the algorithms and methods involved. Equations which
need to be referenced should be labeled with routinel, routine?2, etc. The autorship of each new
piece of code or modification should be indicated in the REVISION HISTORY part of the header. See the
Protex documentation for details.

Each routine should terminate the program when given improper input.
Report errors prior to termination with a short description using the out err subroutine.

Avoid redundant or repeated code: check to see if the routine you need already exists, before writing a new
one.

All internal units should be atomic. Input and output units should be atomic by default and clearly stated
otherwise (with exception of WIEN2k output files used as input, it does not depend on us).
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Chapter 5

The (L)APW-+lo method (WIEN2K)

”Loving you is a dirty job
but somebody’s got to do it.”
Bonnie Tyler.

5.1 The (L)APW+lo basis functions

5.1.1 Core states

In the Wien2k code, the core states are calculated by solving numerically the full relativistic Dirac equation within
the DFT in the LDA(GGA) approximation. Only the spherically symmetric part of the LDA(GGA) potential is
taken into account.

The radial wave functions calculated are defined by the relativistic quantum number k = —s(j + %) as shown
in Table 5.1.1

Thus, the radial wave functions obtained are eigenfunctions of the total angular momentum number j and
not of the orbital one [. Since the core states are calculated including spin-orbit coupling, the angular and spin
dependence can not be disentangled. Thus, the core wave functions, including angular dependence are:

(i);%;mj (r) = Uann(ra)|jmj>l (5.1

where
1

mgye= Y (13 mu ol my) Yim, (7)10)0mto.m, (5.2)

o=—3

where (l % my olj mj) is the corresponding Clebsch-Gordon coefficient [47].

In the LAPW calculation, the mixed spin character of the core wave-functions is neglected. Since they only in-
teract with the valence states through the potential, which depends on the density, being this spherically symmetric,
there is no need to care about the angular dependence of the core states. In our case, this generates a complication,
since usually, for spin-polarized systems, the Green’s function as well as the polarization are taken as spin block
diagonal. One possible solution to this situation, which we are going to follow by now, is just to take the core

wave-functions as:
Fcore Nk a ~a
an,n,l,m(r) =\ 9 n 1uam~z(7" )Yim, (7%) (5.3)

where n,, is the total occupation of the state a,n, . In this way, the full angular dependence is taken into
account, and the normalization factor ensures the correct number of electrons in each state.

Table 5.1: Relativistic quantum numbers

j=1+3 K max. occupation
l|s=-1]s=41|s=-1|s=41|s=—-1]s=+1
s |0 1/2 -1 2
p|l 12 3/2 1 -2 2 4
d|2 3/2 512 2 -3 4 6
fl3 5/2 712 3 -4 6 8
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5.1.2 Valence and conduction states

The Wien2k code [ | 5] allows the use of two different linearization methods for making the Augmented Plane Wave
(APW) basis functions independent of the energy and anyway well suited to the solution of the problem.

5.1.2.1 The traditional linearization method: LAPW

The first linearized APW method, LAPW, was developed by O. K. Andersen [3] in the mid 70’s. A detailed
description of this method can also be found in Ref. [54]. The LAPW basis functions are defined by:

1 .
= Ji(k+G)r
e rcl
. Va
(I)G(r) = lmaz (54)
> Z Lk + G (r®, By) + B, (k + Gy (r, B)] Vi (7%) r€ MT,
=0 m=-1
where r @ = T }(r — r,), being r, the position of atom a in the cell and 7T, a rotation to the local coordinate

system of atom a, ©; is the energy derivative 2 57 evaluated at the linearization energy Ej. The radial wave func-
tions u;(r®, F;) and its energy derivatives are determined from a numerical integration of the radial part of the

Schrodinger equation and its energy derivative (see [44, 54]), and fulfill the conditions:
RL]’\'/IT
/ r?ui (r)dr = 1, (5.52)
0
RIVIT
/ r2uy ()i (r)dr = 0. (5.5b)
0

The coefficients Af, (k + G) and B}, (k + G) in equation 5.4 are determined by the condition that the basis
functions are continuous up to the first derivative at the sphere boundaries. Their expression is:

4 _— )

fn(k+G) = 7}3% (T, ' (k + G)cf (k + G) [Rp)? 'K+ G T (5.62)
4 _— .

Bi,(k+G) = J%“Yzm (T, ' (k + G))df' (k + G) [R ] e G)Ta (5.6b)

with the abreviations

i+ G) = (2GIN) (R, ) = Gullk + GI R )i (R, E)

r a
MT

=k + Glji(|k + G| R 7)iu(RSr, E1) — i([k + G| RS 7) i (RYr, E1), (5.7a)
a . a a 9751 (|1k+G|r a
di (k + G) =ji(|k + G|R}r)w (Ryr, Er) — (7“‘3:: ‘ ))Ra w (R, Ei)

MT

=ji(k + G|Rfr)u (R, Er) — [k + Glrji([k + G| Ry )wi(Riyr, Er). (5.7b)

Here, j; is the spherical Bessel function, the dots denote partial derivatives with respect to the expansion energy
E; and the primes with respect to the first variable.

5.1.2.2 The new linearization method: APW+lo

As we saw in the previous section, the LAPW method replaces the exact solutions u; of the muffin tin potential
by linear combinations of u; and ;, matched to the planewaves in value and slope at the sphere boundaries. As a
consequence, the LAPW basis set size must be increased as compared to that of the original APW method [57]. In
[56] and [55] an alternative way of linearizing the APW method is presented, which does not change the shape of
the original augmenting functions. As indicated by the name, the basis functions of the APW+lo method consists
of:

i. The original APW basis functions

1 .
_— i(k+G)r
e rel
: \/ﬁ
DE(r) = { Lo (5.8)
Z Z AL (k+ Guy(r®, B) Y (7)) e MT,
=0 m=-1
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The coefficients A} (k + G) are obtained by requiring the wave function to be continuous at the sphere
boundaries. This yields:

47 o ]l(|k+ G|Ra, ) ; .
a (K G) = ly* T 1 k G MT/) i(k+G) Ta 59
lm( + ) \/ﬁl lm( a ( + )) ul(R(IZWTyEl) € ( )

ii. A set of local orbitals of the form:

0 0 rel
pw (r) = 5.10)
Apw () {[E%UKWZEﬁ4BﬂmdﬂZEw]KmGW) reMT, (

Each local orbital is matched to zero at the sphere boundary, thus

Al w(Ryr, Ei) 5.11)
Blam ul(Rllle’ El)

The undetermined coefficient is determined by associating it to a fictitious plane wave e*(K+Giw)T (see
section 5.9.2 in Ref. [54] or section 3.1.1 in [55]), ending up with:

4 — .

i (k + Gio) :Tgilm(ﬂ;%k + Guo))cf (k + Gio) [Rf ] €' FGre) T (5.12a)
4 — )

B, (k + Gio) ==Yy, (T, (K + Guo))df (k + Guo) [Ry)? it Gl xa (5.12b)

VQ

with
a ’[Ll(REIWT)
O (k + Gpp) =— : (5.13a)
\/u?(RﬁJT) + “zQ(R?wTNUlP
Ra
dif (k + Gio) = — —= W(TJ — (5.13b)
V(RS r) + uf (RS p) il
(5.13¢)
and
R?\JT
= [ Jialr)Prar (5.14)
0

The use of this basis has the following advantages:
e a smaller number of planewaves is needed for convergence, thus the matrix sizes are smaller
e the eigenfunctions close to £ are better described

e the setup of matrix elements is faster than in for LAPW’s since the majority of the basis functions include
only u;.

A major drawback of the APW+lo method comes from the fact that, as can be seen from equations 5.8 and
5.11, the radial derivative of the wavefunction is discontinuous at the sphere boundary, thus there appears a surface
term in the kinetic energy. For a discussion on the subject see [56].

5.1.3 Semi-core states: local orbitals
5.1.3.1 SC-LAPW

Local orbitals were introduced into the LAPW method to treat semi-core states [53, 54].

While each augmented planewave is connected to a vector k and has and augmenting part summed over atoms
and [, m-characters, a local orbital is independent of k and G. It belongs only ot one atom and has a specific
[, m-character. The local orbital of the LAPW method involves an additional radial function, evaluated at a new
linearization energy Ejs.

0 rel

5.15
[A%muaEg+mauaEg+C%4”u%}mmw% re MT, (5.15)

‘i)fgpw (r) = {
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The local orbitals are local in the sense that they are identically zero outside the MT-sphere, and two of the
coefficients of equation 5.15 are set to match the value and the first derivative to zero at the sphere boundary. The

third parameter is set by associating it to a fictitious planewave as in the previous section.
The coefficients are:

AT e e — u . . .
Al (k+GLo) Zﬁllyzm(Ta Yk + GLo))ef (k + GLo) [Riyq)? ekt Gro)Te
4m

Bf,,(k+ Gro) =—=i'Yi, (T, (k + Gr0))d} (k + Gro) [Rfyy) e/ Gro)Te

VQ

4 * — T~ a a i -r
Cim(k+GLo) :ﬁll}/lm(Ta "k +Gro))ef (k+ Gro) [Riyq)” e/t Grolre
with
a
C?(k + GLO) =
\/az(az + 2(uu™)) + by(by + 2(au™)) + 1
d¢(k + Gro) b
1 LO) —
\/al(al + 2(uu?)) + by (by + 2(u™)) + 1
2k + Gpo) !
€ LO) =
\/al(al + 2(uu?)) + by (by + 2(u™)) + 1
where

ar =(u” (RYy7) i (Ryr) — ui® (R ) (R r)) [Reyr)

b; :(UI(Q)( rr)w(Rirr) _U;(Q)( S (Rr)) [Rr)
R?VIT
(ulul(2)> = / ul(r)ul(Q)(T)err
0
R?VIT

(ﬁlul@)): / ﬂl(r)ul(Q)(T)err

5.1.3.2 SC-APW+lo

In this case the semi-core states are obtained by adding a second set of local orbitals of the form:

B =1 | @ o
APW [A;’mul(r“, E) + Chy (r“)} Yim(7*) r e MT,

These local orbitals are matched to zero value at 124, with no condition on the first derivative.

The coefficients are:

AT e — u " ; .
im(k+ Gro) =—=i im(Ty l(k + Gro))c (k+ Gro) [RMT]2 e/t Gro)re

VQ
Cinle Gro) :47%“ (T (¥ Gro))ef (k + Gro) [Ryp)? eirGro)me
with
¢'k+Gro) = u? (RS r)
V[ )]+ TR = (R (R )
ef(k+ Gro) =— u(Rr)

\/{“1(2) (Rlzle)} 2 + [ul(R(Ilb[T)F - Ul(R‘IZWT)Ul(Q)(R‘IZWT)@IUZ(Q))
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5.1.4 The Bloch character of the wavefunctions

In Section 5.1, the basis functions where defined within the Wigner-Seitz cell. To extend them to the whole volume
of the crystal, so that they fulfil Bloch’s theorem we just extend the definition as follows:

K (r Z e RPK () (5.22)

\/_

Where r’ belongs to the Wigner-Seitz cell at the origin and r = r’ + R.. Note that with this definition, the basis
function in the interstitial part are just changed to ﬁez(k““c’)‘r where r now runs on the whole crystal volume V'

and the function is also normalized to it.
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Chapter 6

Mixed basis

In this chapter we define an optimized set of basis functions for the expansion of the non-local operators.

6.1 Definition of the basis

In the (L)APW+lo method, the space is divided into the M T-sphere regions and the interstitial region. As we have
seen, the wavefunction for valence and conduction states is expanded as

&nk(r) = Z ALK a (1) Yin (PY) + Z Zg;kp(lé (r) 6.1

avlm G

where the radial function w,;(r®) canbe uq; (1%, Ep), tai(r®, E;) or ug (r®, Ej2). The interstitial planewave(IPW)
P&(r) is defined by
_ 0 in the MT-sphere regions
Pg(r) = L icreyr
VQ
Core states can be written as a special form of Eq. (6.1) with the second part taken out.

The interactions, v and W, are well expressed by the product of two eigenfunctions in our perturbative treatment.
The product ¥, (1)1, (r) is expanded by the products of two local functions, Agyim (r)Agu/i/ms(r), in the MT-
sphere regions, and by IPW’s P¥(r), in the interstitial region (since the product of IPW’s is also a IPW in the
interstitial region.

in the interstitial region 62)

6.1.1 MB basis functions for MT region

In the a-atom MT-sphere region, we define a product function by
ﬂvlm;v/l/m/ (I‘) = Aulm (r)Au/l/m/ (I‘) (63)

with Agpim (r%) := taui(r®)Yim (7). As it is, this basis is non-orthogonal and overcomplete. On the other side,
it’s dependence on a product of spherical harmonics makes their computational treatment quite cuambersome. Thus
we will define a set of basis functions of the form:

Yanzm(r ) = onp(r*) Yo (7) (6.4)
To obtain an optimal set of radial functions vy, () we proceed as follows:
e For each L, take the product of radial functions w,; (r)u, ;- (r) which fullfil the condition || —I'| < L < [+1'.
e calculate the overlap matrix of the products of radial functions:

a
RAIT

©(Vl,v/l/);(vll1,uil’1) = / uu1l(ra)uu’l’ (Ta)umh (ra)ul/{l/l (Ta)(ra)2d,ra (65)

e Diagonalize the matrix O

e Discard the eigenvectors corresponding to eigenvalues with absolute value lower than a given tolerance
(usually 107?).
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e The rest of the eigenvectors are normalized and stored for a grid of r that constitute the new basis {vy 7, }
So defined the set of functions {,n s} constitute and orthonormal basis set, that is:
/ YaN LM (C)Yan Lo (0) AP = On N 6L L 00 (6.6)
Virr

and the set of functions Sgimi7m (r) can be expanded as:

I+ L
ﬂvlm;v/l’m’ (I‘) = Z Z Z DLJ/\/Iv,Lu’l/GlIllymm/’yaNLM (I‘) (67)
N L=|l—-l'/| M=—L
where the coefficients Dl]y,L are defined by:
RﬁlT
D%f/l, = / VaNL(7) i (1) Uy (T)TQdT (6.8)
0

and GJM . are the Gaunt coefficients defined in equation A.39.

For the electrons in a perfect crystal, we need a Bloch basis for the periodic system. Thus we make the Bloch
sum:
1 .
q _ iq-(R+rg) a
~ A(r) = e YaNLMm (T ). (6.9)
anvr(T) N, zé: a (

where r,, is the position of atom a in the unit cell.

6.1.2 Interstitial region

Because of the nonorthogonality of IPW’s, the overlap integral 0¢. o, = (Pg|Pg,), is nonvanishing for G # G'.
the overlap matrix is:

0d.¢r = / [P&(r)]" P&, (r)d’r (6.10)
v
which using equation 6.2 can be written:
1 . , ,
0g.a = v /eﬂ(quG)'rez(q‘FG )* 3y
I

:l/ef’i(GfGl)-rdB,’,:l/ e~ i(G-G')r g3,
V Jr Q Jp,

(6.11)

Thus, we can write Og o, = Og;q since it has no q dependence. The advantage is that it only needs to be
calculated once. The integral over the interstitial region is carried out by integrating over the whole unit cell and
subtracting the contribution from the atomic spheres. That is

IGE/eiG»rds,r:/eiG»rdSr_z / G B (6.12)

Io Q ¢ MT,

The integral over the unit cell is:
/ eCTdr = Qg o (6.13)
Q

while the integral over the muffin tin sphere is equal to the volume of the muffin tin sphere (V) if G = 0.
For the case G # 0 the integral can be done using thee Rayleig-expansion for a plane wave in terms of spherical
harmonics.

oG T _ g iGTa Z i/\j,\(TaG)Y;M(é)YAM(fa) (6.14)
Ap

which when substituted in the last term of eq. 6.12 gives:
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[ st —ameen v @R [ e,

MT, A MT,
R?WT
=dme'GTe N vy (G)it / ia(rG) (r*)? dr® / Vi, (70)di®
AL 0
RL]IWT
=4re’S N Yy, (G)it / G (rG) (r*)? drivAmbx 00,0
IV ) (6.15)
R%/IT
=47elGra / Jo(r*@Q) (7"")2 dr®
0
—4yeiGTa {Sin(GREIwT) — (GRyr) COS(GREJMT)]
= o
=3V jeiC T |:Sin(GR(IZWT) — (GRyr) COS(GR(IZWT)]
(GRYr)?
Thus we have:
Q—> Vi G=0
Ie = “ . Sn(GR® Y — (GR® ) cos(GRS (6.16)
-3 Xa: V]ngezGTa [ (GRy7) (é%gif;?g (GRIVIT):| G ?é 0
Using this result (eq. 6.16) the overlap matrix can be writen:
1
Og.c’ = EIGuG (6.17)
We therefore diagonalize the overlap matrix by solving the set of equations:'
Y Oc.a'Sari =€iSa. (6.18)
G/
And define the orthogonal IPW function:
PA(r)=> SaPa(r). (6.19)
G
where S’Gﬂ- = \/%SGJ- so that the orthogonal IPW’s are normalized within a unit cell.
We therefore obtain a orthonormal mixed basis
{X?(r)} = {vanou(r), P(r)}, (6.20)

which is suitable for expansions of v and W. The index j specifies a member of the basis and runs through G and
aNLM.

6.2 Matrix elements W (q)

In this section we calculate the matrix elements

Wis(@) = (x3lq + G) = % / ()] et Srgs, ©621)
\%

Inside the MT-sphere we have, using equation 6.9:

IThe overlap matrix of the IPW’s is q independent, see Appendix ??
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i(q+G)‘rd3T

WG \/— / %NLM

- e~ (Rra) fi(a+G) (R+ra)
DY
R

* a\ ,i(q+G)-r® 33, .a
Yanrm (T )e( gy

MT

1 iG-(R+4r,) / a\y/* —1zay,i(q+G)-r? 53, .a

= e o onp(r) Yy (T 7%)etd d’r
AT

R MT

(6.22)

Using G - R = 2nm and the Rayleigh expansion (eq. A.40) we obtain:

=iy S D AVUTATE) [ a0+ G i

MT
4 RAIT
T .
el Z MYy (T a+ q+G) / onr(r)ix(|a+ Glryr?dréy Lo, m
VA" )
4 RZ\/IT
U e!GTa .
Y (T G) / ot (14 + Glr)rdr
(6.23)
Thus, according to eq. 7.44 we end up with:
AT iGor Lrs 17 A /G
Wé(a) = Nk Gl Vi (T e+ G) <J‘A +q‘>aNL (6.24)

In the interstitial region we have, using equation 6.19:

G VZSG’ / —i(q+G’)r z(quG) T3y
w2z (6.25)

:ézg* /7i/€i(G7G')~rd3r
G’ T

which according to equation 6.12 is:

1 -
=5 >S4 Ie-a (6.26)
G/
6.3 Matrix elements M’ (k,q)
The matrix elements M}, (k,q) are defined as
M) = [ [0000mac-ae)] Doclr)a (627)
¢

Since our basis functions describe separately the two regions of space, the calculation of the brackets depends on
wether i corresponds to a function in the sphere or an [PW.

6.3.1 Y}(r) corresponds to functions in the MT-sphere region

In this case, the mixed basis function, normalized in the unit cell, reads
() = ey, v (vY) = € VT uun g (1) Y (BY) (6.28)

where r,, is the position vector of a-th atom in the unit cell.
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KS wave functions in the a-th MT sphere can be written in a general form as

Ye(r) =Y [ALE w0t (r, Ey) + Bt iiar(r®, By + Clfsyuar (r, Ery) | Yin (7)

. (6.29)
= At (5 Yim ()
vim
For normal LAPW states, we have:
lejn — Z Z L (k+G) (6.30a)
Bk = Z ZEB (k + G) (6.30b)
crk = Z zekoe (k+ G) (6.30¢)
For core states,
Yex(r) = elk'r“uc(r“)Ylm () (6.31)
Now we consider different combinations of n and m.
6.3.1.1 n,m € band states
M) = [ X0 lr) 0
Q
e « fRur )
=€ Zq e Z Z Aal/1l1m1 |: auzlz?TLZ:| / dTT vaNL (r)ualflll (T)Uay2[2 (T)
vilimy valams 0 (6.32)
X /df‘YL*]\/I (f)nlml (f‘)Y'l;‘WZ (f)
_ _—iqr, mk* * e lima *
=e ™ Z Z ‘Aal/llml [ auzlz?n2:| INL-,V1117V212 [gLNI,lQmQ}
vilimy valams
where QZL”I“LW_’ 'm are Gaunt’s coefficients and
RI\/IT
INp e = / drr®van () et (1) uqu (1) (6.33)
0

6.3.1.2 n € band state, m = c € core states
M, (k. q) = / R )00 _q0)

RI\/IT
= S At [ vt ()
vim (6.34)

x / BV 01 ()i ()Y (F)

_ —zkr lm *
= “ Z AavlmINL,Vl,nclc [ng[,lCmJ

vim

6.3.1.3 n = c € core state, m € band states
M}, (k,q) = [ x?*(rwnk(rw:k_q(r)
)

itemaro $ gk / Arr2 v (P Yitam.t, ()t ()
vim (6.35)

< / AEY g (8) Vi, (B)Yi, ()

*
— _i(k—q)r, cMe
= el ) E AavlmINL nele,vl [gLM lm:|

vim
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6.3.14 n=c,m=c € corestate

Miaca) = [ 59 6)0ale) i olr)
¢
Rirr
— [ v (0t 7t ()
0 (6.36)
[ Y a6V, (€)Y, )
= I%L,nclc,ncrlcz |:glLCITb?'}.,ClC/mC/i|
6.3.2 x(r) corresponds to an IPW
In this case, one starts from the expression for the eigenvectors 1/~Jnk(r) of equation 8.6, that is:
Ynk(r) =Y ZEDE(r) (6.37)
G
Equation 6.27 is converted to:
M, (koa) = Y 28 [ 2857 / ()0 9| Pt
GG’ o (6.38)
=z |25 (e Vet )
GG’
Using the definition within one unit cell:
) =) xdmsy =Y Par)se! (6.39)
i G
and )
K (r) = P (r) = —=¢&+G)r 6.40
c(r) c(r) NG (6.40)
inserting equations 6.39 and 6.40 into equation ?? we have:
_ 1 * . ) y . =
(Wia 1ok ) = 3 (551" [ eitorenrenilioant) xR,
2 Q
L2 ) (6.41)
—17* i(K—G1—K')r j3
=7 2 [Sa1] /6( )by
G: 1o
Making use of equation 6.16, we get:
~ (k—a) | rk o 1 —1 1%*
<X?(I)K/ 4 |‘I);?> = g Zzl?fGlfK’ [SGli] (6.42)
Gy
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Chapter 7

The coulomb matrix

The coulomb matrix v;;(q) is given by:

vij(q //Xz (r1)) I‘1,I‘2)XJ (rg)d3r2d3r1 (7.1)

which, using the mixed basis functions normalized in the unit cell, can be written as:
(@) = Ne [ @) Y ol — R R ) drad (7.2)
oJa R

The mixed basis functions are partitioned in those in the MT spheres and those in the interstitial region, and the
two groups of MB functions do not overlap. In addition, the basis functions belonging different MT spheres do not
overlap either. We can therefore distinguish four different cases and we analyze them separately in the following
sections:

7.1 Case A: y; and y; belong to different M T spheres

In this case equation 7.2 can be writen as:

k —iqRxq 3,. 13
vi;(q / / Yanra(ri)) E :U ri,r2 — R)e Vo v (T2)d r2d"ry (7.3)
Ve yal R

where i = aNLM and j = o’ N'L'M’. Writing the bare Coulomb potential, and the basis functions explicitly,
equation 7.3 becomes:

—zq‘R , ,
vij(q) = ' (Far=ra) / / Van L (r) Y7 (7) Z TR |Ua,N,L,(rg VYo (78 )dPrad®ry  (7.4)
1 aa’

where R,.v = R+r, —ry andr® = r; — r,. We now make use of the Laplace expansion for the Coulomb
potential in terms of spherical harmonics:

|I‘17r2| Z Z 21+1 l+1 Yo (71) Yo (72) (7.5)

where r« = min(rq, r2) and r> = max(ry,r2).
Since in LAPW the MT-spheres do not overlap, if a # a’ we have ro = |r$ — r¢| and r~ = |Rga/| and
equation 7.5 aplied to the electron-electron interaction in equation 7.4 becomes:

1 4w |r2a — r1a|l * a_oa >
it — 5 + Raw| 2 a1 gr V(T )Yim(Ra) (1.6)
aa lm aa’

Using the Addition Theorem for Solid Harmonics of reference [48] we can write it as:

1 I‘ )l (I’ ) a * aa ®
@)Y S Gt Yo ED Y () Vet emimd (Baa) - (7.7)

a__ na
ry ry +Raa/ [T aa
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7.1. Case A: x; and x; belong to different MT spheres Chapter 7

where, according to [47]",

(COWYRAF DT ma )L+ U m 4 m)
V@U+ D20+ )20+ 21 + 1)!

glm,l’m’ =
=(— )l I+UV+m+m)MI+T—m—m)!
a 20+ 1)(

(7.8)

20+ )20+ ) + 1L+ m) (L — m)\{l + m!)I(I" — m)!

where (II'mm/|l + I"'m + m') is the corresponding Clebsch-Gordan coefficient’. Including equation 7.7 into
equation 7.4, and using the definition of R, = R +r, — r,s we have

oo Al

%) A
vee(@=>> > > > /V /V Vo L ()Y ag (7)™ R’ (47) G rpr X

R A=0p=—AXA1=0p1=—X\1 MT MT (79)

) (eg)™

e Yo, (BOYR 0 (B9)Yinn) (utan) (Raar ) var v (18 )Yioar (7S )dPrad®ry

which can be reorganized as

00 A 00 A1 —_iaR
3 _ e Q- Rgqr N
v @=3 30 30 D0 Um i 3 e Yo e (Rua)x
A=0 p=—A AN =0 p1=—X\1 R aa’
a * ~a a\A vx [aa
[ v ¥ ) (65 Vi) .10

MT

/ , ()M Y () van (1 )Y (75 )dPrs
Vﬂ/

MT

Defining the structure constants

a,a’ 3 . a,a’ -
Sl/’,m/Jm(q) = (47'(') 2 gl/m/_’lmzl/’_;’_l,m/_’_m(*q) (71 1)
with
a a/ eiq‘Raa’ N
Xy (a) = Z WY/\H (Raa’) (7.12)
R aa’

and separating the integrals over the MT-sphere into radial® and angular parts we have:

, Ryt
vet) =3 3 i@ [ 0 vt 01 )

Ap A1p

( / YzMw%)YfM(f‘f)df%) % (7.13)

R%;T S\ AL , N 2 ’ ! ~a’\ g-~a’
L) o) (o8) ) ([ 9500 6 W )
0

To solve the angular integrals we use:

Yim (7)) = Yo (T, '£%) = T, Y (£) (7.14)
Now using equation 4.8 in [47] we have:

L
TYeu(E*) = Y DifaYia (39) (7.15)

Mi=—L

together with the orthogonality of the spherical harmonics and the relation Y}, = (—1)"Y;_,,, and defining

I'The factor +/47 appearing in the referenced text is taken out in our definition of § to simplify the algebra.

’In the special case of (II'mm/|l 4 I',;m + m') its value is given by (See Appendix C of [41]): (I'mm/|l + 1I',m + m/) =
COIRUY [ (U +mrm ) U+ —m—m/)!
RUHNOITV TFm) T U=—m) (U +m )0 —m )]
3Since the only difference between r ¢ and r @ is a rotation, we have that 7* = r® and use only the first one in the radial integrals

which, when replaced in the second term of equation 7.8 gives the third one.
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Chapter 7 7.1. Case A: x; and x; belong to different MT spheres

R]\/IT
(rManr = / (r“)/\+2 van L (r®)dr® (7.16)
0

equation 7.10 becomes:

A
vee(@ =323 3 S5l @ ave

At A1pr My My (7.17)

alx* A a'L’
(— )HDMlMéL A0, ,— u<r 1>a/N/L/DMZMféL/,/\l(SMz,m

Leading to the final expression:

vee(q ZSL# 2 @) ann (1) (Y Yanr 1 D*E5, DY (7.18)
HpL

We still have to analyze the case a = a’. In this case, R,o» = R and the same equations are obtained with the
restriction that R # 0. When R = 0 and a = o/, the application of equation 7.5 into equation 7.4 leads to:

T R;/IT Ti 2 2
vecr(q) = 1 / / VaN LM (1) gy VanrLone (r3) (1) drf (r3)" dr |
0
A > (7.19)
S ([ vntitiviaetiant ) ( [ v v G
nw
The double radial integrals in this case can not be separated . Defining:
Ti RA/IT a ré a a 2 a a 2 a
< ’I“)\+1 > = // Uu,NL(Tl )WUQN’L’(TQ) (Tl) drl (TQ) dr2 (720)
> aNL,N'L’ 0 TS
Using again equations 7.14 and 7.15, equation 7.19 gives:
47T 7’2 alx* al’
vg,cr(Q) = oL + 1\ rL+t Z Dy Dy n On, 1000, Mo (7.21)
> aNL,N'L My M,
The sum in the second term of eq. 7.21 can be transformed to
Z D%/ﬁ*MDMﬂL[’(SL LOMy My = ZDMlMDMlM’ = O, M/ (7.22)
Mll\/fz I\/Il
Where the last equality holds from the orthogonality of the rotation matrices (see [47].
Then, for a = a’ we have
ve,cr(q Z SLMl,L'M2 q)(r L>aNL(_1)M1 <TL )a N’L’D—]Mlj\/ID]VIQJM’
M1M2
L (7.23)
L4 dm re 5 6
oL+ 1\ rktt NN L,L'OM,M
where
a,a 3. a,a
St im (@) = (47)2 Gurmr 1 X7 s (@) (7.24)
Girm’ 1m 15 defined in equation 7.8 and
a,a eiq-R >
RIS o (R) (7.25)

RA0
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7.2. B: Both Interstitial Chapter 7

7.2 Case B: Both r; and r; belong to the interstitial region

In this case, it is better to use expression 7.1, which can be written as:

1 .
vij(q / / ————P(ry)d’rad’ry (7.26)
|1‘1 —ra|
taking the Fourier expansion of the Coulomb interaction[44].
et quG rp_ N 4m e*i(qué)m (7.27)
TR M
we can rewrite equation 7.26 as:
s *1 i(a+@rer AT i(qG)rs pagpy g3, 73
vij(q) = / / [P;*(rl)} = S i) T =i(atG)ra pa(p,) 3, g, (7.28)
! vJv 14 % lq + G? !

which can be reorganized as:

vi;(q) = %: (% /V {piq(rl)r eiatG)r g3, ) |qig|2 (\/_ i(a+d) rqu( )d3r2) (7.29)

But the two integrals correspond to the matrix elements Wé(q) defined in 6.25 and 6.26, thus we end up with:

: 47 ;
i (q) = E Wh(q) ———=— W5 7.30

7.3 Case C: Either r; or r, belong to the interstitial region, the other to a
MT-sphere

Starting again from equation 7.2, if we suppose that r; is in the interstitial region, and ry belongs to the a-atom
MT-sphere we can write:

—iq-R
" - Iri—r2+R| d’rod’ 731
el /ﬂ/ﬁ ) Z Irl—errRIV"NLM(r2> e (7.31)

Making use of equation 7.27 this equation can be written as

(r1 ro+R) ]
3 e_zq‘RvgNLM (r2)d3rod3r (7.32)

sicla) = V// Z;ZZLW

T

G/

The integrations in the variables r; and ry can now be separated, giving:

vi,c(q) QZ,:Z: 226_”‘ 7) </ {Piq(m)rez(q C3)‘"1cl3>

(7.33)
(] @‘i(q'*G’>‘rzv;*NLM<r2>d3”)

Where we made use of the condition e*i@'R = 1. Furthermore, since we have[l1]:

Z e UR = N.5q0 (7.34)
we can eliminate the sums over R and q_; in equation 7.33 to obtain:
4 ~ * ~r
Ui,L(Q) = Z 77T </ []qu(rl):| ez(quG )~r1d3T1> >

=k ‘ @ e (7.35)

ﬁ
( i(a+e) 'VENLM(I'2)CZ3T2)
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Chapter 7 7.3. C: One MT-sphere and one interstitial

We now solve for the integral on r;. From equation 6.19, we have:
Pi= Z P3Sa,; (7.36)
G

thus the integral is:

/Q [piq(rl)r pilat@)e g3, _ XG:S@/

[Pae)] elar @ gsy, (737)
Q

and we can make use of equation 6.16 and write:

LS (7.38)
= 525
G,iTG-G’
vV <
Q
77 E 56060 = L
VN €
To solve the integral on ro we substitute equation 6.9 into the second factor of eq. 7.37:
) < el ra <,
/ 671(q+G ).FLY;INLM (I‘Q)dBTQ (q+G ).m')/aNLM (I‘g)dgTQ (739)
Q Z\/IT
Taking into account that ry* = ry — r, and replacing variables it transforms to:
—i(a+G)r2 . a 3 1 —i(a+G")rs ay 53 .a
e Yanra (r2)d’r2 = N e Yanrpam (rs')d rs (7.40)
Q Ve
Using equation 6.4 to replace v we get
/ i@ g e)diry = —— [ e O ()Y () (.41
Q VNe Jvg,

In order to further evaluate this integral we expand the plane wave in spherical harmonics and Bessel functions
using the Rayleigh expansion ( Equation A.40).
Inserting the second equality in equation A.40 into the plane wave of equation 7.41, and taking into account

that #¢ = T, 1% we get:
iia (‘é’ +q 7’5) X
Virr (7.42)

—i(a+G’)r2 3, _ _A4m
e v, (ra)d’rg =
/ - i

—

V(T MG+ @)Y5, (75)Varns (1) Yiar (75)dorg

We can now separate the radial and angular integrals, leading to:

/szeii(quG/) 2y (T2)dire =

47r =

HG +q))x
(/ORZ\/IT (

([ v

(el /RMTJ.A< 5
A aNL 0

and taking into account the orthogonality of the spherical harmonics we have:

) VanL(r5) (7"‘21)2 dré’) X (7.43)

—

Defining

R
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7.4. The singularity at the I" point Chapter 7

*i(q+@’)-rz q dBro = 4m Ly G«//\ < |G +Q\> 7.45
/Qe Yan L (r2)d°r2 Nk (T, (G +q)) . (7.45)
Finally, inserting equations 7.45 and 7.38 into equation 7.35 we obtain:
47)? 1 =
vic(q) = (\/ﬁ) 585 i Yo (Ty (G’+q))< s *q‘> i (7.46)
G |la+@ ‘

7.4 The singularity at the [' point

We have already obtained a general expression for the Coulomb matrix elements in the general case 7. In the case
of q = 0 the bare Coulomb potential diverges. It can be easily seen if one makes a plane wave expansion:

4
la+ G2

with the advantage that one can clearly separate the divergence from the rest by writing:

vaa (@) = e (7.47)

1 . _
¢(q—0) = lim <@) 5, + Oga (7.48)
with
*4W5GG/5
Ar (7.49)
= S (1= dgo)

VGG = |é|2 lelel

The same separation can be done when expanding the Coulomb matrix in the mixed basis, and write:

1
vi5(q = 0) = lim (@) v+ Vi (7.50)

q—0
the singular term can easily be obtained from 7.49 transforming to the mixed basis using Eq. 6.21
vy, = 4T (0) [wg (0)} (7.51)
We still need to obtain the coulomb matrix elements without the divergent terms. This is trivial in the cases B
and C (sections 7.2 and 7.3), since in both cases the Coulomb interaction is expanded in plane waves, it suffices

with taking only terms with G # 01inegs. 7.30 and 7.46. The interaction between two functions within the spheres
is more complicated, and what we analyze in the following sections.

7.4.1 Subtracting the q = 0 component of the wave functions

The first thing to do is eliminate the fourier component corresponding to q = 0 from the basis functions: From eq.
6.9, for g = 0 the basis functions are:

’YaNLM r) = \/— Z YaNLm (T ©). (7.52)

To extract the g = 0 component we have to calculate the integral;

1 1 1
9 r)—=d’r = g / a r“d3r‘1:—/ a r “)d3r @ 7.53
V/’YaNLM( )\/V NA/Q =/ Yanzm(r®) NG Yanzm(r®) (7.53)

Q

using expression 6.4 we have:

a
R]\lT

/’yaNLM(r a)dSTa = /UNL(Ta>YLM(72a)d37’a = \/E / UNL(T)TQdT5L70 = \/47T<7’L>GN()5L_’0 (754)
0

Q Q

where, for the last equality we have used the definition 7.16.
We can then define the functions 52 5,, Which have no g = 0 component as:
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Chapter 7 7.4. The singularity at the I' point

4 (rEy,
’YaNLM {Z 'UNL YL]VI( )G(R(IZL[T — Ta) — %é‘go} . (755)

In a more useful way, one can write it as:

T A R (one(r*) = G )anedro) You ()} r e MT,

:YgNL]M(r) = \/4ig< L)aNL {ZR YLM(TW/)(SL,O} re MTyza (7.56)
\/\/ZWQ< BYane rel

For calculating the matrix elements v, . we have to analyze separately the different cases as follows:

7.4.2 Step by step: The different terms in the matrix elements

In this subsection we are not doing a detailed deduction of the result. Since the procedure is the same as in chapter
7 we just use them and refer the reader to this chapter for more details. A supraindex is used to indicate each term,
the g-dependence is suppressed since this is valid only for the q = 0 point.

7421 Casel:r; €aandr, €a’

In this case we can take equation 7.23 with the modified function. The first term is straightforward, for the second,
we have to calculate:

L

Risr 4m T 47
JI (oot = it ametn ) iy (vavnh) = G trFhawndna ) () g ()" arg =
0 r

>

/ [ o) ) (1) drf ) s
RMT 1 2 2
LRI / / (1) (19) drt (15)° drs

RMT 1

- N,L(SLO// —UaNL rl)(r‘f)2dr‘f (r§)2 drg
47T 2 RMT 1
+ <ﬁ) (rYan L (rYanrdr o // )2 drf (r5)” dr§

L

According to eq. 7.20 the first term on the right is just the definition of < r;frl > . For the others we
> aNL,N'L

(7.57)

have:

s T2

Riysr 1 9 9 Riysr 1 T2 9 Riyrr 9
// —vanr(rg) (r$) drf (rg)” drg :/ VanL(r2) —/ (r1)” drq —|—/ ridry | (r2)” drg
0 0 0 s

Ryt 11 1 9
:/0 ’UaNL(Tg) |:—2§7“2 + = 5 (R(IZWTQ —7“22):| (7“2) dro

1 Ryr 4 1 9 Ry 2
=— —/ VaNL(r2)re dry + - Riyyr / VanL(r2) (12)” dry
6 Jo 2 0
1
=5 RMT <TL>aNL - 6<7"L+2>aNL

(7.58)
where in the last line we took into account that L = 0 and used the definition of eq. 7.16. For the fourth term we
can replace v, v, by 1 in eq. 7.58 to obtain:

RMT 1 2
/ / ) dré (r3)* drg = R 40 (7.59)

Using these results we have:
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: , va Ve - oL
70 =) an L (P Y <1—%T5L,o) (1 gTaLgO) S S (DM DM L DGR,

M1 Ms

47 rL
+2L 1 < 31 > Oa,ar 0L, L/ 00M, M/
+ aNL,N'L

4 8w 1
*( Q) [<TL>aNL<7"L>aN’L <R7MT2 - 15—Q 7\4T5> - 6 (<TL>aNL<TL+2>aN/L + <TL>aN’L<TL+2>aNL)
01,000,001,/ O M, M
(7.60)
where Vi = %’TREIWTQ’ is the volume of the MT-Sphere surrounding atom a.
7.4.2.2 Case2:r; €caandr; € a’ # d
In this case, for the wave functions we have:
1 4
~0 a L AQ
Ve (r1) =—= {Z <UNL(T1) - (r >aNL5L,o> YLM(T1)}
Ne R . (7.61)

~ 47T ’ ~a
g (ra) = — m@"L o' N'L {g Y e (75 )5L/,o}

We can follow the same steps as in case A of subsection 7, and for the particular case of a”’ = a the results of
equation 7.58 to obtain:

. : 1% % " WL
U(E2)£/ :<TL>aNL<TL )arN'L/ <1 - gT‘SLﬁ) < MT‘SL’ ) Z SLM1 L/M2 )MID ]VIlMD]MgLJW’
My Mo
(4m?, o

8 1
q (r¥ YN |:<TL>aNL (R’fWTQ - 15—7TQR7\4T5) - 6<TL+2>aNL] 01,000,077 0L, L/ O 0, M
(7.62)

7423 Case3:r; €a’ #aandry € d

Just by inverting the indexes and taking complex conjugate of equation 7.62 we have:

N : Vi Vi, o a o I
(LS)L, =(rLYanr (" Yo N (1 chsL/,o) ( chSL,o) Z SLMI’L/MQ( )M p@ LMDM v

M1 Ms

471' 2 ’ ;2 87T ;5 1 ’
—( Q) <7“L>aNL [<7‘L >a’N’L’ ( f;luT - 15—QR§1‘4T ) - 6<7“L +2>a’N’L’:| 5L,05af,a”5L,L'5M,M'
(7.63)
7424 Cased:r; €a’ #aandry € a” # d
In this case, for the wave functions we have:
59(01) = — Pz 4 3 Vear ()10
VN.Q = ’
(7.64)

. 4 a
g (r2) = \/—Q a'N'L/ {Z Yo (75 )10 }

Again we can follow the same steps as in case A of subsection 7, and for the particular case of a” = o'’ the
results of equation 7.59 to obtain:

"

~ ’ Va V a” a’” a// * a/// ’
3 =) an e Yo AL 600 L 6, 0 3 ST 0, (<)M D Dir
My Mz (7.65)
47 2 ’ 81
+( ) <TL>aNL<TL > 'N'L' 70~ T 6L 06(1’” ”6L L’(S]\/I M’

Q 150
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7.42.5 Case5:ri c€a”’andryc ]

7.4. The singularity at the I' point
In this case the wave functions are:
1 " 47T
~0
30(r1) = {Z (
v Ne R

~ !’
Yom (7] )
L/

oNL(ry )Oar.a — ﬁ(TL>aNL5L,0> / }
- Vam
72/(1‘2) = \/EQ <T >a’N’L’

have

(7.66)

Following the procedure of case C in subsection 7 we have to expand in planewaves. As in equation 7.35 we

N, 47 -0
L.Lr Q % (_;1' 2 </MTa// I:,YC

(r1)] eiG'r1d3T1> (/ e, (Pz)d37“2)
I
The second integral on the righthand side is just:

(7.67)
—iGrs~0 3 Var I "
Ve d’ry = ———o aN' L Ls 7.68
R e e (7.68)
By writing:
'?lol(rl) = '7101(1'1)5 "a — L Z (4—7T<7‘L> NLOL 0) YLM(flll”) (7.69)
VNe R Q
The first integral can be separated in two terms:

/Q 52

(x)] ey = / 72

MT,n

£ A 1 V4
(I‘l)] €1G'r1d37’15a~7 \/—FTW@"L%NL(SL,O

The first term is just the definition of Wé according to equation 6.21. Let’s define:

Ta __ i@-rl 3
o= /e d’r

MT,
Then, equation 7.70 can be written as:

G By (7.70)

MT,n

(7.71)
el 1 \/477' =
~0 iG-r1 g3 L L a
dry = W30gr.q — aNLL% O 7.72
/Q[%(r )] e = Wadara = 57— (r)aniTg oo (7.72)
Inserting eqs. 7.68 and 7.72 into eq. 7.67 we have:
3 1 Ta' T
O G L T C L’ lelinte.
g == g Janridrg 5a~,aZw@@I@ g >aNL5L,oZ ar (1.73)
G G
7.42.6 Case6:r; €landry € ad”

Following the same steps as those used to obtain equation 7.73 we obtain:

W

- (6) (4m)
U(L,L’ - 0

1 (47)2
L L%
(r*)anror,0 |00, ar gﬂ W @ G
é

(7.74)
G
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7.4. The singularity at the I" point

7427 Case7:ri,ro €1

Chapter 7
In this case the wave functions are

VAT
72(1'1) = INQ Q<TL>aNL
- vV 47 ’
7?:' (r2) = — m@"L )a'N'L!
have

(7.75)
Following the procedure of case B in subsection 7 we have to expand in planewaves. As in equation 7.29 we
(1) _ 4
Veor =

gz )Nt (r*

’ 1 iGory g3 ) < / —iGra g3 >
, T _ el rld 3 1‘2d
Jornirs g (W/I G2 \VV
Using the diefinition 6.16 we obtain:

—
N
3
=
[\v]

(7.76)

03 <7”L>aNL5L,0< /N/L/5L/ ,0 Z ||G|2
7.4.3 Final expression

(1.77)

To obtain the final expression we sum up all the terms (Eqs. 7.60, 7.62, 7.64, 7.65, 7.73, 7.74 and 7.77), taking
into account that eqs. 7.62, 7.64, 7.65, 7.73 and 7.74 have to be summed over all the atoms in the unit cell, we get
~ , _ ']“L

’ a,a’ M naL*
ve,L —< >aNL<r >a’N’L’ Z SLI\/Il L,MQ( ) D 11\/[D

/L/
, -1 - Mo M’
My M,
L
n 47 re 55 5
2L 1 rLJrl a,a’VL,L'"OM, M’
+ > aNL,N'L
L
~0p.0 | (rMyanp(r®

VMT S
a’N'L' LM1 L’M2
(l//
3
(47)=

)MlDa 7 MDMZM’
My M

<TL>aNL Z Wé/*T

é
v
e [<TL>GNL<TL/>a/N/L/ Z O Z SL]Ml,L/Mg )M D
a’’ M1 M>
(4m)}

’ 1 *
o e S WE

G 2G
el

+5L',05L,0{ (ryanr (r*

1y
M1]\/IDM2]\/I/

(7.78)

Vi Z VMTVMT Z S

%Mi L’M2 )Ml D? IV%*IV[DlIIV[g M’

a’ ,a'" M1 M

47)2 1
_Un) (TL>aNL<7“L>aN'L Rr® + Biyr ) — = (w1 s
Q 6
() anp (" ) ane) | + (4m)” (TL>aNL<T JN'L'TES Z MT
9] 15Q
+ (477)2 <71L> NL<TL,> NI Z |I |2 4 Z (Ia Z—* + (j—a’/)*z_q)
03 a a |G|2 G G
From equations 6.12 and 6.13 it is obvious that
Zig = Qg (7.79)
Since in all the sums, the terms G = 0 is discarded we have

Z |G|2

|2+Z(I“ s+ (1)

(7.80)
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7.4. The singularity at the I' point
Furthermore, taking the case L’ # 0 and L = 0 the second term is just the interaction of the function with L’

with a constant background, expanding the Coulomb potential in planewaves and taking into account that atomic
identically zero. Thus we have

functions with L # 0 are orthogonal with a constant function. Since v is diagonal in planewaves, this term is

oo =(rH)anp(r"

a’N'L! E SLMl,L’]Mg

VDG DS
My Mo
4 rﬁ

ECTA < Lt

> 0a,a'0L, L/ O 0, M
aNL,N'L

5L.,05L/,0{ (rYonp(r

/ Ve
< o >a’N’L’ Z —L Z SLM1 L'M2
(4m)%

a’’

)Ml Da';\g*MDa’L'
- 1
My M,
’
1
Yanr Y WE* =T
‘ Z ¢ |G|2 ¢

Mo M’

Ve
+ (B anp (rF ’N/L’Z MT

Z Sa a’
(4m)?

LM, L’]MQ
M1M2
L SowE 1
<7“ >a’N’L’ W
02
G

M1 yaLx oL’
-1)"D MDDy

*

(7.81)
Sigp @
/L ! VMTVMT Sa” a'"’ MlDa”L* Da”’ !
(r)anc(r” )anr Z Z LM, L'M2 -1) My M s v
a'l. a/// ]\41]\42
47)? 1
+% |:<7’L>aNL<TL>aN’L_ (RMT + R%, ) 6(<TL>aNL<7’L+2>aN/L
(4m)?
+<TL>aN’L<TL+2>aNL)] - g (r"Yanp (P Yar v 15Q Z M
(4m)? o L Zal”
g o b 32
G
Now we can use the fact that for L
expression, and reordering a little bit

0 the rotation matrices are just the identity to further simplify the
U,z :<TL>aNL<7"L,>a’N’L’{ Z S%JT&,L’]MQ(_1)M1DGL*1]VIDM2M’
M1M2
Virr ca” VAT qasa Virr VAT qa” o
_(SL,O(SL’,O Z MTS LM,L'M’ + Z IWT SL]\/I LM — Z %SLM L' M’
2 (Am)? 1/ . o o 2 (47)? |Z~|?
ZV]MTRMT +T§< MT JrRMT)* e Zﬁ
G
An oL (7.82)
+2L 1 < Li1 > 0a,a'0L,17 O 0, M
+ aNL,N'L
3 2
L (47)2 o Lo (4m)* 140
+5L,05L/,0{<7" )aNL RE ZV\/@ |(_;,|2I + 60 (r* o Np
3 2
L (47)> PR S C . e
+<T >a’N’L’ QQ Zwé|é|2 é+ 60 < >aNL
G
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Chapter 8

Green’s Function

The zeroth-order Green’s function constructed in real space and frequency is:

Ve ()" ()
Go(71, T w) :Z—k o (CRY
where
N,i = sign(er — e ;)0 (8.2)

7 is a positive infinitesimal. The wavefunctions W ;- are eigenfunctions, with eigenvalues ¢_;, determined from
the self-consistent LDA calculation for the system under consideration.
For real times, the Green function 8.1 becomes:

iz U ()W (f)e =it £ <0
GO(FM 2; t) = unocc (8.3)
—i Z U e W (f)e it 1> 0

For imaginary times the expression for G corresponds to analytically continuing the ¢ < 0 form (the retarded
Green function) to the positive imaginary time axis, and the ¢ > 0 form (the advanced Green function) to the
negative imaginary axis. This yields (see references [45] and [60])

occ

Z\I} (P W () e ni™, >0

GO (7?17 7?2; ZT) = unou, (84)
sz\IJ (M)W =(2)en T, 7 <0

Taking the Fourier transform between complex axes (Eq. A.52) we obtain:

U, (M) -(72)
Go(7y, i iw) =y —2b— nk =7 8.5
0(7"1 T2 zw) Z o — e = (8.5)
nk
which corresponds to the analytical continuation of Eq. 8.1 to the imaginary axis.
The eigenfunctions can be written as a linear combination of the basis functions
() =72, 5@ a() (8.6)
G
Thus, the Green function of equation 8.4 can be writen:
occ
i * -
iy Y CEs P, a(F)RE, o (F)e™iT,  7>0
GO (Fla FQ; ’”-) = nﬁnonLG, (87)
k * — =
—i Z Z Céa®rra(M) P, g (T2)e™i, 7 <0
nk G G

where
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Chapter 9

The Polarization matrix

9.1 General formalism
The polarization function in the space-time representation is written as
P(1,2) = —iGo(1,2)Go(2,17) 9.1)

where we use the abbrievation 1 = (x1,¢1) with x = (r,0). The Green’s function in space-time representation
can be represented by its Fourier transform

1 ,
G(x1t1,Xate) = o /de(xl, X9; w)e_w(tl_tZ) 9.2)
7r
and the Green’s function in frequency space is a summation over states

G (%1, %03 ) Z Un(x1)¥n (x2)" ©3)

w— €
where we have used the notation &, = €, + insgn(ep — €,).
P(x1,%x9;w) = / d(ty — tg)e™ M=) P(x,t), Xot5)
:(—i)/d(tl - ﬁg)% /dw'G(xl,Xg;w’)e_i”/(tl_“)

1 . 1"
X 2—/dw"G(X2,x1;w”)e_w (t2—t1—n)
7 9.4)
:2—/dw’/dw”G(xl,xQ;w’)G(xQ,xl;w”)
T
1 i(w—w +w') T iw”
x — [ dre e n
2w
=i
o7

Therefore the polarization function in the frequency space is the convolution of two Green’s functions with a phase
factor

dw” e MG (x1, X2; W + w)G(xa, x1;W")

1 R
P(x1,Xg,w) = —/ e G (x1, %2, w + w)G(x2,x1,w )dw’ 9.5)

2mi J_ o

Using the expression for Green’s function, one can carry out the convolution analytically

P(Xl,X27w) :L. /OO iw nz Q/Jn Xl wn X2 Z wm X9 ’L/Jm(xl)

211 w+w —é€, W' — €m
(9.6)
= n (X2 (1) "V (X2) " o (X2) L (w)
with o
_ 1 S et n
Inm (w) = %/_OO R 9.7)
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9.2. Formalism for periodic systems Chapter 9

Due to the presence of the phase factor in the integrand above, the integration can be replace by a contour integral
over the upder-half plane. The integrand is singular at w’ = €, — w and W’ = &, if both poles fall into the upper
half plane, i.e. both n and m are occupied, the integral vanishes. We have therefore have

Inm(w) fn(l_fm) + fm(%_fn) — f fn (98)

€n — W — €m W+ €m — €n W+ €y — €n

Now we have

P(x1,%x2,w :an X1) ¢m(x1)*¢n(x2)*wm(x2)%
*Z o — o +)Z Dy (%1) P (x2)” 9.9)
)

nm Dy, *
+ZW+an+W] (Xl) (XQ)

Above we have introduced the notation

Dy (%) = o () (x)"

(9.10)
Wnm = €m — €n
Note Dy, (X) = Py (x)*. Now switch the dummy index n and m in the second term we obtain
nm(xl)q)nm(XQ)* (I)nm(xl)*q)nm (X2)
n 1 —Jm . .
P(x1,%X2;w Zf f { e o T et ©.11)
From the equation above one can see that P(x1,X2,w) has the following symmetry property
P(Xl,Xg;w) :P(x2,x1;—w) (912)
In imaginary frequency w = iu,
P(x1,X2;u) an (1— fm) { (.Xl) (x2) + (Xl) (x2) }
U — Wpm —U — Wnpm
(9.13)
:an(l_fm){ ( 1) ( 2)+C.C.}
— U — Whm
9.2 Formalism for periodic systems
For extended systems, we can write the k-dependence of KS eigenstates explicitly
nk,mk’ (Xl)q)nk mk’ (XQ)* (I)nk.mk/ (Xl)*q)nk.mk/ (X2) }
X ,X 7 n 1 - Jm ’ ’ . + - - .
LXoiw) =Y ) f(1— f k){ T — P EE— (9.14)

n,m k,k’

For systems with time-reversal symmetry (without spin-orbit coupling (SOC)), for every i thereis a 1) _, with
the same eigenenergy, therefore the second term inP (X1, Xo;w)

T3 FuieL = fe) et (1) Pk x2)

nom k! W = Wnk,mk' + 1]

=33 fucll - fmk,)wnk(m)*wmkf (1) Ve (X2) e (x2)*

n,m k,k’ W Wnk,mk’ + i

7zzf"k 17fm )wn k(Xl)i/Jm k/(xl) w"*k(XQ)*"/)mfk’(Xg)

W — Wp—km—k + 17

9.15)
n,m k,k’

=S 1 ) Ll (60) e 302) e (x2)

n,m k,k’ w Wnk mk’ +”7

= Z Z fnk(l B fmk/) (I)nk,mk/ (Xl)q)nkJnki (XQ)*

nm kK W — Wnk,mk’ + 1]
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Then one has

P(x1,x2;w Z Z frak(1 = frkr ) Pk mi (X1) rte,mier (X2)

n,m k,k’
9.16
) 1 1 9.16)
W — Wnk,mk’ T4 W+ Wnk,mk — 1)
or equivalently
Px1,%2;w) = > fure(l = frne!) Presmier (X1)* Prate i (X2)
n,m k,k’
9.17
) { 1 ! } 0.17)
W — Wnk,mk’ + 277 w+ Wnk,mk/ — ”7
In other words, for systems with time-reveral symmetry we have
P(x1,%2;w) = P(X2,X1;w). (9.18)
or combining the previous symmetry relation
P(x1,%2; —w) = P(x1, X2;w). (9.19)
In imaginary frequency, in the general case
nk,mk’ (I)nm’ * (I)nm’ *(I)nm’
P(x1,x2;1u) Zank 1-— fmk’){ k, k_(X1) ki (X2) + k. k (1) komle (X2)}
n,m kK’ —1U — Wnk,mk’ U — Wnk,mk’
(9.20)
(I)n mk’ q)n mk’ *
=0 a1 fyp) { P P Bl
p—— U — Wnk,mk’
For systems with time-reversal symmetry, it can be further simplified as
0CC unocc 72wnk7mk/
P(xy,xo5i) = Y Y Pt e (X1) Pt e (3%2) " —5— 5= — 9.21)

u? 2
nk mk’ + wnk,mk/

Now to obtain the matrix representation of P, we can expand®,,i (x) by a general basis se. First we note
that @,k mk’(x) is a Bloch function with a wave vector of k — k’

(I)nk,mk/(r + R) = Z/Jnk(r + R)T/Jmk/ (I‘ =+ R)*
= ™Ry (r)e ™ Byp o (r)* 9.22)
— €i(k_k/)‘R‘I)nk,mk’ (r)

therefore @, mi (r + R) can be expanded by the basis set x;'(r) withq = k — k'.
nk,mk—
P, i (X) = O/ k—q Z C; Wi (%) (9.23)
where the expansion coefficients can be obtained from
€ = [ 0 B e-al)
7Z/drx r—R)" @k mk—q(r —R)
Q
= Z / dre' TP A(r) e R, g e g(r)
Q
9.24)
*Z/dr)(z nkmk q( ) (

~ N, /drxz B e _q 1)

= Nc_l/Q/Qdri?(r)*fink,mk_q(r)

= N2y, (k. q)
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where we have introduced

M (k. q) = / () Bt mic_q(r)
Q (9.25)

= N./? /V dxx(%)* @i mic—q(X)

Here the subscript V' and (2 for the integrals represent integration over the whole space and the primitive unit cell,
recpectively, and y{(r) and ®,,x ;mk—q(r) defined in the Q-normalized scheme.
We finally obtain

R-j(q,w):/ drl/ drs [x?(rl)]*P(rl,rg,w)x?(rg)drldrg
1% \%4
BZ occ unocc ) ) (926)
=N YD M, (kq) [M,(k Q)] Famk(a, )
k n m

‘We have introduce the notation

1 1
F, k\q,w) = — — ; 9.27
k(G ) W — Wnk,mk—q T W+ Wnkmk—q — 7] ¢ )
and for imaginary frequency
. —2wnk mk—q
Fumk(q,iu) = ———3 (9.28)
o U+ W kg
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Chapter 10
The dielectric function

10.1 The symmetrized dielectric matrix
(10.1)

In frequency space the dielectric matrix €(q, iw) can be calculated via
|e(q,w) =1 - v(@)P(q,w)|

To treat the singularity at the I" point, it is more convenient to make use of the symmertized dielectric matrix
(10.2)

denoted as e, which is defined as
eij(@w) = v * (@em(a,
Im
which has no divergences, and is hermitian. It can be easily shown, from eq. 10.2 that
et (@w) = 3 vy (@) (a,w)vs, (10.3)

lm

]). Inserting Eq. 10.1 into 10.2

It has also been shown that €(q, w) and €(q, w) have the same eigenvalues (See [
1
(10.4)

szl le q, Zw) 2j(q)

we have
£i(d, iw) = 0;5 —
(10.5)

In the matrix notation
1 1
(q,w) =1-v>(q)P(q,w)v>(q)
In the next section we calculate the symmetrized dielectric matrix at the I" point, and show that it does not diverge

10.2 Plane wave expansion of the symmetrized dielectric matrix at the I'

point
The big advantage of the plane wave expansion is that the bare Coulomb potential is diagonal
a7
v ’ = (S ) —— ]06
ce/(q) = dga q+ GP (10.6)
(10.7)

Var

so that
Uca;(;/ (q) = 5GG’M

much simplifying all the algegra. Expanded in plane waves, the expression for the matrix elements of the sym-
(10.8)

4
| Pea/(q,w),

metrized dielectric function is
=dga’ — AT
la+Glla+ G

EGG’(Qa w)
(10.9)

where Pga(q,w) is given by
0k,)] Fuvila, )

NS MG ) M

Pcar(q,w
k n,n’
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10.2. Plane wave expansion of the symmetrized dielectric matrix at the I' point Chapter 10

where now:
Mgﬂ (ka q) = / chl;(r)*(i)nk,n’k—q(r) (10]0)
Q
with ,
Xa(r) = meim‘})* (10.11)

being the plane wave basis functions.
We can see that the possible divergences are located in the head, namely g and the wings epg’ and ego.
For the screened potential we obtain:

1 . 1

Waa: =4dr——can () ——
GG (qaw> ﬂ-|q_’_c_}|€(;(} (q w)|q+G/|

(10.12)

10.2.1 MS7%(k, q) in the limit of g — 0

Expressions for the limit || — 0 can be obtained by using the k - p perturbation theory.(see [2]). Taking into
account the Bloch character of the eigenfunctions we can write:

Vs (r) = eF U (r) (10.13)
and according to the results of the k - p perturbation theory one can write:
unkJrq( *Unk Z Ll nf 9 Un/k( )
nin 'k T Enk (10.14)

€nk4+q —€nk + Pnnk -4

where p,./k 1s the momentum matrix elements

Pnn'k = <’l/)nk| f) |’l/)n'k>

N (10.15)
= (unk| P + k |unk)
The matrix elements MG, (k, q) for G = 0 can be writen as:
1 * —iq-r
M50k, q) = W/wn’k—q(r)e e (r)dr
1 (10.16)
= W/ufl/k_q(r)unk(r)dgr
Q
applying equation 10.14 we have:
1 Pkt d
MY, (k, & : T n
w(k,q) = Q1/2! 7 Une(T %’;/ €'k — €/ Uy (T) ¢ Unk(T)

ot 10.17
TSR e o

' En'k — €En’k

1 P-4
= <179 5nn/ 1-— 5nn/ —nnx _—
Ql/z { + ( )€nk ek }
10.2.2 The head: P c'—o(q — 0,w)
Inserting equation 10.17 into 10.9 we have
Poo(q — 0,w) = N1 Z S MS(k, q = 0) [M,S;, O(k,q — 0)] Fric(q — 0,w)

k nn’

QZZ[W 1(;””)%} [5nn,+(15m,>w Foe(a, )

k nn' €Enk — €n’k €Enk — €En’k
Pnn'k -4 o
E E 1 — Ot )| —m————— k(q,
NQ k nn/|:nn "")| ken/k|:| " (q )

(10.18)
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Thus we can separate it into intra-band and inter-band contributions as:

BZ
1 nn
Poo(a = 0,0) = <=5 D |3 Fanicla = 0,w) §|£:%1memm (10.19)
¢ k n n'#n '

The interband part, second summation, is already proportional to ¢*. For the intraband term we use €,x—q =
kfpnnk'q:€nk4’AVVithAE —Pnnk - 4

1 1
(0= 0) =) [1 = Jlene+ ) [ 3 = ]
1 A A?
= n 1- n —f n A
f(ek)[ f(ek) f(ek) ]{[w+zn+(w+zn)2+(w+m)2
(10.20)
1 A N A? N
w—in (w—1in)? (w—1in)?
1 1
~ / . 2
=~ — flenk) f (€nk) [(erz'n)Q + = in)Q] [Prnk - d
where we have used the fact that we are considering zero-temperature cases so that
flenx) [1 = flenk + A)] =0 (10.21)
and that 7 is infinitesimal, and
1
—f(enk) f' (€nk) = 0(er — €nk)0(er — €ni) = 55(€F — €nk) (10.22)
We therefore have
Poo(q = 0, E: 235 — R S
00 , W N Q nk (w + ”7)2 (w — ”7)2 nnk
(10.23)
Pnn'k - qQ o
+ Z an/k(O,W)| Enk — Gn’k| }
n'#n
Now can obtain the head of dielectric function
47
E()()(q — O,w) =1 - q—2P()()(q — 0,&])
1 1
5 n nnk * q)?
{Z o) [ T P
. (10.24)
Pnn'k -4 2
+ Z an/k(o,w”enk — ek | }
n’#n
qaq
= Z q2ﬂ Fop(w)
a,B
where
Fop(w)(=0a + 55 Z ~6(e t 1 o ph
o w — €n . .
B B k (w T “7)2 (w — “7)2 PrnkPrnk
(10.25)

+ Z an’k 0 W) pnn’kpnn/k
n'#n (Enk - 6n/k)

with o, 8 = (2, v, 2).
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10.3. Mixed basis expansion of the dielectric matrix at the I" point Chapter 10

10.2.3 The Wings: Pc_ c'20(q — 0,w)

5z * . , *
POG/ (q — va) = Qil/2N(:71 Z Z (67171/ - (1 - 67171/)M> |:M7§l/ (k7 0):| an'k(q — O,W)

k non €nk — €n’'k

= Q V2N 12{2[ kO)} Frpk(q — 0,w)

£ a0 2 [ 0]}

B €Enk — €n’k
n,n
, *
Q12N - 12 S Fre(0, ) Ponie 4 (15 (k,0)]
kK ntn' 6nk €n’k

(10.26)
Where we have used the fact that the intraband term (the first one) goes to zero as g2, compared to g of the interband
term, so we only need to consider the interband term. From we can the wing of the dielectric function

drN7IQ 12 Pk 4 , *
oar( = 0,0) = = Tt }:}:FﬁWOuf%kj%%[Mﬁmkm] (10.27)
k n'#n

Similarly we have

47TN 1Q /2 2 o
ego(q = 0,w) = Z Z Fonk(0 epk _ke (,lk MS,(k,0) (10.28)
k n'#n n

For imaginary frequency, the two wings are related by the hermiticity relation, but for real frequency, the relation
is more complicated, but still closely related.

10.3 Mixed basis expansion of the dielectric matrix at the [' point

The use of the symmetrized dielectric matrix expanded in other basis set than plane waves presents several diffi-
culties:

e The divergences for |q| — 0 are not necessarily located in particular matrix elements of the bare Coulomb
potential, the same is, as a consequence, true for the dielectric matrix.

e The bare Coulomb potential is no longer diagonal.

From the second item, we can see that already the calculation of the matrix elements v . is no longer simple.
The simplest option for the expansion of the symmetrized dielectric matrix in our mixed ba51s is to perform the
calculation in a plane wave basis and then make the corresponding matrix multiplications to change the basis.

It is then straightforward to show that:

eij(a—0,w) = Y Wgeaa (a — 0,w)WE, (10.29)
GG’
o} WEWE
vi(q—0) = Viry —S—C
G

la+ G|
VAT, * *
e WIWI* + Z —WGWJ (10.30)

G40
4 ) Ed . 1 E3
= —”q”wgwg + Y GEWEWE
G

where the matrix elements W, = < X?:0|X(é:0>~ We have introduced the regularized bare Coulomb interaction

at q = 0, ¥, which is diagonal in the plane-wave representation, g0 = ‘é% and vg=g = 0.
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Chapter 10 10.3. Mixed basis expansion of the dielectric matrix at the I" point

First of all let’s rewrite Eq. 10.29 in the following way:

gij(q — 0,w) = Wieoo(q — O,w)Wg*
+ Z {Wéago(q — O,w)Wg* + Wézsoc;(q — O,w)Wg}

G 4 (10.31)
+ Z Wgeaa (q — 0,w)WE,
GG'#0

=¢; ( )+€ (w )+€5(w)

10.3.0.1 Head

eff (w) =Wieoo(a = 0,w)W§"
=W [1 - 4rPH ()] Wi (10.32)
—WWI* — ax PH (w)WiIWi*

103.0.2 Wing

w2

Now we consider the second wing term €;; = the rest, let us take the second term of the wings (??) as an example.

EZJ[»/Q(w) = Z Wésoc;(q — O,w)l/\/é:k

G#0
—Wi 12 Z Frone(0,w) pnn’k q Z nn' ] Wi
—7Vo Q1/2 e ek — En'k |G| G (10.33)
k n/#n G#0
WA | —1 , pnn’k q J
W ()0 L E et B[St o

Let’s look at the summation in the equation above
] J
Z 5 MS, (k, 0)Wi,

= Z Wé’ﬁg}’,GMnn’(k’ 0)
G,G’

=> <x?:0|x2§0> <x‘é§0 x‘é:0> <X((:1;:0|(I)nk,n’k>
GG (10.34)
= <X§1:0‘ ~% |(I)nk,n’k>

=30 (] ) )

~1
V2

p
1
= Z UJ?pMSn’(k’ 0)
P

So finally we have

eV (w) = ( ,/ ) 12 > Funi(0,w) p"”/k 4 —nn'k 2 i l prgn,(k,O)] (10.35)

€ — €p/
kK n'#n nk n'k

Similarly we have

wi . —1 pnn/k q ~2 p %
€ij (w)( \ o ) ZZan/k P, Z M?,(k,0)W] (10.36)

k n'#n
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10.4. Dielectric matrix in the basis of bare Coulomb matrix eigenvectors Chapter 10

10.3.0.3 Body

For the body part,
65 Z WGEG(;/(O w)W
GG/#£0
Z WG 6G,G’ |G||G/|PGG (0 w) W ’
GG'#0
N 4 "
G0 GG/#0
=65 =WV = > Wt Pacr (0,0)5% Wi
GG'#0
:5ij - WE)W(%* - Z’U”,P/ /(0 w) f/j
i’ g’

Note that the second term will cancel the first term in the head.

10.4 Dielectric matrix in the basis of bare Coulomb matrix eigenvectors

In practice it is much more efficient to use the eigenvectors of bare Coulomb matrix constructed from the original
mixed basis functions, which is essentially a unitary transform of the original mixed basis. The usefulness of such
a transformation can be seen from the expression of the dielectric matrix as represented by M, (k, q)

BZ occ unocc

eis(aiw) =05 — NSNS Funada,w) Y vz (@)ME, (k,q) [ML, (k)] “vi(@)  (10.38)
k n m kl

As a matter of fact, in both the dielectric function and in the GW self-energy, it is always the M_  (k,q) is always
appears

In the completeness limit, this new basis set, denoted as ‘xf}>, is equivalent to the plane wave basis functions
|x&)- Since the new basis is constructed from the MB, it should be almost as accurate as the original mixed basis
set. In particular, for g # 0, the new basis set is equivalent to the original MB, but for q = 0, there are a little
subtle differences.

Using the plane wave basis we have

47
vea () =3 da.c
G 2
|G +dl (10.39)
4 -
vaa/(q — 0) :?6G05G’0 + vaar
In the mixed basis representation
vij(a—0) =(x7| v [x7)
=3 OIXG) (x| v xg ) (X x3)
GG/
= Z Wé;UGG’(q — O)Wé*/
GG/ (10.40)
4 . ™ i~ j
=y Wg [ Scodaro + v(;(;/} WE = W+ > WaieWE
GG/ q G
:qLQJ + ¥yj
Now we use the eigenvectors of the matrix v;; as the new basis set,
X3 lez - (10.41)

where U;L = < X5 |XE> is the matrix that diagonalize the Coulomb matrix v (or v for q = 0). Rigorously the matrix
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Chapter 10 10.5. Inverse dielectric function at I' point

{vi;} is not diagonal,
= (Ol v* [x0)

:Z OGx?) O T [x5) (G 1)

(10.42)
- Z UO* Vg UJOV
So in the new basis we have s
v (q — 0) = Uq‘;” + 06y (10.43)
Now as an approxmation one assumse v}, = 476,,00,0. Since
= Z Ui U,
=4 Z U WeWg™U; (10.44)
=4 Z UpWwe > Wituy
i J
Then the approximation aboves implies
Z UiWg = <X2|XOG:0> =Wg_o = duo (10.45)

With this can easily obtain the dielectric matrix represented using the new basis set. We will still use ¢, j as the
indices for the new basis set from now on.

5?;‘ (w) =8;00;0€00(q — 0, w)d

)JO
BZ

2f En Pnn'k - Q
k

=0i0djo 4 1 —
n n'n €nk — €n’k
1 -1 pnn’k q ~
el (w) =600 f\/— Fonk( 2MZ k,0
J ( ) 0050 < 9 ;ngn k enk — €'k ( ) (10.46)
c12(w) =ddjo [~/ = | 12 > Fu(0.) 2ot L [0 e o))
2] J 0O i €nk — €n’k J nn )

BZ occ unocc 1

E?j (w) :giOSjO { 1 ZZ Z ank Qa ) 2 M, m(k q) |:6J%M7jlm(ka q):| *}

where we have used §;; = 1 — d,;. For q # 0, we have

BZ occ unocc *

Efj(q,w) — 6ij - Nc_l ZZ Z ank(qaw)(oaw) %M (k Q) [U]'%M%m(kaq)} (1047)
k n m

10.5 Inverse dielectric function at [' point

When using the mixed basis functions, inverting the dielectric matrix is done in the same way as for other q,
but when using v-diagonalized basis set, e ~*(q = 0,w) is calculated by the block-wise inversion technique, as
described in Ref.[?].

For a general matrix with the block form

_ (P Q
M = ( R S > (10.48)
where P, Q, R, S are matrices of m X m, m X n,n X m and n X n, respectively. then the inverse of M reads
w X
-1 _
M~ = ( v 7 ) (10.49)
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10.5. Inverse dielectric function at I' point

Chapter 10
with

W=(/P-QS'R)!
X=-wQs™!

(10.50
Y =S 'RW )
Z=St4+ywlx=8"1-8§"1RX
In the special case of
_ H Wz’T
€= ( W, B > (10.51)
—1 —1
-1 _ ( €00 €oi
el = ( ol e ) (10.52)
with
—1
ot = lH -3 W;Bi;le]
o = e D W B!
J (10.53)
g0 =~ | DB Wi | c0
j
5,7,1 =

-1 -1/ —1\"1 _—1
7 =B ten () e
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Chapter 11

The Dynamically screened potential

11.1 General expressions

From the definition given in Eq. 2.7 we have:

W()(I‘l,I‘Q;w) :/571(r1,r3;w)v(r3,r2)dr3 (111)

From Eq. A.12 the matrix form can be written:
Wij(a,w Z ey (a,w)vi;(q) (11.2)
Using Eq. 10.3 the screened potential is then written then as:

Wij(@,w) =Y €5 (@ w)vm;(a)

1

=3 03 (@), (@ w)vms (@)vn; ()

lmn

1
_ 3 —3
—E :Uil( 6lm q,w E Umn a)vnj(a
lm

n

=3 i (@), (@ @) (@)
Im

(11.3)

And we can, as already mentioned in section 2.1, separate it into and exchange and a correlation term, where:

Wi?(‘l) :Uij(Q)
Wii(q,w ):Wij(cb )_Uij(Q)

1 (11.4)
- Z Uzl elm ) - 6lm} Umj (q)
To simplify the notation we introduce D;;(q,w) = é;jl(q, w) — d;; so that we have
Wi(q,w) =Y 03 (q) Dim(q,w)v2 (@) (11.5)

11.2 Singularity at the I' point (q = 0)

As we have seen in Appendix 10.1 the symmetrized dielectric function has no divergencies, but we are still left
with the singularity of v and hence of W at the I' point. As in Appendix 7.4, Eqs. 7.48 to 7.51, for the bare
Coulomb matrix we can write:

1

1 V. 1
v2(q—0) = L + 52 (11.6)

|al

S
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11.3. Formulalism using v-diagonalized basis set Chapter 11

Using eq. 11.3 we can write, for the screened potential:

1

Wi(q—0,w sz%l (@ — 0)Dim (0,w)v, (g — 0)

lm
1
|2 Z Dlm 0,w) U
! . e
+ﬂ Zvil Dy (0, )07, ; + 05 Dim (0, w)v,,%;
+szlDlm (0,w)d 5]
lm
Defining:
W (w) =Y v 2 Din (0, )0 2
lm
Wcsl _ S%D ~3 ~%D 53
5 (W) —Zvu lm(o’w)vmj + 05 lm(o’w)vmj (11.8)
ilm
W (w) =Y 53 Din (0, )57,
lm

we can write

1 cs2 1 csl Irc
Wi (W) + = Wi (w) + Wi (w) (11.9)

Wilq— 0,w) =
342 0w) =1 d

11.3 Formulalism using v-diagonalized basis set

When using v-diagonalized basis set, the expressions for the screened Coulomb interaction, in particular those of
the singular terms can be drammatically simplified. In the new basis set, we have

sl
’sz =V 271'61',06‘,0
¥y = VBii,5

(11.10)

from which we can obtain
Wi3’52 = 47TD()()51'_’()5J'7()
Wf}Sl =VAdr {51‘,0D0,j V(1 =3d50) + (1 - 5i,0)Di,0\/?775j,0} (11.11)
Wij = V:Dij /7
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Chapter 12

Evaluation of the sef-energy >

12.1 Exchange self-energy

The exchange self-energy in periodic systems reads

occ

==Y Ve (D)o, 1) (x') (12.1)

/k/
Now expanding the bare Coulomb potential by the orthogonal basis set { x}, we have:

occ

= o x szl 0 (@O () U ()

n’k’
BZ occ (l 22)
== 0@ Y e (X)) P ()
a ij n’k’
Matrix elements of the exchange self-energy with respect to the single-particle wave functions now reads
// Pk ()27 (1, o) (v))drdr’
— [[ vt Z D2 sl 3 N0 Vi 0
/k/
-- Z RATDY ( /V 0 ) ([ 6 1) 5
ya n/k/
occ .
=N Z Z 013 () 2 (Mo (06, @] M3, (0 )
=N;! Z 15k q)
q
where we have used Eq. (9.25).
12.2 Correlation term
For the correlation term in frequency space one has to calculate the convolution:
(e, v, w) = QL/ Gol(r,r',w + ) We(r, v, w')dw! (12.4)
™ — 00

We follow the same steps as for the exchange term. The screened Coulomb potential can be expranded by the basis
functions as

W§(r, 1/, w) Zsz (a,w)(x ()" (12.5)
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12.3. Brillouin-Zone integration of the singular terms Chapter 12

Inserting 12.5 and the definition of G into 12.4 we have:

c / "/’n’ ! k! I / I\ %
() =5 [ d Z e szz W)

12.6
Wii(q,«") (120

. o0
qx/_/ * / ? 12 17 )
= ! r N\ ) — dw ——————
E E E, E, XZ nk X ( )"/)nk( )271' - W4 w — Enk
(%) n
Matrix elements of correlation self-energy can therefore be calculated as

// i (D)X (r, 1 W) (v drdr’
. cic L Weaw)
_ N1 i 2 i g\ )
- Nc ZZZ [an/(k5q)} o7 [m dw W w — gn’k—ann/ (kv Q) (]27)
k,q,w’)
=N1! M
ZZ%/ W+W_€n’kq
where we have introduced

an;n’ (k7 q, w) = Z [M;nn’ (k7 q)] " chj (q7 w)Mgzn/(k5 q) (128)
ij

The frequency integrals in Eq. 12.7 are extremely difficult to perform, due to the poles of W, as well as those
of the Greens function. A smart solution to this problem has been given by Godby, Schliiter and Sham [24], and
used in [8]. By performing the analytic continuation of the integrand into the w’ complex plane, and taking a
closed contour for the integration, it can be shown that the integrals in Eq. 12.7 are equivalent to an integral of the
same function over the imaginary w’ axis plus the sum of the residues of the integrand at the poles of the Greens
Function between w and the Fermi energy. The former requires the evaluation of W¢ for imaginary frequencies,
while the latter requires the evaluation of WW¢ at a certain number of real frequencies (or its interpolation).

We have chosen a different approach. We continue analytically the self-energy by taking the same expression
of Eq. 12.4 in the imaginary axis, that is:
100

! Go(r, ' iw + w" )W (r, v’ iw')diw' (12.9)

Y(r, v iw) = —

(r,r',iw) o )
Note this expression of the selfenergy along the imaginary frequency is NOT obtained directly from Eq. 12.10 by
analytical continuation. Instead it is obtained by starting from the self-energy in the imaginary time. Using now

Eq. 8.5 instead of 8.1 and following the same steps as before we obtain:

mn ’IZ (k q) Zu/)
¢ (K, iu) -1 / (12.10)
Z Z 2T zu + v — €p/ktq

Using the fact that:
W (a,iu) = W (q, —iu) (12.11)

we can further simplify 12.10 by:

S ot A’ X pnn (K, q, i1
zz( ) / W Xl ) | o e

=N_ 1ZT (k,q,iu)

(12.12)

, . 1 > . 2(iu — €prk—
T;nn (k7 q, ’L’LL) = Z (__) / dulen;n’ (ka q, ZU/) ( ( X Cl) (12]3)
0

2 U — €prk—q)? + u'?

where

n’

12.3 Brillouin-Zone integration of the singular terms

Both exchange and correlation terms of the self-energy involve the Brillouin-Zone integration of a function that
diverges at the I" point. Let’s write it (we don’t write explicitly the w-dependence, it is implicit in the correlation
term):
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with

occ

=203 M @] v (@)M )

1 o 2 ) (12.15)
T, (k, q,iu) = - A’ X (K, 1, it W= k=g
mn( » Ay ZU’) ; ( 27T) /0 u ; ( » 4, 1U ) (w - En/qu)2 + 7:’U/2
In the @ — 0 limit we can separate the singular terms as:
/e Yila ) | Tila ) | s
Tk, q— 0) = (k) + (k) + T¥/¢(k) (12.16)

q? q

The singularity can be integrated out by using the technique as formulated in Sec. A.2.

12.4 Exchange and correlation selfenergy using v-diagonalized basis set

Using the new basis set we have

‘?» = 471'61' 05'70
Uy (q) = 0;0;
WicJSQ(w) = 47TD()0(0 w)éz 05j0 (1217)
csl \/_ ~% ~%
Wi (w) = 8;,0D0,5(a = 0,w)07 (1 = dj,0) + (1 = di0)Dio(a = 0,w)s7 dj0
Wz](qv ) EDz](qv ) f
The corresponding expressions for the exchange and correlation selfenergies can be greatly simplified.
12.4.0.1 Exchange
occ .
TISQ Z Z Uisj (q)Min/ (k, q)
occ
— (4m) > [M],. (k,0)]" M, (k,0) (12.18)
N occ ) )
Yok a) =) 0 [M,, (kq)] M, (kaq
Now considering that
Mine0) = [ [i7°0)] vlr) o)
1 *
~ iz /Q Yk (r) 17,k (1) (12.19)
1
= 0l/2 Onm
we can further simplify Y752
Tion (k) = fnkémn (12.20)
12.4.0.2 Correlation
From
1 & 2(iw — €Ep'k— )
Te . (k,q) = - du’ X (k ! 4
(k. Q) nZ( 27?)/0 W X i (K, Q1 )(m_m{_q)2 o (12.21)
Xynanr (@, w) = Y [M,0(k, Q)] Wi (g, w) M), (k, q) (12.22)

ij
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12.5. Combining ©% and M}, Chapter 12

we obtain the singular terms
X:n2n in’ (k7 LU) = Z [Mznn’ (k’ 0)} " Wi(jz‘é2( )Mgzn’ (k7 0)
ij
=471 Doo(0,w) MY,/ (k,0)]" M2, (k,0)

4
:ﬁﬂ-énn’é‘mnDOO(oa W)

anln n’ (k w) = Z [M:nn/ (ka 0)} " WiCjSl(w)Min/ (kv 0)

= Z [M:nn/(k’ 0)} - \/4_ {51 ODOJ(O w) ]%(1 — 6 ) + (1 — (51-,0)Di70(0,w)17§6j,0} Min/(k, 0)

_F S { (M8, 0, 0)] " Do,i(0,0)5 M (. 0) + [M 0 (,0)] Dio(0,0)57 MY, (1,0) |
i#£0
47 1 1 . X
=/ 2 Z S Do.i(0,w) 52 M2 (K, 0) + G Dy 0(0, )52 M7, (k, 0)] }
1750
Koins (ks ) = S (M (ks @)] 57 (@) D (a, )57 (@) M2, (k, q)
Y (12.23)

~1

12.5 Combining 9> and M

An noteworthy feature in the formulation above is that for both the dielectric matrix and selfenergy, M_ = always
appears together with ©2. We can therefore define a new quantity

M, (k,q) = 02 M, (k, q) (12.24)

Using this quantity we have the following working formula for the dielectric matrix, exchange and correlation
self-energy.

12.5.0.1 Dielectric matrix
e (w) =6i06j0 — 47T5i0PH(w)5j0 = [1 - 4 P™ ()] 8i0850

efyw:( Jo ) NS 00 22 05

k n'#n 6 nk — €’k
/ , - * (12.25)
E};VQ(M) = -1 Z Z an’k pnn k q {Mvjzn’ (k,O)} 51’0
K n'#n 5 nk — €n’k

BZ occ unocc

cylaw) <0y~ N3 Y ) [31,,06, )] el )

12.5.0.2 Exchange self-energy

TléQ(k) 7ﬁfnk5mn
occ " (12.26)
Thalea) =Y 3 [Mh (k@) 825,k q)
12.5.0.3 Correlation selfenergy
4
X7Sn2nn (k w) 7r57171’5mnD00(0 W)
[4m - y *

X;lln n’ k w Z mnlDO % ) :zm(kv 0) + 5nnlDi70(07w) |:M7lnn(ka 0):| } (1227)

1750

K, 0) =3 [Mh (6,0)] Di(a,) 317, (k,)

j
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Chapter 12 12.6. Static COHSEX approximation

12.6 Static COHSEX approximation

The self-energy in the static COHSEX approximation reads
XC / 1 / /. /
z (x,x):gé(xfx)[W(x,x 0) — v(x,x) ank"/)nk k(X)W (x,x';0)
_ EX(X7 X/) + chCIHSX(X7 x )
with
! 1 /
Yc — CHSX(x,x') = 56(){ —x")We.(x,x';0) ankwnk (XYW (x,x;0)

Using the cloure relation

3(x —x/) ank x')

we have

S — CHSX(x,x') = 3 [% - fnk} bt (R (YW (x,X30)

nk

Now using the expansion of W, by the mixed basis
(x,x';0) ZZ i xai () [xas (x'))°

One obtains

EC—CHSX Z Z Z {_ _ fnk:| (a, )]U qu( X) [qu (x/)]* wnk(X)¢;k(x’)

4,7 nk

The matrix elements of X6~ CH5X therefore read

2N () =[x [ (veen) S I e x un(ves)

_zzz[——fnk] (@,0)];

1,5 n'k’

x / X473 (%) Xai (X)Pnrier (%) / X 1hic (%) X g (%) e (x7)

=Ne 1222[ o 9@ 00, (3 0] 007 O s

4,5 n’'k’

=N E N[5 e Wl 01 [ ] 08

“j n'
Using the previous defined quantity
Xonnen (K, qw) = > [We(q,0)],; [M},,,. (k, )] M, (k, q)
i
We have

[ZC—CHSX] . (k) — Nc_l Z Z Z [% - fnk:| an;n’ (ka q; 0)
a ij n
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Chapter 13
GoWy and GWW; Approximation

In this chapter we describe how quasi-particle energies are obtained one we have obtained matrix elements of
exchange and correlatoin selfenergies.

13.1 GyW, approximation
The quasi-particle equation even under the GW approximation is still very complicated. In practice, the so- called

G W) approach is usually used, in which the quasiparticle energy &, is calculated from the first order perturbation
theory based on Kohn-Sham (usually LDA) eigenenergies €, and eigenfunctions ¢, (r)

5nk =€pk + R <wnk| E((E‘nk) - ch |1/}nk>

=enk + 02k (Enk) (3.1
Expanding ¥(&,x) around €, by the Taylor’s expansion we have
Enk =€n Znk (Unk| Zlenk) — Vie |¥n
ISy riiia e 132
where V.. (r) is the DFT exchange correlation potential. 7, is the QP renormalization factor,
-1
Zyk = [1 - (8% (nk| E(w) |¢nk>)w_€nj (13.3)

and accounts for the fact that ¥ is evaluated at the DFT energy rather that the QP energy. The self- energy is
calculated from G and W, that are all evaluated from KS eigen-energies and wavefunctions.

13.2 Analytic continuation of correlation selfenergy

In the current implementation of our code, the selfenergy is first calculated along the imaginary frequency and then
analytically continued to the real frequency. The accuracy of final results relies sensitively on the accuracy of such
an analytical continuation procedure. Here we investigate two AC approaches.

13.2.1 Multipole fitting method

In this method, the selfenergy calculated along the imaginary frequency is fitted to the following multipole function
(the dependence on the band indexes nk is dropped to simplify the notation)

Np

S(iw) =y (13.4)

Z'W7bi

where the parameters {a;} and {b;} are determined by the nonlinear least squareroot (NLS) fitting procedure. This
method will be denoted as MPF.
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13.3. Fermi energy shift Chapter 13

13.2.2 Pade approximant method

A function f(z), whose values at N discrete points {z,|n = 1..N} are given f(z,) = f,, can be fitted to a

N-point Pade approximant

_ An(2)
Bn(2)

An(z) and By(z) are complex polynominal of N/2 and N/2 — 1-th order for even N. For odd N, both Ay (z)
and By (z) are the (N — 1)/2-order polynomials. In this work we always use even N. Therefore the number of
poles that are represented by the N-point Pade approximant is equal to N/2. The Ay (z) and By (z), based on the

(13.5)

Thiele’s reciprocal difference method, [62, 36] can be calculated recursively according to
An(2) An—1(2) + (2 — zn-1)anAn—2(2) (13.6)
B,(z2) = Bnp-1(2)+ (2 — zn—1)anBn-2(2) (13.7)

with Ag = 0, A; = al and By = By = 1. The coefficients {a,, } are also calculated recursively by

an = gn(zn) (13.8)
g1(zn) = fn (13.9)
gplz) = W@ —gmiE) s, (13.10)

(z - Zp—l)gp—l(z)

Pade approximant has the feature that it is the “best" approximation of a function by a rational function of
given order. To be more specific, Py (z) corresponding to f(z) at z = 0 agrees up to the N-th order derivative

f(0) = Pn(0)

'(0) = P4 (0
f1(0) = Pn(0) 13.11)

7™ = Py 0)

As shown in the previous section, to calculate the quasi-particle energies, one needs only the selfenergy X,k (2)
evaluated around the corresponding KS eigenenergy €,x. Therefore the requirement for the AC function is that it
has minimal error around z = €,x. One would think that ¥:(z) should be related to the PA function by

Yok(2) = Py(z — €nk) (13.12)

and the PA function Py (z) is fitted on the set of points {z, = —enk + iwp, fp = L,k (iwp)} This additional
transformation is actually not necessary due to the fact that both the PA function (Eq. (13.5)) and the multipole
function (Eq. (13.4) have the feature that

Pn(z+ z0;{#p}) = Pn(2;{2p — 20}) (13.13)

so that
Yok(2) = Pn(z — enk; {—€nk + iwp}) = Pn(z; {iwp}) (13.14)

The PA function depends on the set of input complex points used for the fitting. In our case, the selfenergy is
calculated on N, imaginary frequency points. When using PA approach one can use N = 4..N,, points to obtain
the AC function on the real frequency, corresponding to N, = 2..N,,/2. In the following section, we will test the
effects of using different IV,.

The validity of the analytical continuation method relies on the fact that the selfenergy is analytic for w < p
in the upper half-plane and for w > p in the lower-half plane. The AC function does not necessarily satisfy this
requirement rigorously, but it should be fine as long as the abnormal singularity occurs far away from the relevant
energy region.

13.3 Fermi energy shift

This part is mainly adapted from Patrick’s thesis. [46] A significant consequence of approximating the full Green’s
function G by the LDA Green’s function G|, is that the particle number is not necessarily conserved. This is related
to the fact that the GW quasi-particle corrections to the Fermi level is in general not zero,

How = PKS + €s (13.15)
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Chapter 13 13.3. Fermi energy shift

where the chemical potential in both GW and KS are taken as the middle of the band gap in the case of insulating
materials at zero temperature. As first suggested by Hedin [27], a simple way of recovering the conservation of
particle number and therefore simulating self-consistency is to introduce the shift € into G

éo(w) = Gp(w — €s5), (13.16)
as a better approximation to GG. The resultant self-energy reads

7

S(w) /dw'Wo(w')éo(w/ +w)

2: (13.17)
- /dw’WO(w')Go(w' +w—€y).
27
Since in practice the self-energy is calculated based on the unshifted Green’s function
neale(y) = QL /dw’Wo(w’)Go(w’ + w), (13.18)
s
we have
B(w) = Tw — €). (13.19)
The corresponding quasi-particle equation becomes
H(Enk - 6s)\Ijnk = Enk\I]nk- (1320)
from which, we obtain, using the first-order perturbation theory
Enk = €nk T 5Enk(Enk - 65)- (132])
By expanding the correlation selfenergy around the KS eigenenergy €,x,we have
Eox =60k + Znk [03 0k (€n)) — €] + €5
te =6nic F Znte [PXnic(€nic) = €] (13.22)

=enk + Znk0Xnk(€nk) + (1 — Znk)es
Comparing this equation to Eq.(13.1), we see that the contribution of this Fermi energy shift to the band gap is
proportal to the difference in Z,, for the valence band maximum (VBM) and conduction band minimum (CBM)

0Egn, = (Zvem — ZeBm)es- (13.23)

For normal sp semiconductors like Si and GaAs in which the valence band and conduction band are of similar
spcharacters, Zyvpm and Zcpw are very close so that the contribution of 5E§:p is negligible. But for materials in
which the VBM and CBM have very different characters, as in the case of CeOs and ThOa, the difference between
ZvsMm and Zcpym can be significant, so that the contribution of the Fermil energy shift is non-negligible.

In practice, the Fermi energy shift can be included either self-consistently or perturbatively. In the self-

consistent approach based on Eq.13.1 we have

£f) = £+ e - )

(i—1)

o (13.24)
el = pgw — pxs.

In the perturbative approach based on Eq.13.2, by assuming that GW quasi-particle corrections do not reorder the
energy spectrum, the Fermi energy shift for finite systems can be calculated directly by

_ ZnodXno + ZLudXLy

Zno + Zru
where HO and LU represent highest occupied and lowest unoccupied orbitals. The perturbative approach for solid
is a little complicated due to the k-dependence of the selfenergy. The location of VBM and CBM of GW bands
are not known a priori, so that €5 can not be calculated directly as in finite systems. One can, however, calculate €
also in an iterative manner

(13.25)

S

57(;12 = €pk + anéznk(enk) - 6‘(:71)

(2)

. (13.26)
Egz) = Hgw — MKs-

with ego) = 0. The most significant difference between these two iterative approach the argument that enters the

selfenergy as a function. In Eq. 13.24 the selfenergy is evaluated in each iteration at different energy points while
in Eq. 13.26 the selfenergy is evaluated only once, at the corresponding KS eigenenergy. A priori it is not clear
whether these two iterative approaches are stable at. In the first approach the selfenergy is evaluated not only
at the KS eigenenergy €,x, but also in the energy region around ¢,x, therefore the accuracy requirement for the
selfenergy as a function of real energy is more stringent.

In the remaining part of this paper, we will compare the following four variants FES scheme:
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i. FES-0: perturbative treatment without FES (Eq. (13.2));
5nk = €nk T an(sznk(enk) (1327)
ii. FES-1: perturbative treatment with FES (Eq. (13.20)) ;

D = er + Zuned Dne(en) — €

; ; (13.28)
e = uhy — ps.
iii. FES-2: iterative treatment with FES (Eq. (13.24));
£ = e + e - )
(1) (1) (13.29)
€s = Hgw  — HKS-
iv. FES-3: iterative treatment without FES.
D = gl 4 53 (N (13.30)

13.4 GW, approach

The basic idea of the so-called GW) approach is to update G using quasi-particle energies with fixed screened
Coulomb interaction Wy, in the meanwhile quasi-particle wave-functions are still approximated by KS eigen-
vectors. In practice, QP energies can calculated self-consistently by two different ways. In the first scheme, QP
energies are calculated self-consistently in terms of the following iterative relation,

E5) = eonc + 0EUV (EGTHEGTY — Dy, (13.31)

The second argument for X, in the equation above indicates that QP energies of the last iteration, shifted by
its Fermi energy with respect to the original KS Fermi energy, are used in the calculation of the correlation self-
energies, which are dropped from now on to simplify the notation. Because the Fermi energy shift is already taken
into account in the correlation self-energies, it is therefore not necessary to be included in the first argument of
Y k. One can derive an alternative self-consistent scheme based on

AR S A (13.32)
By expanding ZSk_ 2 linearly around 6’51:1), one can obtain the following iterative relation
i 1—1 i—1 i—1 i—1
g8 =0 + 20V + e — ESTY). (13.33)
We note that the GW calculation costs almost nothing once a G Wy calculation has been done: As clear from

Eq. 12.7, the quantity that are most time-consuming to calculate, X/, need to be calculated only once, which
is already done in G Wj.
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GoW based on LDA+U

14.1 LDA+U method

For systems with d/f-shells, the severe self-interaction error of LDA or GGA often results in an inadequate
description. A simple and effective approach to correct for this is to introduce a local, Hubbard-like correction
(LDA+U), characterized by the on-site Coulomb (U) and the exchange interaction (J). [5, 6, 4] In its most general
form, the LDA+U total energy is written as

Erpa+v = ELpalp (v)] + Eee[n7] — Eee[n?], (14.1)

where o =1, | is the spin index (from now on we will write out the spin degree of freedom explicitly, assuming a
collinear spin-polarization). n7 is the local density matrix defined as

nfn,m/ = Z Tk (ml¥ny) <¢Zk|m/> ) (14.2)
nk

where f7, denotes the occupation number of the state ¥7, , and {|m) = |In,lm)} denote a set of atomic-like
local orbitals on the I-th atom with the principle, angular and magnetic quantum numbers 7, [ and m, respectively.
n? = Trn? is the local occupation number. F,, contains the electron-electron interaction of the localized electrons
and the double counting term E.. removes the part that was already included in the LDA Hamiltonian. The
LDA+U approach is obtained by treating F.. in a Hartree-Fock like fashion [37]

Eee[d®) =5 > {((mima| Vee [mama) — (mims| Vee [mams))ng, o 05y i,

{mzfl.,l},a (]4.3)

+ (mima| Vee [mama) ng,.m, "im, }7
with an effective screened Coulomb interaction V.. Using the angular expansion of Vi
L 4
AN N T -~ * A~/
Vee(r,1') = ; M:Z_Lm(r, oo Yem Vi (), (14.4)

the Coulomb matrix element (mjmaz| Ve. |msmy) can be expanded as follows,

(mima| Vee [ms, ma) = Z FLCp(my, ma, mg3, my). (14.5)
L

Fy, are radial Coulomb integrals (Slater’s integrals)
I = /dr/dr’r2r'2|Rnpl(r)|2vL(r, ") R, ()2, (14.6)

and C,(m1, ma, mg, my) are angular integrals, which, using Wigner’s 3-j symbols, [?] read

L
CL(m1, ma,ms, m4) = Z (21 + 1)2(_1)m1+m2+M
M=t (14.7)

X1L121 L 1 I L 1
0O 0 O —’I’I’Ll—MTI’Lg —’I’I’LQM’I’I’L4.
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14.2. LDA+U as an approximation to GW Chapter 14

For d-electrons, only Fpy, F», and Fy are non-vanishing, and they are related to U and J by U = Fp and J =
(Fy + F4)/14. By fixing the ratio F;/ F», which is nearly constant (~ 0.625) in free atoms, [?] one can use U and
J as only parameters to determine Fee. [37, 4]

The double counting correction term Feo [n7], on the other hand, is more arbitrary and is one of the largest
problems in the LDA+U approach.[5, 6, 19, 37, 21, 43, 64] Most frequently Fl. is taken as the following function
of the local occupation numbers n?

1 1
Eeeln®] = SUn(n —1) - 5Jznff(n‘f -1), (14.8)

which can be obtained from Eq. (14.3) by neglecting orbital polarization effects, often called fully localization
limit (FLL). [59, 19]
The single-particle Hamiltonian corresponding to Er,pa+u [p(r)] reads

1 Ao
HPAYT = 2V 4 Vi 4+ Vi + Vi + 070, (149)

where 6V~ = Y o IMY OV, (m/| is a site- and orbital-dependent non-local potential arising from the
LDA+U correction term, -
6 {Eee[n] — Fee[n?] }

(S‘/;?Lm/ =

5nfnm/
= Z <mm1| Vee |mlm2> Mg, may
P (14.10)
—_ <mm1| ‘/ee |m2m/> nfnz,ml

el (- (-2)1

Neglecting the anisotropy of the local Coulomb interaction, i.e. dropping all L > 0 terms in Eq. (14.4) and further
using the identity C'r—o(m1, ma, M3, M4) = Omy .ms0ms,m4.[2] We obtain

(ml,m2|Vee |m3,m4> ~ F06m1m35m2m4. (1411)
Within this approximation we have

1
sVo, = {55%, - n‘,’nml U. (14.12)

If we define the local projection so that the on-site density matrix is diagonal, 6Vy takes the simple form
V' =3"U L e lm) (m|
U = . 5 m . (14.13)

The main physical effect of 6Vy is therefore to push occupied localized states down and unoccupied ones up in
energy, which effectively opens a gap that might have been absent in the LDA description.

14.2 LDA+U as an approximation to GW

For highly localized d/ f-states LDA+U can be viewed as an approximate GW scheme, as first pointed out by
Anisimov et al. [4] The original derivation is fairly involved and based on several specific assumptions that turn
out to be not necessary. We present here a new derivation that is simpler and more general, starting from the static
Coulomb-hole and screened exchange (COHSEX) approximation [27, 10] to the GW self-energy. The COHSEX
approximation is obtained by omitting the dynamic features of the screened Coulomb interaction

| —

% (r,r') ~ 25(1‘ —1') [W(r,r’;0) —v(r — )]
o e o , (14.14)
- Z fnkwnk(r) nk(r )W(I‘,I‘ 70)
nk
Using the closure relation of the KS states
(e, x') = W ()P (r'), (14.15)
nk
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we obtain

1
() = 30 (5 - ) VW 50)
nk (14.16)

5 S U o).
nk

The matrix elements of X7 (r,r’) projected onto the local subspace {|m)} can therefore be written as

- 2
" 14.17)

1
=5 2 {Om U v b -
nk

1
S o (— - ) (] W (0) [ o)

We now decompose the Kohn-Sham wavefunctions according to

Z mnk|¢m

~2k>, (14.18)

with C?

mink = = (pm|[V7,)- 1/3;‘11(> can be regarded as a “pure” itinerant state in which the contribution of localized

states has been projected out. Inserting Eq. (14.18) into Eq. (14.17) and further assuming that any matrix element
that involves the overlap of ¢, (r) and Y,k (r) can be neglected, we obtain

= 3 S, (3 8) Bt

mimz nk

x (mmy| W (0) |mam’)

- —001 2k Crmaink (mmi| v mam’) } (14.19)
1 . ,
= Z §5m1m2 ~ Nmymy <mm1| W(O) |m2m >
mimsa
1

(mmy|v|mim'y,

m1

2

where we have used the relations
(e O *
E fnkc mi; nkcmg ink — nmzml

(14.20)
Z mi; nk mg nk = 5m1m2-
In the spirit of the LDA+U approach, we consider only corrections to localized states
SV, = (m| VEee + 27 — Vo5 |m/) (14.21)
where VII{OC is the Hartree potential of the localized electron density
nloc (r) = Z Nnyma Pmy (X)), (1), (14.22)
mima

[VIOC} o = <m| Véoc |m/>

(14.23)

Z Nmgm, (Mma| v |m/ma).
mimsa

loc,o —=loc

Vipa (r) = 0E,, /dp°(r) is the interaction potential among the localized states in the LDA. Using a similar
argument as for the FLL approximation to the double counting correction, i.e. Eq. (14.8), we obtain

—loc

1
E :§FO(O) n(n —1) ——J(O)Zn

ee

1 1
S (N U 5)
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where FO(O) and J(©) are the first Slater integral and the on-site exchange term from the bare Coulomb interaction
v(r, '), respectively.
We therefore have

Ve = Z {nm2m1 (mmq|v|m'ms)

mimsa

+ (Gmma = Wiam, ) | W(0) g’ }
(14.25)

1
-3 Z (mmq|v|mim’)

miy

_ _ l 0) o _ 1 (0)
Omm/ [<n 2) F, (n 2> J .

By neglecting the anisotropy in both the bare and screened Coulomb interaction, i.e. using the approximation in
Eq. (14.11), we obtain exactly the same expression as in LDA+U (Eq. (14.12))

1
sVo = {55’”7”’ - nfnm,} U, (14.26)

where U is identified as the first Slater integral Fy arising from the static screened Coulomb interaction W (r, r’; 0).

[4]

To summarize, LDA+U follows from the GW approach under the assumption that:
i. The frequency dependence of the screened Coulomb interaction is neglected;

ii. Quasiparticle corrections are only applied to localized states, whereas itinerant states are still treated at the
LDA level;

iii. All Coulomb matrix elements that involve the overlap of a localized state and an itinerant state are neglected
(which is equivalent to omitting the many-body exchange interaction between localized and itinerant elec-
trons).

None of these assumptions are of course fully satisfied in realistic systems. The dynamic character of the screened
Coulomb interaction is actually stronger for localized electrons than for itinerant ones, as demonstrated by the fact
that the renormalization factor (Eq. (??)) typically takes a value of ~ 0.5 — 0.6 for localized states , in contrast
to the typical value of ~ 0.8 — 0.9 for itinerant states. [49] The LDA description of the itinerant states suffers
from the band gap problem and the coupling between localized and itinerant states is critical for the physical and
chemical properties of d/ f-electron systems.

14.3 KS equation in LDA+U

In the LDA+U formalism, the corresponding "Kohn-Sham” equation (The spin index is dropped for brevity) bec-
comes

Lo LDA L o _
[—§v + VEPA(r }wnk Z U S e (1) = €nk¥nk(r) (14.27)

The KS eigen functions ¢,k (r) within the atom a-MT sphere can be written generally as
Yn(r) = {Anlm(E)ual( VEy) + By (B)itar(r, Ey) + Chi (B)uar(r®, En,)| Yo (°) (14.28)
Im

To simplify the notation, we introduce another index, v, and use g, to refer to ugy, tar OF Uq (1%, Er,). Now
Ynxk(r) can be written as

Yrae(r) =D " Al s thaty (1) Vi () (14.29)

Ilmv

The electron density in the a-MT sphere reads

= Z FrclUnic(1) 2
- Z f"k Z Z nk lml/ nk,l’m’u’ualu (Ta)ualy’ (Ta)yvljn (fa)Y/m/ (7:11)

Imv U'!m'v’

- Z Z Z Z fnk nk lml/ A;llk,l’m’u’ulll” (ra)ulll/l// (ra) Yijn (,,qa)y'l/m/ (’Fa)

Im U'm’ | v,v' nk

(14.30)
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which gives the density matrix projected to the a-MT sphere

n?m,l'm' = ngk ZAZk,lmu ['A;lzk,l’m’u’] /0 dTT2Ualu(T)Ualfw () (14.31)
nk v,V
In the case of LDA+U, one only needs the /-diagonal densty matrix, nwi m! = Ny ime- We denote the radial

integral in the equation above as

e, = / drr®uqy (1) tan (1) (14.32)
0

To carry out the functional derivative in Eq. (14.27), one needs to express n“l m €xplicitly as a functional of
Ynk(r). To do that, we first project 1,k (r) into the local atomic orbital w4, (7 )Yl (r“’)

<ual1/}/lm|’¢)nk Z Ank lml/ v,V (1433)

Inverting this equation, we have

gzk,lmu = Z [Ial] ,:11,/ <ual1/’yvlm|wnk> (1434)

u!

With this relation between A% and 1, We have

nk,lmv

m/’ _ankZAnk Imv UV’ [ Zk,lm’y’}*
_ankzz [al UV (atv, Yim | nik)

v viva (14.35)
X Ial [Ial} <ualu2 Yim/ |wnk>*

l/V

72 fnk Z wnk|uall/1}/lm’> [Ial];llwz <ual1/2}/lm|"/)nk>

vi,V2

Now the functional derivative of the density matrix with respect to the KS eigen-vector can be done straightfor-

wardly,
1 5”?71 ,m’

e OVnk

The KS equation in LDA+U can be written explicitly as

=" Jttatu Yimr) [19],)  (tatu, Yim |tnic) (14.36)

v,V
vi,V2

1 .
—§v2 + VIEPA(r) 4 sVEPATU ) 1 (1) = €nacthni(T) (14.37)

where
SULDA+U _ Z Ut O [ttatn, Yir) (1] (tat Yie| (14.38)

vi,V2

14.4 Derive LDA+U from GW

The LDA+U method can be “derived” from the GW theory for highly localized d/ f-states within several assump-
tions, which is first pointed out by Anisimov et al. [4] As their formulation is quite complicated, here we present a
simplified derivation starting from the static Coulomb-hole and screened exchange (CHSX) approximation [27, 10]
to the GW selfenergy.

S(r,r’;w) /GO r,r’;w+ w)Wo(r, r;w’)dw’ (14.39)

The static CHSX approximation is obtained by neglecting the dynamic features of the screened Coulomb
interaction, and reads

£ (e, 1) = 28(e — x') [Wo(r, '50) — v(r — 1)
occ (14.40)
=¥ (r, ') ank Yo (x') Wo (x,1'; 0)
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Using
3, 1') = Prac(r) b (') (14.41)
nk

the CHSX selfenergy can be rewritten as

BN ) =3 (% - fnk) Gt (X (&) W (1,173 0)
: | | (14.42)
— 5 Z¢nk(r)wnk(r )*U(I‘ -r )
nk

For d- or f-electron systems, we further assume that highly localized d or f-states, denoted as ¢,,, are essen-
tially separated from other itinerant states and the whole Hilbert space can be decomposed into two subsystems
that are approximately orthogonal to each other.

5(r, ") = dm(0)bm () + D e () Pae (r')* (14.43)
m nk

The LDA+U approach considers only the quasi-particle correction % for highly localized d or f states, which is

equivalent to to approximate 03 by
O = ) |m) s (] (14.44)

m,m’

where 6% = ¥*¢ — V., considers only the contributions from localized states. Under the CHSX approximation,
we have

1
5Emm' = Z (5 - nm1m2) <mm2| W(O) |m1m/>
mams (14.45)
— Z (mma|v|mim’) — (m| Ve |m/)

mimsa
If we neglect anisotropy of the Coulomb interaction, and further assume the LDA e-e interaction energy can be

approximated by a Hartree-Fock like expression, which is the same assumption underlying the standard LDA+U
formalism, [4] the last two terms in Eq. (14.46 will cancel each other, and we have

5 = O (% - nm> U (14.46)

where U is identified as the Slater integral F'° from the static screened Coulomb interaction W (r,r’; 0). [4]
To summarize, in order to obtain the LDA+U from the GW, the following assumptions have been made:

1. static approximation: the frequency dependence of the screened Coulomb interaction is neglected;

ii. quasi-particle corrections are assumed to be important only for highly-localized d- or f- states, and the LDA
description is adequate for itinerant states;

iii. the target localized states are well-separated from itinerant states, i.e. the whole system can be literally
decomposed into two subsystems that are coupled only by classical electro-static interactions.

It is obvious that none of these assumptions is rigorously valid. The dynamic character of the screened Coulomb
interaction is actually stronger for localized electrons than for itinerant electrons. As the 6V correction has only
direct effects on states with strong d or f characters, the description of itinerant states is still at the LDA level. In
contrast to the last assumption, the coupling between localized and itinerant states is critical for the physical and
chemical properties of d/ f-electron systems. In practice, the 8V correction is applied to KS single-particle states
via some local projection, and the LDA+U calculations are always done self-consistently. As a result, the SVy
correction can have indirect influences on itinerant states as well.

14.5 LDA+U correction in G/,
Formally, the only difference between LDA-based and LDA+U-based G W}, is the contribution from Eq. (14.38)

SVEPATY = (41| GVEPAFY [ 1)

=" v Y Wniclttatin Yimr) [19], . (ttatu Vi [9n1c) (14.47)

vi,V2 <
vi,v2
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Using the relation between Ank 1w A0d (Ualy, Yim [nk) we have

(SVLDAJFU Z Um,m’ Z Z Ial u1 v’ Zk,lm’v/}* [Ial} ;11,1’2 [IGZ]VZW Afrlzk,lmu
m,m v1,v2 v (14.48)

— al a *
E Um,m/ E 'Ank lml/ I l,,/ [ nk,lm’u’]

m,m’

Enke = €nie + R [(Vnae] B(Ene) = Viee = VY [¢hid)]

To see the relation between LDA and LDA+U based GoW, more explicitly, we notice that the KS eigen-
energies obtained from LDA+U, denoted as eTI;EAJrU, contain a contribution from §V*PA+U 5o that

LDA+U <"/)nk| . —V2 + VLDA + 5VLDA+U |,(/} >

Enk (14.49)

~LDA LDA+U
=€nk + 6Vnk

where eLDA are the LDA KS eigen-energies calculated using LDA+U wave functions. The final quasi-particle
energies can be written as

SE LDA+U GEEA-’_U + Z ( LDA+U) [an (GEEA-’_U) _ VTﬁ(C _ 6VnLlPA+U]

LR+ Zuse (HRAT) [ (EATY) — VAT 4 (1~ Zya) VDAY

(14.50)

For the test purpose, we consider the following three variants of LDA+U based Gy W quasi-particle energies:

QP LDA+U-1 LDA+U + Z ( LDAJrU) [Enk( LDAJrU) _ Vs}(C} ,

€nk €nk
DA DA 7 (D) (B (RN V), 1431
SIE’ LDA+U-3 ~LDA + an (~LDA) I:an (~LDA) V }

14.6 How to calculate U?

14.6.1 Constrained DFT method

14.6.2 RPA without or with constaint
G(w) =G4(w) + Gy (w)
P(w) =P4(w) + Pr(w)
) 1

U =< ¢4¢a|W,(0)|papa > (14.52)
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Chapter 15

SOC-GW

This part we formulate the implementation of the GoW, method with spin-orbit coupling. We start from the
general expressions

an (1= fm) { P (1) P (2) + q)”m(xl)*@nm(xz)}

X17X23 —w— an+277 W — Wnm +,”7 (151)
where
P (%) = Y (X) V(%) (15.2)
Whm = €m — €n '

Y(x1,X25w) = i /dw’Go(xl,xQ;w + W W (x2,%x1; W) (15.3)

Pn(x1) ¢}, (x2)

G Tw) = — =

0(x1,X2;w) Z o — ¢

(15.4)

_ZC Y (X1) @5 (x2)

Now consider the expansion of P, W, and ®,,,,,(x) by the basis set x;(r)n,(s). Here we use s to denote the spin
coordinate, and o as the spin quantum number.

ZM#;nXZ N0 (5)

P(x1,%2;w) ZZPW w)xi(r1)ne (s1)X; (r2)n5 (s2) (15.5)
o0’ 1,7
W (x1,%23w) = Y > W7 (@)xi(r1)n0 (s1)X; (x2)n (52)
o0’ 1,7

With these expansion it is straightforward to obtain

Py = [ drdsndvadsan; (v )05 51) PO, 300 52 52

aig, [agen] i, g 156
=Y hl1= - ~
nom w_wnm+2n w+wnm_“7
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Now consider the self-energy
() = [ dxixas () St 525 0)60m (32)
= [ i )ime)z [ s 3 Ol hon e )
30 YW e () o) o)

ij 0,0

_ZZZ /dw H(w+ o' W‘m( )/dX1¢:L(X1)¢n'(Xl)X;(rl)U;f(Sl)

n’ 15 o,0’

y / A5 b (%2) 0 (%2) X (£2)1 (52)

=S g [ O @) 7, M

n’ ij o,0’

(15.7)
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Selfconsistent GV

16.1 Full self-consistent G/

The GoWj method has the major drawback that it depends on the reference single-particle Hamiltonian Hy from
which Gy and Wy are calculated. In addition, the lack of self-consistency also results in the violation of the
conservation of particle number and energy when the system under study is subject to external perturbations.
[10] These problems can be avoided by using the GW method in a self-consistent way, as illustrated in Fig. ??.
As proved by Baym and Kadanoff, [14, 13] a conserving Green’s function has to meet the requirements that it
has to be a self-consistent solution of the Dyson’s equation with the corresponding self-energy being derivable
from the Luttinger-Ward (LW) energy functional X[G] = 6®/6G. However, full self-consistent GIW (SCGW)
calculations are mathematically complicated and computationally very demanding, due to the fact that the self-
energy operator is non-local, non-Hermitian and energy dependent. As a result, the solutions of the QP equation
are not orthonormal, and they can not be obtained by standard linear algebra techniques. On the other hand, the
full SCGW does not necessarily provide more accurate QP properties. The full self-consistency for GG can surely
improve the ground state total energy due to the variational nature of the LW functional, but quasiparticle properties
are not variational. From a conceptual point of view, a self-consistent solution of the Hedin’s equations with the
GW approximation to the self-energy would successively introduce higher order electron-electron interaction
terms of certain types without a balanced treatment of other higher order terms contained in the vertex function.

Whether the full self-consistency improves or deteriorates quasi-particle properties has been under fierce debate
in recent years. The first full SCGW calculation was undertaken for a quasi-one-dimensional model semiconductor
[20]. Although the relevance of such a highly simplified model system to real materials seems to be rather weak,
the main features revealed in this study are very illuminating. The band gaps obtained from the full SCGW were
found to be very close to the Hartree-Fock gaps, probably due to much weaker screening in 1D systems than
that in 3D bulk systems. Compared to the quantum Monte Carlo results, the full SCGW gaps are significantly
overestimated, indicating that the vertex corrections are important in this model system.

The partial and full SCGW (GW, and GW, respectively) are also applied to homogeneous electron gas. [63,

, 30] It was found that by introducing self-consistency, the band width of the HEG is increased with respect
to the non-self-consistent value, and therefore deviates more severely from that of the experimental value for
the alkali metals. The self-consistency also increases the weight of the quasi-particle peak; concomitantly the
plasmon satellite is broadened and shifted towards to the Fermi energy, and almost disappears in the full SCGW.
Qualitatively similar features were also observed in full SCGW studies of real nearly-free-electron-(NFE)-like
metals K [50] and Al [35].

The SCGW has also been applied to simple semiconductors like Si and Ge by several groups. [50, 34, 65, 35]
Different groups obtained dramatically different band gaps for such simple systems like Si, an indication of the
complexity of the issue. In Ref. [50], a fundamental gap of 1.91 eV is obtained by full SCGW, in contrast to the
experimental value of 1.17 eV (GoWy@LDA gives 1.34 eV in the same work). A possible cause of this dramatic
overestimation is the use of the pseudo-potential. [34, 61, 25] Ku and Eguiluz reinvestigated the full SCGW band
gap of Si using an all-electron LAPW approach, and obtained a gap of 1.03 eV, apparently in good agreement
with the experimental value.[34] However, in this study, only 14 bands (10 unoccupied) were used. As discussed
in Refs. [61, 25], the convergence of the GW band gap with respect to the number of unoccupied bands used is
actually quite slow, and the results obtained from 10 bands are probably not converged. In another full SCGW
study, also using the LAPW approach, Kutepov et al. [35] obtain a gap of 1.55 eV for Si. We should also mention
the work by Zein et al., [65] who developed a local self-energy approach using the linearized muffin-tin orbital
(LMTO) method within atomic sphere approximation (ASA) to perform full SCGW calculations, and obtained a
gap of 1.10 eV. The accuracy of this approach is, however, doubtful, as indicated by the fact this approach gives a
GoWo@LDA gap of only 1.33 eV for AlAs, significantly different from other all-electron Gy W) studies. The fact
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that different groups obtain severely disparate full SCGW results for such simple systems like Si is very disturbing,
indicating clearly that further systematic and benchmark studies are needed.

16.2 Approximate self-consistent GV

To avoid the computational complication of the full SCGW, recently there have been intensive efforts to developing
approximate self-consistent GW. To put these apparently different schemes in a unified framework, we start with
the QP equation, written in the Dirac’s notation,

H(E) |90) = [Ho+ ()| [W0) = € 1W0) (16.1)

Now let’s expand ¥,, by a set of orthonormal single-particle wave functions |¢,), which are eigenfunctions of
some single-particle effective Hamiltonian H

ﬁs |w'/> =€y |wu>
@) = Con 1) (16.2)

we then obtain the matrix form of Eq. (16.1)

Z [Huu(gn) - gnéuu] Cun =0
v (16.3)

H;W(Sn) = <1/}#| IA{O |7/’l/> =+ E;W(Sn>

with 2, (£,) = (1] 2(E,) [1,). The self-energy operator is in general non-Hermtitian, and therefore mathe-
matically difficult to treat. As a first approximation, one can regularize the self-energy by replacing 3, (£,,) by
its Hermitized form,

S (En) = 5 [Zpn(En) + 52,(E0)] (16.4)

1
2
and in the meanwhile we neglect the imaginary part of the quasi-particle energies, i.e. assuming &, to be all
real. Due to the energy dependence of self-energy, Eq. (16.4) still can not be solved by standard linear algebra
techniques. More importantly the QP wave functions at different energies are not orthogonal as a result of the
energy dependence, which makes the construction of a self-consistent loop difficult. Different approximations are
introduced to tackle this difficulty.

16.2.1 Faleev-van Schilfgaarde-Kotani scheme

In the so-called quasi-particle self-consistent GW (QSGW) scheme proposed by Faleev, van Schilfgaarde and
Kotani (FvSK)[22, 33], Eq. (16.3) is converted to an iterative equation by defining an effective Hamiltonian at i-th
iteration as

7 — : l = 5
Hul/ = <’¢)H| HO |1/}V> + 5 [E,uu(ep,) + Euy(ey)} (165)

16.2.2 Shishkin-Marsman-Kresse scheme

Shishkin, Marsman and Kresse (SMK) developed a slightly more sophisticated way to treat the energy dependence

of the self-energy [52]. The self-energy 3(&,,) is first expanded around a reference energy &,

[ﬁo F5(E) +3V(E) (sn - 5n)} W,) = & [W,) (16.6)

where the prime denotes the derivative with respect to the energy. After some simple algebraic transformations
one obtains

[Ho+B(E) - £.8(E0)] 1)

. (16.7)
=& [1-3(E)] 190)
Using the expansion defined in Eq. (16.2), we then obtain the matrix form of Eq. (16.7)
ZHMu(gn)Cun = 5nSuu(gn)Cun (]68)
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where

Hyw(€n) = u|H0+E(‘§) EnS (En) I0) (169
) :

Sy (En) = Oy = Ty (€

A self-consistent loop can be constructed by choosing the reference energy En = 57(571) for ¢-th iteration, and
further using the Hermitized form of H,,, and S, similarly as in the FvSK scheme (Eq. (16.5)). We note that the

FvSK scheme can be recovered by dropping terms related to 3/ in Eq. (16.9). Since the contribution of the latter
vanishes when reaching convergence (re. Eq. (16.6)), we can see that the two schemes are actually equivalent.

16.2.3 self-consistent COHSEX

An even simpler way to overcome the energy-dependence difficulty is to use Hedin’s static Coulomb hole and
screened exchange (COHSEX) approximation [27, 10]. To see the underlying physical assumption, the real part
of the self-energy can be written down as

occ

ReX*(x,x";w) an xReW (X', x;w — €5,)

—an(x) ’P/ d,Imexw)

w—€p —w

(16.10)

where W, = W — v and P represents taking the Cauchy principle value. A static approximation to the self-energy
is obtained by setting w — ¢, = 0in Eq. (16.10)

3xe~COHSEX (¢ &) — O0H (¢ x) 4+ BSFX(x, x)

»OOH(x x') = %6(){ —x') [W(x,x";0) —v(r —1')]

occ

ESEX Z ’l/Jn (X, X/; 0)

(16.11)

The COHSEX self-energy is energy-independent and Hermitian, and therefore can be calculated in a self-consistent
manner quite straightforwardly. The COHSEX itself tends to overestimate the band gaps of semiconductors, but
one can use COHSEX orbital energies and wave-functions as the input for full GoWj. This COHSEX based G W
approach has been used by R. Reining and coworkers for CuzO [17] and VO4 [23] with remarkable success.

An approach closely related to the COHSEX approximation is the model GW approach first proposed by Gygi
and Baldereschi [26], in which the self-energy correction with respect to the LDA exchange-correlation potential
is approximated by

d¥*(r,r') = —p(r, v )W (r — ') (16.12)

where p(r,r’) is the density matrix function, and dW(r — r’) is a model function for the screened Coulomb
interaction correction, whose Fourier transform takes the form

4
oW (q) = Q—; [Es_cl(q,w =0)— 51\_/[1(q,w = 0)} (16.13)

Egé and 51(,[1 are the inverse dielectric functions for a semiconductor and a metal, respectively, both approximated
by some model functions. This model GW approach was used by Massida and coworkers to investigate electronic
band structure properties of transition metal oxides [38, 39, 18].

16.2.4 Sakuma-Miyake-Aryasetiawan scheme

Sakuma, Miyake and Aryasetiawan (SMA) proposed another approximate self-consistent scheme with some inter-
esting new features. [49] For a given set of single-particle orbitals, the quasi-particle energies and wave functions
are calculated by solving Eq. (16.3) with the regularized self-energy Eq. (16.4) without introducing additional
approximation to the energy-dependence. The price of this more rigorous treatment is that quasi-particle wave
functions obtained in this manner are not orthogonal and therefore unsuitable as the input for the next iteration of
GW calculations. SMA proposed to define the following effective quasi-particle Hamiltonian,

Hop =Y |U,) Eq (T, (16.14)

Using the corresponding eigen-energies and wavefuctions, one obtains a close loop to perform approximate SCGW
calculations.
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16.3 Implementation of QSGW

16.3.1 General issues

It is useful to define three different Hamiltonians:

i. H; is the Hermitian single-particle whose eigenfunctions, denoted as ¢, are used to expand the quasi-
particle wave functions, denoted as W x;

ii. H9P is the full QP Hamiltonian which is non-Hermitian, energy-dependent.
iti. H° is the effective quasi-particle Hamiltonian that is used in the self-consistency;

The essense of the quasi-particle self-consistent GW (QSGW) method is to construct H °ff based on H9P.

There are two possible approaches to implement the QSGW methods. In the first approach, one can use fixed
H,,i.e. using fixed ¢, as basis functions to expand QP wave functions ¥,,x. In the second approach, one can use
the effective H9P at ¢+ — 1-th iteration as Hy at ¢-th interation. We will denote the former as the fixed-basis (FB)
approach, and the second one adapted-basis (AB) approach.

The quasi-particle equation reads

HT [ W,1) = [He + A [W,00) = Enie [P ic) - (16.15)
AY*€ is the self-energy correction,
A = 3%¢ — X0 4y pHO = pxe _yxed 4 gy i (16.16)

where V*0 and VHO are xc and Hartree potential corresponding to Hy, respectively. Now expanding W, by
eigenfunctions of H

Hy |¢pie) = € [dpuc)
W) = qu ) [ bpuc) (16.17)

we obtain a standard eigen-equation

HfC = £C

eff
HT = €,0,, + A, (16.18)
ASy, =X%, + 55, — Vi + 6V,

16.3.2 Matrix elements in the FB approach

In the FB approach, the reference Hamiltonian H is fixed, i.e. using fixed ¢, as the basis to expand QP wave
functions W,,.

16.3.2.1 Bare-exchange >7
S == > S D v
K n qa i

<[ AT enE T [ i () ) (16.19)

_N lzzz.fnk qvw Mw(kvq)]*MZZ(kvq)
where M, (k,q) is calculated by

Mk @) = N [ g (60 )
Z co(k—q)N/? / dex§ (r)dh (r) oo (r) (16.20)

Z Ccr* Mzcr (k, q)

90



Chapter 16 16.3. Implementation of QSGW

so that we can have

(k) = =Ny Z 2 Fikmavia @) 3, G (6 = O, (k — )

w'v’
x (M, (k,q)]" M2y, (k,q) (16.21)
=N 122% )> (Mg, (k)] M, (k,@)pf, (k — q)
w'v’

where we have introduced the density matrix

pi (K ankcﬂ (k)% (K) (16.22)
Further using v-diagonalized basis
(k) = —N; Z > Z [M“’ ,q) } M, (k,q)pfr, (k — q) (16.23)
i op'v

16.3.2.2 COHSEX correlation self-energy

The correlation self-energy in the static COHSEX approximation reads

1
ZC(XaX/) = Z |:§ - fnk:| \Ijnk(x)qj;k(xl)wc(xv XI; 0) (1624)
nk
so we have )
S5000 = NS |5 - ] W (a0) (M0 @) 21 ) (1625
a i,j

16.3.2.3 GW correlation selfenergy in the FvSK scheme
For the correlation term in frequency space one has to calculate the convolution:
i

Yo(r, v, w) = %/ Go(r,v’,w+ W)W (r, v’ w)dw’ (16.26)

— 00

We follow the same steps as for the exchange term. The screened Coulomb potential can be expranded by the basis
functions as

W (r,x', w) szz (a,w) (x5 ()" (16.27)
Inserting 16.27 and the definition of G into 16.26 we have:

c / wn// 'k’ / q /. /\)*
(e, 1, w) = / WY le _gk szl (a4.0") (3 ("))

k! (16.28)

* . o Wz‘c‘(qa wl)
*Z;Z;xz *) e (v (r’wn/k/(r’)i /m e

Matrix elements of correlation self-energy can therefore be calculated as

JMew) = [ / 01 (1) 2 (1, )k (¢ ) el

— -1 % x 1 > / Wz?(q’ w/) ]
v (k,q,w')
—N 1 u n’ )
ZZ271'/ w+w—en/kq
where we have introduced
X (K, @, w) = [ My (k@) Wi (q,0) M), (k. q) (16.30)

ij
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In practice, we use the imaginary frequency technique,

¢, (K, iu) 122/ —XWn (k, q,w>( 2ewic—q — iu) (16.31)

€nk—q — tu)? + u'?

Using the fact that

*

X (k, @ ') Z QW (a,iv) M, (k@)

- Xl/u;n’ (k7 q, w )
we therefore have

26, (k, —iu)

_ N i nz /0 h ‘é_:‘; X (K, q, it (eniz:?u;ii)u&

_ { N i nz /0 h i_i (X (K, q, )] (Gfk(i’; “_;?u)jj‘r)u,Q } (16.33)
= {Nc_1 izj Z /0°° C;—?TIqu;n’ (k,q,iu’) (ejlfezk_?u;zii)u/z }*

*{E kw}

From the identity above, we can see that only 27, along the positive imaginary frequncy axis needs to be calcu-
lated.

16.3.2.4 Hartree potential 511
Vo9 = [ droi o)V )0 (o)
=3 fne | 05 o) )l )W ()0 )

o’ n'k’

(16.34)

Now using

=2 Z“w 5 (@) (16.35)

4,J

Vi) = 2 2 fine 2,2 v (a)

we have

o—/ /k/
X / drx; (r) ¢k (r)é 7 (r) / dr’x}’*(r’)‘lli‘z:iif(r’)‘IfZik/(r’) (16.36)
=N vij(q=0) [M(k,0)] Zan,k,M ,0)
i.j o' n'k’

As we know, v;;(q) is singular in the limit of g — 0, but since what we really need is the change of V!, the
singularity will can cancel, and therefore we can just look at the regularized part of v;;(q — 0). Using the
v-diagonalized basis, we have

VHHU _ Z {Mw k 0 ] ZZ 1 ,k,Mw ) (16.37)

o’ n'k’

M 7{77;, can be calculated by
M7, Z k)C7 (k — @) M7 (k, q). (16.38)
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Using the density matrix as defined previously, we have

V0 = N3 000323 e 3 €5 000 0L K,

ook (16.39)
= N- 12 [Mw (k o] SN oo (KT, (K, 0)
o’ k' p'v'
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Chapter 17

ACFD total energy

17.1 [Exact exchange energy

The exact exchange energy in KS-DFT is just the Hatree-Fock exchange energy calculated using the KS orbitals

occ occ

E,=—- %Ngl ;%nlzkl/vdh /‘/1‘211(1‘171‘2)7/1211(1'1)1/1%/ (r2)Ymie (r1)nk(ra)

occ occ

—- NI YN [dn [ eauten ) )6 )] (e r2)

o nk n'k’

(17.1)

Note that the factor N ! comes from the fact that one usually calculate the exchange energy per unit cell. Expand-
ing the bare Coulomb interaction v(ry,r2) by the basis functions ;' (r)

1 B occ occ . , . . . , s
EJJ = _§Nc ! Z Z Z Z Vij (q) Z /V drl /V r [X? (r)wnk (rl)wn’k’ (1‘1)} [X? (r/)wnk (rQ)wn’k’ (1‘2)]
o nk 4,7 q n’k’
1, .
= _§Nc_2 Z Z fnkfn’k—q Z [M'rzln’ (k7 q)] Vij (q)Mgzn’ (k7 q)
k,q n,n’ i,
17.2)
Using the defintion of the exchange self-energy, we have
1 BZ
_ —1 X
By =—5N, zk:zn:fnkznk (17.3)

So apparently, one can obtain the exchange energy as a by-product of the GW calculation. However, in the case of
GW calculation, only %, for valence and a few low-lying conduction bands are calculated, but to calculate £,
one needs also those for core orbitals.

Without constructing exchange self-energy, E, can be calcuated as

BZ
B, =N, es(q) (17.4)
q
with e, (q) defined as
BZ
1 . . :
€r (q) = _§Nc ! Z Z fnkfn’k—q Z [Mnn’(ka Clﬂ Vij (q)Mr}]Ln’ (ka q) (]75)
k n,n’ i,

At the I' point (q — 0), the bare Coulomb interaction is singular,

S

vig (@) = 5 + 0 (@): (17.6)
the corresponding e, (q) becomes
es
ex(q) — q—; + éx(q). (17.7)
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where

E,_N 1222 kfs/kz [M7.( v M27, (K, 0)

o k n,n’

(17.8)
( 77_N lzzz.fnk n'k— qz Mlg T)Z](q)Mr]zfz’(k5q)
o k nmn'
The integration around the singular point is calculated analytically as in the case of the self-energy.
When using the v-diagonalized basis,
Vi = 4md;.00;
T Te (17.9)
i (a) = Ui(a)dy;
then we have
= f—N Yam) ) Z > Faefon M35, (k, 0)] " M33, (k, 0)
o k nn’
BZ
= NS i
o k nn (17.10)
o BZ
— NN
2T
=-2N,
Q

and

BZ
(@) = 5N SN ki o2 (MG a) B @ tea)

o k nmn

= —2N; Y qZ[Mw ) Mk, q) a7.11)

o k nn

=32 o [, W s X [V ] 0w

n,n’

@
8
—
e}
~

Il

17.2 RPA correlation energy

The RPA correlation energy for periodic systems reads

ERPA =NZEH % /000 duTr {Ln [1 — v(q)P(q, iu)] + v(q)P(q,iu)}

1 o (17.12)
=Nt Z %/0 duERPA (q, du)
a
Using the relation between the diectric function and the polarization function P(q, iu)
e(q,iu) =1 —v(q)P(q, iu) (17.13)
we have
ERPA(q,iu) = Tr {Ln [e(q,iu)] + (1 — e(q, iu))} (17.14)
In the GW code, the symmetrized dielectric matrix is used
- _1 N
é(q,tu) :=v~2(q)e(q,tu)v?
(q,iu) (?) (q ). (ql) (17.15)
=1—-vz(q)P(q,iu)vz(q)
Using Tr {AB} = Tr {BA}, we have
B (a,iu) = Tr {Ln [E(q, )] + (1 - &(q, iu))} (17.16)

Apparently the implementation of ACFD correlation energy in our GW code is quite straightforward. Special
cares may be needed for:
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i. Integration over q: It is not clear whether standard BZ integration method already implemented in the code
is enough to obtain optimal efficiency;

ii. Integration over frequencys;

iii. Convergence with respect to unoccupied bands.

17.3 ACFD correlation energy with ALDA f*¢
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Chapter 18

Constrained RPA

We are interested in computing the matrix elements of the operator W in a Wannier basis {|¢r, ¢r’, 1+ >} that
we need to construct. This is a step before computing the matrix element s of the constrained RPA (cRPA) W,.
We first will consider the case of disentangled correlated bands at the Fermi level. The band structure of SrVOs is
then a toy-model.

18.1 U-matrix elements

What we are intertested is matrix elements of the cRPA screened Coulomb interation W,. with respect to a set of
local orbitals, denoted as |¢r 1), where R denotes the lattive vectors, and L is a collective index for a, [ and m,
denoting the atom, angular and magnetic quantum numbers, respectively. A Bloch function can be constructed

from [¢rz) by .
bke) = —7 > T gre) (18.1)
N2 4

Inversely we have

1 .
[PRL) = —73 Ze_Zk‘R |pxr) (18.2)
N¢ ”

Here we follow J. M. Ziman’s convention for the normalization and phase [66]. We will also use the abbreviation
A — (RL) to simplify the notation in the followings.

We now have
Uxixorsra

= <¢R1L1 ¢R2L2| W, |¢7R3L3 ¢R4L4>
— N2 Z ei(kl'R1+k2‘R2—k3‘R3—k4‘R4)
c
ki,k2 ks ka
Xk, Ly Do Lo | Wi [Fres Ly Pia L)
_ N—2 Z ei(kl'R1+k2‘R2—k3‘R3—k4‘R4)
c

ki,ko k3 ks

X Z <¢k1L1|wk1ﬂ1> <¢7k2L2|1/1k2n2>

ni,n2,n3,n4

X <1/1k1n1 wk2n2| W, |1/1k3n31/1k4n4> <1/1k3n3 |¢k3L3> <wk4n2 |¢k4L4>

where we have introduced the Kohn-Sham vector basis |k, ). In the followings we will denote the projection of a
Kohn-Sham vector to the localized orbitals as

Prn(k) = (Oxr|tkn) (18.4)

Now the matrix elementes of IW,. in the Kohn-Sham basis can be expanded using the product basis

<wk1n1 wk2n2| WT |wk3n3wk4n4>
= [ [, (), () S0 SN0 Wis (@) D 02)] b (1) 52

a ,j

(18.3)

= S Wisa) [ i, (X gy (1) [ v, () D) )
a i,j

= Nc_l Z Z Wij (q) [M'rillng (kla q)} ' M'Zﬂm (k4a q)5k37k1 *q5k2,k4*Q'
a i,j
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from which we have

U')\l)\2A3A4 — Nc_2 Z ei(k1'R1+k2‘R2—k3‘R3—k4‘R4) Z PLlnl (kl)PLgng (k2)

ki,ko,k3 kg n1,n2,N3,M4

X N ! Z Z Wl] n1n3 (k17 q)] M£4n2 (k4a q)éks,k1—q5k2,k4—q [PLsns (k3)]* [PLMM (k4)]*

=N;? Z Z et (Bi—Rs) gmikea (Ra—Ra) i (Rs —R2) Z Pryn, (K1) Pryn, (ks — q)

a ki,kg n1,n2,N3,N4

x Wij(@) (M}, (k1,@)]” Mj,,,, (ka, ) [Prons (ki — Q)" [Pron, (ka)]*

(18.6)
Recombining different terms and changing the dummy index ky — ko, we obtain
Unirorsrs = No Z e'@(Rs—R2) Z Wi;(a)
q —
X Nc_l Z eikIV(Rl_RS) Z PLlnl (kl) [PLsns (kl - )] [M:zlng (kla q)} "
kl e (18.7)
X N 1 Z —ika(Rs—Ra2) Z PL4n4 k2>] PL2n2(k2 — )Mﬂlwz(kz,q)
na,ng
=N, 1Zezq (Rs—R>) Z M; (g U(q)M;]\4/\2 (q).
We have introduced the intermediate quantity
MM, =N;! Z —ike(R-R) Z [PLn(k)]* Prrns (k — Q)Mén' (k,q) (18.8)
Using the v-diag basis we have
1 1
Wij(a) = v2&; v} (18.9)
and therefore
Usidargrs = No 1y _el@(RamRa) 7 [Milxg(q)} ;' (@], (a)- (18.10)
q —

The calculation of Uy, x, x5, involves the summation over q. Just like for the self-energy, the I' point (q = 0)
needs the special treatment as explained in Appendix A.2

U)\1/\2/\3/\4 = Z wqu)\l)\2)\3)\4 (q) + CSQUi?AZ)\S)\4 + CSluii)Q)\s)w (18.11)
q

Using the v-diag basis, the screened Coulomb matrix has the following limiting bebavior as q — 0,

W Wl
Wij(q—0) = " +T+Wij(q) (18.12)

where ) .
s —
Wij = 47T€00 5i05j0

— 12 a1 (18.13)
Wisjl = Var {51'050;'1”]'2 (1 —6j0)+(1— 51‘0)51'01%2 5;‘0}

We first consider /52,

U2\ = D [M3, 5, (0] WPM, (0)
,j (18.14)

= dreyg [M, 5, (0)] MR, 5, (0)

Now using

M35 (0) = 12 ik ®mRY Z[PLn(k)]*PL'n/(k)Mgn/(kvo)

— N 1 Ze—zk (R—=R/) Z PLn PL’n’ (k)Q_l/Qénn’

=Q7ANTTY e mw) > [Pra(K)]" Prm(k)
k

n

— Q_1/26)\A/
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we have 4
S s ~—
u)\?k2k3k4 = 580016)\1)\36k4k2 (18]6)

Similarly for /5!, we have

u/\l)\2)\3)\4 = Z [M)i\lx\a (0)} WSlMgw)\z (0)

4,J
= 47TZ [Mgl)\g (0 5031 2M§4)\2 ) +v 47TZ [M)iqu (0 _1 2M)\4)\2 (0) (18 17)
J#0 i#0 )
in ML (0)5 =101 ()] o
Z 501 /\4)\2 ) Axs T )\1/\3( ) AaA2
1760

As obvious from the formulation above, the key ingredients for the calculation of U matrix is Mj\ via)

101



18.2. Projection-based disentanglement approach
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18.2 Projection-based disentanglement approach

We start with the polarization functoin in th basis {x(r)}.

18.2.1 The q — 0 limit

In the projection-based disentanglement approach, the limit of g — 0 has to be treated carefully. We will show

that the head (H) and wing parts (W) of ¢! are actually divergent in the g — 0 limit as

Hi(q) | Hx(q)

H(qéovw):HO(Q)+ + 2
q q
Ws(@) (18.18)
Wil = 0,) = Woyi(@) + —0
Using the block-wise inversition technique
H w )
€= i (18.19)
( Wi B
-1 -1
el= ( c00  Soi ) (18.20)
Cio &y
with
-1
= | e
50_11 = 750 ~1 ZWTB_
(18.21)
5;01 = ZB w €00
J
€ = B~ + 5101 (500 )7 sgjl
: —1
H, H Wi Wi
o0 = |Ho+ 71 + _2 - Z(WOTz + ql )B;; (Wo,; + qu)
]
Hy — Zz j WT-iB;‘lWl: j Zi j WT-z'B;‘lWO:' Hy — Zi j WT-iBii‘lWl:'
_ Hy — Z WJﬂ-Bngo;j J 05y qj J_ LT J + J q217 J J
o]
= |Ho+—+—=2| —0
q 7
(18.22)
In the limit of ¢ — 0, 5y = 0. Similarly one can show that £;;' and £, also vanish.
s =—D_ B Wiew
J
Wi (18.23)
_ ., Wo, + ;,
=-2 B =
j HO + Tl + q—;
Similarly
561-1 = ZWTBﬂlsaol
i+ Wh] (18.24)
= _ Z ¥ 9 _p-1_,
Jt
HO 4 H1 4 H2
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Chapter 18 18.2. Projection-based disentanglement approach

Now let’s look the second term of 5;3-1.

1/ -1 _
51‘01 (5001) 50j1

— — — -1 _— -
- (Z B! Wi’) eoo (€00) €00 Z WJ’T/ BJ”Jl’
= I

- Wy WT,]'/ _
i Biy (Wouir + =55) 37 (Wi, + —52) By (18.25)
HO + e + P

(S0 B W) (X, Wi Boh) (S Bt W) (X, Wi Bt
—

HQ Hy — Zi,j WlT;iBiglwlsj
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18.3 Construction of the Wannier functions

At this stage, only small notes about how to build the Wannier functions ¢ ; (), using the energy window WV and
orthogonalization, atom index explicitely used as .
Step 1 : construction of

N >= S Ik >< i g™ >
vew

Step 2 : orthogonalization of the basis {|x%; >} and construction of the Wannier-like basis

P >= Z SLL’|XkL’ >

Lo

18.3.1 k-summation: Symmetrization

In the case of the one-particle Green function, when computing the summation over k, (in order to build the local
Green functions, involved in the DMFT method), we use the symmetries of the solid in order to reduce the size of
the integration window. Instead of summing over the full Brillouin zone, we restrict the sum over the irreducible
Brillouin zone (IBZ) and then apply the symmetries. We note Og as the symmetry operations of the lattice, in the
real space, that we find in case.struct and D(Rg) are the representations in the orbital space (1=2) of the matrices
Os.

As an example : the matrix elements of G'°4! in the orbital space write (where w(k) is the weight)

/

G =" D(Rs)rr, (Y G(k)r,,w(k) D™ (Rs)L,1r

S LiLs kelBZ

18.3.1.1 In the case of two-particle functions

Let us try to extend this method to the case of the two-particles operator W, where we have to consider two
summations over the Brillouin zone (summation over q is different and will be treated in a different way) and
we would like to benefit from the symmetries of the solid. We use the formula aiming that, for transformations
R1,Ro, f(Riki, Roks) = RiRof (ki ko) Ry 'Ry L.

In the equation ??, we interpret the coefficients < ¢x, 1, [Vkin, >< Yk +q.ns|Pki+q,L5 > as the (L1, L3)
matrix element of the operator Z,, ,,, (K1, q) in the basis {|¢y 1, >}, therefore

< ¢k1L1|wk1n1 >< "/’k1+q7N3|¢k1+q,L3 >= [anns (kl’ q)]LlLS (18.26)

Rewriting the equation ?? :

Wéiéi%sffa Z eiQ(R4*R3) Z Z eii(kl(RliRS)+k2(R2iR4)) [anns (kla Q)]Ll L3

n1,n2,n3,N4 kq ko

X[Zn2n4 (k27 *Q)]L2L4 < wkl-,nﬂ/)kz,m|W|¢k1+q,n3wszq-,n4 > (18.27)

Using the representations of the symmetries :

/

WI:Ltil%{QQ%{dstéx = ZeiQ(R‘l_Ri‘) Z Z |: RSI Z w(kl)Zan. (k17Q>€_i(k1(R1_R3))

q ni,nz,n3,n4 S1,S5 k,€IBZ
’

(D(RSZ)( 3T w(ka) Zngn, (ke —q)e*i“‘z<R2*R4>>Wg;g;;3"4) D*l(RSZ)) D~ Y(Rg, )} (18.28)
k.€IBZ L1Ls,Lola

To clarify the notations:

[D(z%sl)zm(kl,q)(D<Rs2>Zmn4(kz,—q>D‘1<RSQ>)D_1(RS”L Lolals

Z Z D(Rs,) .1 [ Zninsly (K1, @) D™ (Rs, ) 1y 1s D(Rsy) Lors [ Znana) Ly 1y (K2, =) D™ (Rs,) £ £18.29)

LY LY Ly L,

At a given k; € IBZ, for one couple Rg,, Rs, symmetry, we first sum over ko € IBZ. Then we perform the
sum over k; € IBZ and go to another couple of symmetry.
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18.4 Implementation

18.4.1 Data structure
The following variables and arrays are used for the cRPA implementation.

i. nlorb: the number of correlated orbitials counting only (a, 1), e.g. for FeO in the cubic structure, nlorb = 1,
but for FeSe, which has two equivalent atoms, nlorb = 2.

ii. nlmorb: the total number of correlated states (countering a, [ and m).

iii. info_orb(1:4,nlorb): the information about each set of (a,l) orbitals, (1,:) = the index of the atom that (a,l)
belong to; (2,:) =1; (3,:) = number of different "m"-state for each (a,l); (4,:) = the type of (a,l)-orbitals.
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Chapter 19

GW+DMFT

19.1 Theory

19.2 Implementation

The basic precedures are as follows:

1) Initial guess for the the Weiss field G and the auxiliary Hubbard ¢/ matrix, represented as Gy, (w) and
Uqp(w), respectively. Here we use {¢r 1 } to represent the local orbitals that define the correlated subspace, which
are in practice Wannier functions, and {xr«(r)} are the local product basis functions. When R is dropped, R = 0
is assumed.

2) Using the DMFT solvers one obtains X" (w) and P;’Ep (w).

3) Combining the GW and DMFT self-energy and polarization functions.

- ZGW _ EGW—d + Zimp

P = PGW _ PGW7d + Pimp (19.1)
More explicitly, X is represented in the LDA wave functions
S (k,w) = BEW (k, w) — W =4(k, w) + 2P (k, w) (19.2)

Here it is important to note that the k-dependence in the matrix elements of X“" 7 and ¥i™P come from that of
the basis (here LDA orbitals).

RIP (K w) = (nk| P |n'k)
=Y (nk|Lk) (Lk| ©"™P | LK) (L'k|nk)

L,L' (19.3)
= > (nk|Lk) S} (L'k|nk)
L,L’
The last equation comes from
yimp — Z |RL) (RL| ™ |RL') (RL'| = Z IRL) S (RL/| (19.4)

and
(Lk| X™P | LK) = Lk|Z|RL SP(RL| LK)

7zk R 1kR

Zzlmp (19.5)
LL" nr1/2 N1/2

_ yimp
- ELL/

Using the previously defined projection matrix Pr,, (k) we can obtain

TSP (k,w) = Y [Prn(K)]" SFF Prn (k) (19.6)
L,L’
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How to define X¢" =42 There are two possibilities.

SOV = 5 S RL) G () (RL/|

R L.L'ed
where
SEH () =Y BV (kw) =Y (fer| S )
K K
= Z Z (DL [¥n) St (K, @) (Wi [Pr)

k n,n’

In the KS representation, we have

SOk, w) = (Waen| SOV W) [ren) = D (Wrenldrer) TFL W) (Brerr [thaen)

nn’
LL’
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Chapter 20

The Brillouin-Zone Integration

Brillouin-zone integration is an important ingredient of any reciprocal space method and has been a subject of
interest since the earliest implementation of electronic structure codes. Fundamental quantities like the total energy
or the density of states require an integration over the Brillouin-zone of a certain operator, e. g. the eigenvalues
weighted by the Fermi distribution function for the former, the energy derivative of the Fermi distribution for the
latter.

In the 1970’s, a large number of studies were carried out for solving these problems, among which the special
point [?, 2, 2, ?] and the linear tetrahedron method [?, ?, ?] are the most used ones nowadays. These two methods
perform identically well for insulators and semiconductors. For metals, the Brillouin-zone integration becomes
more cumbersome due to the presence of the Fermi surface, which defines the integration region in the Brillouin-
zone. The linear tetrahedron method becomes advantageous in these systems thanks to its better description of the
Fermi surface (Fig. 20.1) and, therefore, of the integration region[?].

In the linear tetrahedron method, first proposed by Jepsen and Andersen in Ref. [?] and Lehmann ef al. in
Ref. [?], the Brillouin-zone is divided into a set of tetrahedra. The energy eigenvalues (¢,,k) and the integrand
are calculated on the vertices of these tetrahedra and, through the procedure known as isoparametrization, linearly
interpolated inside each of them. The values of the integrand can be factorized out of the integral. The remaining
integrals, independent of the values at the vertices, can be integrated analytically and added to obtain integration
weights dependent only on the k-point and the band index. In metallic systems the Fermi surface is approximated,
through the isoparametrization, by a plane that limits the integration region inside the tetrahedra it intersects. The
occupied region of the Brillouin-zone can thus be described much better than in any of the special points methods
(Fig. 20.1).

\ /

Figure 20.1: Two dimensional sketches of the description of the Fermi surface in the special points (left panel)
and the linear tetrahedron method (right panel). In dotted red line the exact Fermi surface, in full blue line the
approximated one. The k-points grid is represented by red dots. Tetrahedron method gives better description of
the Fermi surface.

The calculation of quantities like the polarizability (Eq. 2.17) or magnetic susceptibility, presents particular
characteristics that require a different treatment. The integral depends on a second vector q, it is weighted by
two Fermi functions, so that the states at k are occupied while those at k — q are unoccupied, and finally, the
eigenvalues appear in the denominator of the integrand. The grid of k-points for this integration is chosen as usual
in the tetrahedron method. On the other hand, the calculation of the self-energy (Eq. 2.20 and 2.21), requires a
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grid of g-points also be suitable for integration. To avoid the repeated generation of eigenvalues and eigenvectors
at several different grids, the set of g-points should be such that {k} = {k — q}. For this equality to hold, the set
of g-points must include the I" point. In our implementation, we take the same mesh for k and q.

Due to the presence of the eigenvalues in the denominator of the integrand, a simultaneous isoparametrization
of both, the integrand and the eigenvalues, becomes inappropriate. In 1975, Rath and Freeman proposed a solution
to this problem for the calculation of the static magnetic susceptibilities in metals [?]. They approximated the
numerator of the integrand by its mean value in each tetrahedron, while the denominator was included in the
analytic integration to obtain the weights. In this work, we go two steps further. We apply the isoparametrization
not only to the eigenvalues but also to the numerator of the integrand, improving the accuracy, and also extended
the method to include the frequency dependence. The integration inside each tetrahedron can still be performed
analytically.

Since the integration runs simultaneously on two tetrahedra (at k and k — q), there will be situations, in metallic
systems, where both tetrahedra are intersected by the Fermi surface. In this case the integration region inside the
tetrahedron is delimited by the two Fermi “planes” under the condition €, < €r < €,,x—q, as shown in Fig. 20.2.
The complexity of the integration region is such that the integration can not be performed analytically on the whole
tetrahedron as in the standard tetrahedron method. However, as pointed out in Ref. [?], the integration region can
always be subdivided into, at most six, tetrahedra. The integration can be performed analytically inside each of
these tetrahedra and then projected onto the vertices of the original tetrahedron to obtain the weights for each k-
point. We have analyzed and classified the different configurations of the distinct integration regions determined
by two Fermi

Figure 20.2: The integration region in the tetrahedron method for g-dependent Brillouin-zone integration. The two
tetrahedra on the left side are connected by the vector q (green arrow). The blue zone corresponds to the occupied
region for the state (n, k), the red one to the unoccupied region for the state (n’, k — q). The resulting integration
region, determined by superimposing the two tetrahedra on the left and taking the intersection of the blue and red
zones, is the lilac region in the tetrahedron on the right hand side.

20.1 The Linear Tetrahedron Method

The task of this Brillouin-zone integration is to calculate the average expectation value of an operator satisfying
the form:

(X) = VLG > ., Xn)] (en k)l (20.1)

where
X (k) = (on(k)[X]pn(k)). (20.2)

This X,,(k) is the expectation value of this operator on the state (n,k). Vo = (2m)3/Q is the volume of the
reciprocal unit cell, with  being the volume of the primitive unit cell in the real space. f(¢) is the Fermi function.
An exact evaluation of Eq. 20.1 requires calculating the expectation value of this operator over all its occupied
states, including infinite number of k points in the Brillouin-zone. In practice, this average expectation value is
determined from a set of sample points in the Brillouin-zone, each has a certain weight addressing the integration
of Eq. 20.1 over the region around it.

In the tetrahedron method, this is obtained by dividing the Brillouin-zone into a set of tetrahedra using a grid
(as shown in Fig. 20.3 for the two-dimensional case). The values of X, (k) are calculated on the discrete set of
vectors k; at the vertices of all these tetrahedra, namely the grid points. A function X,, (k) obtained by linearly
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interpolating the function X, (k) within the tetrahedra using its expectation values on the vertices can be written
as a superposition of functions w; (k), such that

Xn(k) = X (ki)w;(k), (20.3)

where w;(k;) = d;; and it is linear within the corresponding tetrahedron and zoro outside of it. Now replacing
X, (k) in Eq. 20.1 by it’s linear approximation, one has:

w=EY [ RACKIOEE

1
%Y /V 3 X () e k)l

%

1
=YY Ktk [ wilkfen (0)dk
n i G Jvg
Defining:
1
wni = [ w050k, (204)
VG Va
one can write the average expectation value of X in Eq. 20.1 as a weighted sum over the discrete set of k points:
(X) = Xn(ki)wn,i. (20.5)

Since w; (k) is zero for all {k;} except k;, we can rewrite the weights as:

wni = o ; / / /V w9/ (0)k
= ;wiﬂ,

where T; means that the sum runs only over those tetrahedra containing k; as one of its vertices. And one has
defined w,,; = v [[ [, wi(k) f(en(k))dk.

With this, it is clear that the integration in Eq. 20.1 can be approximated by a sum of the form in Eq. 20.5
where w,, ; can be calculated by summing its contribution from each tetrahedron containing this k; as a vertex.
The next job is to define the function w; (k) in order to calculate these w,, ;, for this, one needs the isoparametric
transformation to be introduced in the next chapter.

(20.6)

20.1.1 The Isoparametric Transfromation

In Eq. 20.3, the function behaviour is approximated inside each tetrahedron by a linear interpolation between the
function values at the vertices. Let F be such a function, and x, y and z be the coordinates, then:

F=A-z24+B-y+C-z+D, (20.7)

where the constants A, B, C and D are to be determined. Substituting z = xz;, y = y; and z = z; where
i =0, 1,2, 3 label the vertices, the values of F; at the vertices (which are known) can be written as:

Fi=A-2;,+B-y;,+C-z + D. (20.8)
Clearly, Eq. 20.8 for 7 = 0 can be used to eliminate the constant D. Then we have
F—-—Fo=A-(x—x9)+B-(y—1o0)+C - (z— 20). (20.9)
The constants A, B and C' are determined by solving the system of equations:

Fir—Fo=A-(x1—m0)+ B-(y1 — %) +C- (21 — 20)
Fo—Fo=A-(x2—20)+ B (y2 —y0) + C - (22 — 20) (20.10)
Fz—Fo=A-(x3—20)+ B-(y3 —yo) +C - (23 — 20),

with solution:

A T1—To Y1—Yo 21— 20 Fi1—Fo
B = Ty — o Y2 — Yo R2— R0 ]'-2 - fo . (20] ])
c T3—To Y3 —Yo 23— 20 F3—Fo
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20.1. The Linear Tetrahedron Method Chapter 20

If one defines a coordinate (£,7,() inside this tetrahedron, with each vertex 0, 1, 2, 3 having coordinates
(0,0,0), (1,0,0), (0,1,0), (0,0,1) respectively, the function F can be linearly interpolated as:

F — Fo =£(F1 — Fo) +n(Fz2 — Fo) +((Fz — Fo). (20.12)

Putting Eq. 20.10 into the above equation, we have:

Fi—Fo
F-Fo=E n O|F-F
Fs—Fo
(20.13)
T1—To Y1—Y 21 —2)\ (A
=E n |z2—m0 y2—yo 22— 20 B
r3—20 Ys—Yo 23—20) \C
On the other hand, Eq. 20.9 can be written as:
A
F-—Fo=(x—20 y—yo z2—2)|B]. (20.14)
C

Comparing Eq. 20.14 with Eq. 20.13, we have:

z —xo =€(21 — o) + n(x2 — 20) + ((z3 — T0)
Yy —yo =€(y1 — yo) + 1(y2 — yo) + C(ys — vo) - (20.15)
z — 20 =§(21 — 20) + n(22 — 20) + ((23 — 20)

Combining Eq. 20.15 with Eq. 20.12, we see that the same expression holds for the function F as well as

for the coordinates x, y, and z. This coordinate transition from outside the tetrahedron to inside the tetrahedron is
called as an isoparametric transformation. The functions w; (k) used in Eq. 20.3 can be simply written as:

wo(§m,¢) =1-§—n—¢
wl(évn C) g

20.16
w3(€a77 C) Ca

in terms of this internal coordinates. The energy eigenvalue of the state (n, k) with the coordinate (&, 1, ¢) inside
this tetrahedron is linearly interpolated as:

Gn(ga m, C) = (Gn,l - 6n,0)§ + (en,Q - 671,0)77 + (67172 - Gn,O)C + €n,0, (20]7)

where €, ; is the energy eigenvalue on the vertex i.

20.1.2 Integrals in One Tetrahedron

The integral of any function F inside one tetrahedron, after applying the isoparametric transformation, is given by:

1 1-¢1—¢—
// Fla,y,2)f(en(,y, 2))dudydz = / / / — Fo) +n(F2 — Fo)+
0 0 (20.18)
((Fs — Fo) + Fo | 2002) ‘ F(ea(&,m, ) dedndc
o(gn¢)|* T ’
where V7 is the volume of the tetrahedron and | a(m“’z) | is the Jacobian determinant given by:
o < " ¢ 1—%0 Y1—Yo 21— %0
’agyz)) = g—g 3—}; 2—3 =|T2—X0 Y2—Yo 22— 20|- (20.19)
g g—z g—f] g—z T3—To Y3 —Yo %320
This is just the volume of a parallelepiped whose sides are given by those of the tetrahedron, clearly:
O(zyz)
= 6Vr. (20.20)
‘ a(&nC)
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Then Eq. 20.18 is just:
// F(z,y, z)dxdydz
Vi

17
(20.21)
6V / / / — Fo) + n(Fa — Fo) + C(Fs — Fo) + Fol
0

20.1.3 The Integration Weights

Let’s take one of the tetrahedra, its four vertices are denoted as 0, 1, 2, and 3. Using the w; (k) and €, (k) defined
in Eq. 20.16 and Eq. 20.17, one can calculate the integration weights on these vertices. If the four energies are
below the Fermi energy, the occupation is identically one and we have:

¢1-C—

wit, =1 0/1 /Cdgdndcz%ofl

_6Vp / 1 3Vr 1
0

¢
¢(1 = ¢ —mn)dnd¢

O\T
O~

(20.22)

Ve 5¢(1—=¢) dCZV—G(§—§+i):

Let’s now take the case where only €, o < €r and, for the sake of simplicity €, 3 > €,2 > €,,1 > €50, then
the integration limits are changed, and one gets:

€eFp—en,0 €F—n,0-¢(en,3=€n,0) €F—€n,0—C(en,3—€n,0)=1(en,2—€n,0)
€n,3—€n,0 €n,2—€n,0 €n,1—€n,0

wh =5 | / / Cddnd
G J ) (20.23)

0

_r (er — €np)?
4VG (en,l - 671,0)(671,2 - 671,0)(671,3 - 671,0)2 .

A similar calculation for the rest of the vertices leads to:

wiT _r (€F — €ny0)?
™2 4VG (En,l - En,O)(en,Q - 671.,0)2(671,3 - 6n,())
Vr (eF — € 0)4
1T n,
T (20.24)
n ! 4VG (en 1 — €n O) (Gn,2 - 671,0)(671,3 - 671,0)
V- _ 3
wlly 3 ) ~wlf - ulfy - ulf

VG (Gn,l - 671,0)(671,2 - 671,0)(671,3 - 6n,O)

The last line in Eq. 20.24 can be calculated using wo(k) =1 — & —n — ¢ = w, — w1 (k) — wa(k) — ws(k),
where w; means the total weight over this tetrahedron. Expressions for the remaining cases can be found in Ref.
[?]. Since these vertices are also sample points in the grid mesh, the integration weight on each grid points can be
calculated from Eq. 20.6.

20.2 Tetrahedron Method for q-dependent Brillouin-zone Integration

If one wants to calculate the mean value of a q-dependent operator, the situation becomes more complicated. In
this section, we discuss the case when the expectation value of this operator satisfies:

(X(q) = Vic S [ Ko o) len10] (1 = Sl (k= @) . (2025
where
Xn,n’ (k7 q) = <(pn (k)|X(q)|(Pn’ (k - q)> (2026)

To evaluate this operator, one needs to know X,/ (k,q) on each k point in the Brillouin-zone in principle.
In practice, again, this is obtained by calculating the expectation value of this operator on a set of sample points
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weighted by a certain factor. In addition to €, (k;) and ¢, (k;) on the set of sample points {k;}, one also needs to
know ¢, (k; — q) and ¢,/ (k; — q) on another set of sample points {k; — q}.

In our implementation, we make an even division of the Brillouin-zone along each axis. Then, we take the q
vector from this mesh. With this treatment, the meshes of k; and k; — q overlap totally with each other. We just
need to know the eigen wave functions and the energy eigenvalues in one mesh. A two-dimensional sketch for the
k-mesh is shown in Fig. 20.3.

N
AN
N
I\

Figure 20.3: The two-dimensional sketch of the BZ in the tetrahedron method, in this case, the space is divided
into a list of triangles. One triangle is related to another by a vector q.

Using this grid, the Brillouin-zone is divided into a set of tetrahedra. The expectation values of the function
Xnn (k, q) are calculated on the vertices of these tetrahedra, namely, the grid points, giving X, ./ (k;, q).

Following the same procedure as the above section, we interpolate the function X, ,,/(k, q) linearly within
each tetrahedron using:

X (k@) =Y Xp (ki Qui(k, q), (20.27)

where w;(k;, q) = J; ; and it is a linear function. Since the integration is over the vector k and this w; (k;, q) is
only a function of the coordinates of k for a fixed q, it is easy to see that we can get rid of the q dependence. Eq.
20.27 becomes:

Xn,n’ (ka q) = Z Xn,n’ (kl) q)wz (k) (2028)

For the expectation value, we get:

<X(q)> = Z Xn,n’ (kivq)wn,n’,i(q); (2029)
with
Wnni(Q) = L/ w; (k) flen (k)] (1 = flen (k — q)]) &°k (20.30)
n,n’,i VG Ve 4 n n . .

To calculate the weights, following the steps as in the previous section, we obtain:

Wnm (@) =Y wih (q), (2031)
T;
where
wlt ) = g [ w0 fleni0] (1= Flew - @i 2032)

T; runs over all the tetrahedra in which the sample point k; serves as a vertex.
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20.2.1 Isoparametric Transformation

Now, we perform the isoparametic transformation to calculate the integration of Eq. 20.32 in one tetrahedron. If
we denote the vertices of this tetrahedron as 0, 1, 2, 3 respectively, we have:

wo (k) =wo(§,n,0) =1-&§—n—¢
wy (k) =w1(§,n,¢) = 6
w2(k) :w2(§a777 )
20.33
w3 (K) =ws(€, 1, ) = g (20.33)
en(k) =€,(&,1,0) = &(€n1 — €n0) +1(€n2 — €n,0) + C(€n,3 — €n0) + €no
(k q) =€ (57 m, C) = g(en’,l - 6n’,O) + U(En’,2 - 6n’,O) + C(En’,B - 6n’,O) + €n’,0,

where we have used the shorthand notation €, ; and €,/ ; to represent the energy eigenvalues of the state (n, k) and
(n',k — q) on the vertices of this tetrahedron.
Then, the general formula for the contribution of one tetrahedron to the weight is:

wvll,Tn',i((D*
1 1-C1—C—7

6Vr

T[] wten eler - dens — enn) ~enz — eno) ~ Clens —eno) —enal 2034
0 0 0

X G[g(en’,l - 6n’.,()) + n(en’,Q - 6n’.,()) + g(en’,B - 6n’.,O) + €n0 — €F]d§d77dC,

where O is the step function to address the Fermi function in Eq. 20.32.

20.2.2 The Integration Region

From Eq. 20.34, we see that the © functions determine the integration region within this tetrahedron. For insulators
and semiconductors, this region is either the full tetrahedron or zero. For metals, the situation becomes more
complicated. If not all the €, ;s are smaller or bigger than e, the Fermi surface represented by the first © function
in Eq. 20.34 will intersect with this tetrahedron, leading to only part of it satisfying the condition the first ©
function equals one. If not all the €, ; are smaller or bigger than €, the Fermi surface represented by the second
© function in Eq. 20.34 will intersect with this tetrahedron, leading to only part of it satisfying the condition the
second O function equals one. If neither of these cases happen, the integration region is either the full tetrahedron
or zero. Otherwise, the integration region is determined by the intersection of these Fermi surfaces with this
tetrahedron (Fig. 20.2 shows one example when both of them intersect with this tetrahedron).

There are in total 9 different configurations for this region. They are shown in Fig. 20.4 except the simplest
case of a tetrahedron. All of them can be subdivided into samller tetrahedron. Then, we perform one further
isoparametric transformation inside each of these small tetrahedron. The wieght on each of its vertices is:

6‘/:[‘ ‘/ST/ /1 Z/l Yy—z V
_ 2T (1—a—y— 2)dedydz = *
R VA7 v 2)dudydz = (20.35)

w1 = W2 = W3 = Wo,

where Vsr is the volume of the small tetrahedron, and w; (i = 0, 3) represents the weight on each vertex. We
further distribute these weights linearly into the vertices of the big tetrahedron. Assuming the coordinates of one
vertex of this small tetrahedron is (1,71, (1) in the big tetrahedron before the second parametric transformation,
the integration weight on this point will be distributed with the ration 1 —&; — 11 — (31, &1, 71, and (5 to the vertices
0, 1, 2, 3 of the big tetrahedron.

20.2.3 Polarizability

As already mentioned in Sec. ??, for the polarizability we can not assume both the energies and the integrand to be
simultaneously linear in the coordinates of the tetrahedron. In this case, we have to include the energy-dependent
factor of Eq. 2.17 into the analytical integration. In Sec. ??, we have discussed the frequency integrations in the
GW calculations, where we pointed out that we calculate all the frequency dependent properties on the imaginary
frequency axis. The polarizability is such a property. In this section, we will discuss the integration weight of the
polarizability on both the real and imaginary frequency axis. The latter is the one used in the GW calculation. The
former can be used to calculate the macroscopic dielectric constant.
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5 nodes 5 nodes 6 nodes 6 nodes

BN R
-

N/ S

7 nodes 7 nodes 8 nodes 8 nodes

™
—

j
\
AN

Figure 20.4: The configurations for the region to be integrated. How these regions are decomposed into the
principle units of the small tetrahedra is shown by the red lines in the graph.

20.2.3.1 Polarisability on the Real Frequency Axis

On the real frequency axis, the polarization matrix is:

BZ occ unocc
PZJ q,w) = FL ZZZM 'rzz,n’(kvq)]*

1 1
{ — — 1. (20.36)
W—€pk—qteEnk T W€kt Enkq—1N

We define the weight as:
wn n’ l q? Z wn n’ 1 q) ) (20'37)

where

s = g [ [ ] 000010 flew e a)
{

1
W*‘fn’(k*q)ﬁLfn(k)JFm ern(k)Jren/(*Q)*

—1d%k.  (20.38)
m
Following the procedures in Sec. 20.2.2, the weight on each vertex of the small tetrahedron is calculated by:

6‘/5’[‘/ /1 z/l y—z 2(1_5E_y—25)
dxdyd
o — (2A1,0 +yAo0 + 2430 + Ag)? rees
6‘/5"[‘/ /1 Z/l Yy—z 2:1;
= dxdyd
w1 — (xA10 +yAgo + 2A3,0 + Ag)? ez
(20.39)
w—GVST//lz/lyz 2y dzrdydz
> — (xA1,0 +yAg o + 2A3,0 + Ag)? Y
6‘/3"[‘/ /1 Z/l Yy—z 22
= dxdydz.
s — (xA10 +yAgo + 2A3,0 + Ag)? ravas

Here, Az = €n'i — €Enyi and Ai,j = Al — Aj.
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The first equation in Egs. 20.39 is more complicated to be solved analytically compared with the other three
due to the presence of three variables in the numerator. So, we solve the other three respectively and then calculate
the total integration weight over this tetrahedron with:

6‘/5"[’/ /1 Z/l Yy—z 2
dxdydz. 20.40
— (xA1,0 +yAg o + 2A3,0 + Ag)? ravas ( )

The correponding wy is then calculated from wg = wy — w; — we — ws.

Even with this treatment, these analytical integration is very complicated to be solved. We use Mathematica to
treat it. There exists a general solution. To restict the size of this appendix, we just list that of w, here which is the
simplest case due to the absence of variables in the numerator in Eq. 20.39:

f(w) = (w—A3)°AF 22043 In[lw — Ag|] — (w — A2)? AT A3 0A3 Infjw — Ag]]

fw) = f(w) +[A10A21(w — A3) — (W — Ag)A21A31 + (w — A2)A1 9Az1] X
Az 0A3 0032w — Ar)?In]|lw — Ay]]

fw) = f(w) + (w = A0)°A3 1 A32A3 Inflw — Agf] — (w — A1)?AqpAz %

A 1A30A31A3 (20.41)
f(w)
w) =
fw) 642 Az A2 A3 0A2 As s
6V%
we= 2 [f(w) + f(-w)]
G

(this equations is written following the programming rules cause it is too long). In this equation, it is required that
w # Ajand A;; # 0. A;; # 0 is required because of this analytical solution. w # A; is required because
the denominators in Eq. 20.39 and Eq. 20.40 can not be zero. When these conditions are not fulfilled, we use
Mathematica to get the analytical solution of that specific case respectively.

20.2.3.2 Polarisability on the Imaginary Frequency Axis
The polarization matrix of our calculation on the imaginary frequency axis is:

BZ occ unocc

*2(5n’.k7q - en-k)
P qw) = k) , x) 20.42
g w T Z Z Z (K, )] w? + (€n/ . k—q — €nk)? ( :

In this case, the procedure is essentially the same as above, except for the fact that the weight on the vertices
of each small tetrahedron is calculated with:

1—= l-y—=z 21— —y —
GVST / / / ( roy—2) sdzdydz
w2 + (xA10 +yA20 + 2430 + Ag)?

6‘/ST / /1 2/1 y—z o dodud
wp = XL y4
1= w? + ($A10+yA20+ZA30+A0) 4

(20.43
6‘/ST 1 11—z l-y—=z 2y )
= s dzdydz
o Jo 0 $A10+9A20+2A30+A0)
6‘/ST 1 /1 z l-y—=z 2z
drdydz.
o Jo 0 + (xA1,0 + YAz + 2030 + Ag)? Y
Again, we introduce wy as:
6VST / /1 z /1 y—z 2
dxdyd 20.44
= w? + (xA1,0 + yAg0 + 2A3,0 + Ap)? rwes ( )
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to avoid solving the first equation of Eqs. 20.43 directly. Its general solution is:

f(w) =2(w— A%)Ag 1402003401 241 3023
f(w) = f(w) =+ 2&][3A4 — w2(A AQ 4+ AQAg —+ AgAl)

—3A5(w? + AgAz + A1 Ag + A A3)
F200(w?As + A5 + Arw? + 381 A0A5)] AL oA 5As sArcTan]Ag /]
fw) = f(w) + 2w(w? — 3A2)A3 QAg 32 sArcTan[A /w]
fw) = f(w) — 2w(w? — 3A3)AF | Af 3A1 sArcTan[As /w]
fw) = f(w) + 2w(w® — 3A3)AF 1A ;A1 2ArcTan[As /w]
F(w) = f(w) + [AYAL + Ay + Ag) — 302 A AgAy (20.45)
—2A3(3w? + AsAgz + A1 As + A1 A3)
+3A2(WP AL + w?Ag + WAz + A1 A A3)] AL 2A1 3A5 3In[w? + AZ]
Fw) = fw) + A1 (3w — AT)AF HAF 302 3In[w? + Af]
flw) = flw)+ Ag(AQ — 3w )A(Q)_rlA(Q)_’gAlygln[wQ + A%]
F(w) = f(w) = A3(AF = 3w*) AT 1 Af A1 plnfw? + A]

w 6Vsr f(w)
T Vg 6AF AT 208 301201 3003

Again, in this equation, it is required that A; ; # 0. When this condition is not fulfilled, same as the above section,
we use Mathematica to get the analytical solution of that case again specifically.
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Speeding up GW calculations

This chapter discusses various numerical techniques that can be used to speed up GW calculations.

21.1 Using static COHSEX to include static remainder in selfenergy

Following [?], we can use the static COHSEX approximation to the self-energy to reduce the number of unoccupied
orbitals. The full GWA correlation selfenergy reads

¥o(ry, rojw) = % /dw'G(rl,rg;w + W )W(rg,r1;w) (21.1)

The corresponding static COHSEX approximation reads

occ

1
ECiSCOHSEX(I‘h I‘Q) = 55(1‘1, I‘Q)WC(I‘Q, ry; 0) - Z Wc(r2; ry; 0)¢nk(r1)’l/}7*zk(r2)' (212)
nk

One notices that the static COHSEX approximation contains a d-function, implying a sum over complete KS
eigenfunctions. It has been well-known that the convergence of the correlation selfenergy X¢(r1,ro;w) is quite
slow, which poses a critical computational challenge. It is possible to speed up the convergence with respect to the
number of unoccupied states by including the following static correction

AEC(I.17 r2) — EC*SCOHSEX(rl, r2) _ icfsCOHSEX (rl7 r2) (213)

where the second term is the static COHSEX correlation energy calculated with a finite number of unoccupied
states,

occ

S0 sCOHSEX (1) 1y) Z¢nk 1) (r2)We(ra, 115 0) — ZWc(rz,rl;0)1/1nk(1‘1)1/12k(1‘2)
nk

unocc occ (214)
1
=5 Z VY (1) Py (r2) W (r2, 11;0) — 3 > WO (ra, 13 0) ¥ (r1) 1 (r2)
nk
Now combining Eqgs.(25.2) and (25.4), we have
c 1 c 1 c *
AZ (I’l, I'Q) = 56(1‘1, I‘Q)W ’(1‘2, r, 0) — 5 Z W ’(1‘2, r, O)Q/Jnk(rl)lﬂnk(rg). (2] 5)
Obviouly, when the sum over unoccupied states are complete, AX°(r1, ro) vanishes.
In practice, one needs the diagonal matrix elements of AX¢ with respect to KS eigenfunctions

ANy = -5 Z Z 1" Wi(a,0)M;,,(k, q) (21.6)

where X
W = / dr), (e)YWe(r, r, 0)nk(r). 21.7)

While the second term is straightforward to calculate in the current GW code, the first term requires some special
treatment. Expanding W¢(r, r, 0) and ¢,k (r)?, (r) by the mixed basis functions, we have

Wik = Z Z Z My, (k,0) / dry(r) [x3(r)] " x5 (r) 21.8)

119



21.2. Core pproximations Chapter 21

Denoting the integral in the equation above as I';;.;, and defining

Tp(@) =Y W(a,0) s (21.9)
i
we have
W => 3 MP,(k,0)T,(q) (21.10)
q p

21.2 Core pproximations

One can speed up the GW calculations by neglecting core states in all or some parts of GW calculations. Roughly
three levels of core approximations can be defined, as controled by core:iopcore

i. All-electron calculation: core states are included in all calculations;
ii. Core states are included for the exchange self-energy, but neglected for the correlation part;

iii. Core states are neglected in all calculations.

21.3 Reducing the size of mixed basis set

21.4 Using symmetries

21.4.1 The LAPW basis functions

Let {T} be the set of symmetry operations of the reciprocal lattice in the three dimensional space. Then, two
reciprocal vectors are symmetry related if there exists a matrix operation T; such that k = T k.

Since T is a symmetry of the lattice, for each G vector of the reciprocal lattice there is a vector G’ such that
G = T;G. And thus we can also write: k + G = T;(k + G). It is easy to show then, that the LAPW basis
transforms as:

P& (T 'r) = o1& (r) 21.11)
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On the calculation of lattice sums

The difficulty met with in the evaluation of lattice sums always has been the question of their convergence. It
presents itself under two aspects, first the convergence of the series as such and second the rapidity of the conver-
gence. The latter question, being mainly of practical importance, is the subject of this appendix. For an analysis of
the former question, I suggest the reader to look at [ 16][68] and references therein.

22.1 Ewald’s method

When calculating the Coulomb terms in any solid state problem, a major dificulty that usually appears is the lattice
summation of the type \13&;_;' There is a very elegant procedure, known as Ewald’s method, by which the
problem may be solved. We derive this method following [67]

First consider the function

— 2 —|R—7 2p2
F(r,p):ﬁZe |7 (22.1)
R
This functions is periodic in 7, with the periodicity of the lattice. Therefore it can be expanded in a Fourier series
F(7,p) =Y Fge'ST, (22.2)
é

where

2 / _B_=22 LS
Fr= e |B=7"0% —iG7 g3, (22.3)
\/_ Z
introducing a factor exp (zé . E) = 1 in each term of the series, we have:

_ 2 _|B—r?p? —iG-(F-R) ;3
Fﬂvﬁgﬁ/‘/el |pe ( )dr
_ 2N,

VT v

since each term in the sum is now the same, except for being measured from a different origin R in the crystal.
The integral in equation 22.4 can easily be evaluated to give

(22.4)

2.2 Ao
e~ TP 1G7d3,r

Fg= P e 407 (22.5)
Substituting 22.5 into 22.2 and 22.1 we obtain:
2 B_ =2 2 G 5 —
= Ze—|R—7| P _ ﬁﬁp_a Ze 7 oiGT (22.6)
R €
Now consider the identity
2 [ _ e 1
— TP dp = — 22.7
7l g o0

Applying this to the left hand side of equation 22.6, we have
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22.2. Treatment of more general lattice sums
0 e R 9 AR @8
We split the integration over the dummy variable p into two parts at some arbitrary point «, and substitute for
the integrand from 22.6 in the first part
1 2 A
Z — _7T/ 7326 4p eZGrdp+ Z/ R’l“ p
PR
22.9
i g, cste(al o) =
5 € N )
Q aQ C_f 4%2 R R — 77
where erfc is the complementari error function, equal to (1 — erf)
22.2 Treatment of more general lattice sums
Following ref. [42] for a lattice sum of the form 7.12:
, i (RA-7,q1) .
0 =3 — (R ) 22.10
WD = 2 Ty Y (22.10)
R
(22.11)

a convenient form for the auxiliary function §(7) is
2
r ()\ + 3, M )
)
) is the well known Gamma Function (See

S(r) =
") T\ + 3
Where I (a, ) is the Incomplete Gamma Function and T'(\ +
A9):
Let’s now write ¥ as the integral
Y,
“(q) = / (7 q:)HA)“ ") By (22.12)

with wy,, (7,§) = > 57§ (F— Raa/). Equation 22.12 can be rewriten as
3 w (7,q) Yau (7)1 = 3()] 3
T+ / 0D d
(22.13)

G
VO3 [E])

e
1 w
:I‘()\Jr iy / (D)
2
w (7?7 q_) Y/\u(f)’y()‘ + %a |:£:| ) 3
/ vy d’r
where (A, z) = T(A\)—T'(\,z) = [, et 'dt. The first integral in equation 22.13 can be directly converted
to a -now rapidly converging- sum:
— N r 2 iﬁ(é /) 1 | Reor 2 »
(7D YT+ 4 [5]) e )P+ 4, [t | )Wy, (Row)
/ 7D dor = Z O (22.14)
For the second integral, we make use of Parseval’s formula[58], which states that, if F'(k ) and G(k ) are the
three-dimensional Fourier transforms of f(7) and g(7) respectively, then:
s 1 * —ik-7 33
= [ F(k) = [ g*(Fe d°r| d’k
(2m)>
1 e
/ F(k:)e%k"“d%} d®r (22.15)

/ FRG ()
:/g*(F) {(277)3
= [ 199" (e
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If we take f(7) = w(7, §) then:

G(R) =—2 / w(7, §)eF T d3r

1 > B i(qg—k)-7
T (2m)} /%5@ R‘“’)e(q ST (22.16)
1

Now, following [42], we use the Poisson’s sum formula

i f(x—n) = i i 7f(§)€i2””5d€ (22.17)
Inserting for f(x) the function () we find: R
i 5z —n) = i e (22.18)
Using R = Y- nyd; (j =1,2,3) we can write:
PO SR (22.19)
R nj

which, using 22.18, leads to:

SR nz [To (5% —n) =2 I1 (- - 2mn;) (22.20)

R j J nj J
taking into account that if G = > njgj then G - d; = 2mn;, we can write
SR E = 2np S0 [(/E:’ _ é) : aj} (22.21)
R nj J

Let the basisvectors @; have the cartesian components a,,, and let’s call A the matrix transformation that they

define. Then the numbers k@ ; are the components of the vector Ak resulting from applying to k the transformation
A. Using 6(7) = §(z)0(y)d(z) we can write

Z R R = (21)* Y {5 [[1 (E - é)} } (22.22)

R n;j
If we now use 0(AT) = \deltA\ and |det A| = |@; - (@2 x d@3)| = € (the unit cell volume) we arrive at:
SRR = N5 (- G) (22.23)
R el
Applying 22.23 to 22.16 we find:
i(GHE) P nE (2 )g .
- (& = )2 = — - —
F(R) = Y eiaHh) R = ¢TR) T 5(7 4+ K — G 22.24
Y 0y @i 2
R G
ri12
Yo, () y( A5, =
We are thus left with g*(7) = ol )1((H1? ["] ) for which we obtain:
* (1 (77’))\ A—2 nk 2 7
G*(k) = 1 kAT (1, [ 5 } )Yau (k) (22.25)

Proof of equation 22.25:
Following the proof of eq. A.13 in [42], we will proove the reverse statement, viz. that the inverse Fourier

transform of F'(k) is equal to f(7)
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(22.26)

22.2. Treatment of more general lattice sums
1, p. 366 ff., it can be shown that' :

N[

According to [
1
(2m)}
Applying 22.26 to the righthand side of equation 22.25 we have:
Yau(k)e FTd3k

,/ (k)Y (k)eFTd3k = Yy, (7F)r~
0

(22.27)

(22.28)

(22.29)

Yau (TA)

Changing the integration variable from k to ¢t = kr
f(F) - 2)\—%7,)\+1
0

(22.30)

Now we can use the identity*:
7 (A1) = 9" (22.31)

to obtain
o Yu(r)
Q(T) = 7"<L+1

Finally, replacing equations 22.24 and 22.25 into 22.15 we get:
(22.32)

2
1Mﬁ@YM@w<A+;pﬂ>
dr =
023

/ FOFD)
oo

It can be easily verified that:
ﬂrw’@m%:
2 Ap
WG-a1* vy, (& &
2 } WG =q) C (22.33)
G-q=

/ei(thrE)-Faa/ §(7+ k_ é)kA’QF(l, [
R |é’ _ (ﬂ/\721—\(1, [

0
Since ¢ € 1BZ the condition G — ¢ = 0 means G = ¢ = 0. Finally, including equation 22.33 into 22.32 we

end up with:
IThere is an error in the eq. that defines X im,

2Calculated with Mathematica®
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(R4 3, [ 2] W5, (R

a,a’ 1
EX,M (q) :F()\ + %) {Z R()\Jrl) +

(22.34)

2m) % (—i)> iGF A - F-q1]” G—q
%Z@ﬂ |G - (L, [ )Yw(G—@}
G

Valid for ¢’ # 0. If ¢ = 0 a primed sum has to be performed (not including the G= 0), but the sum only exists
for A > 2. For A\ = 2 the sum is conditionally convergent.

22.2.1 Selection of n

The parameter 1 should be chosen to optimize the convergence of both the real and reciprocal lattice sums. In [42],
it’s value is arbitrarily set to n = ﬁ while in [32] a more detailed analysis is done, which we follow.

If the value of 7 is too small, the reciprocal lattice sum does not converge quickly since %Gn remains small
even for large values of GG. With the same reasoning, if 7 is too large, % will remain small for large R’s. In both

2 . . . .
cases, the terms of the sum decay as e~ (or erfc(z)) with z = %Gn in reciprocal space and x = % in real space,

a simple way of optimizing the value of 7 is choosing it such that:

st = 31G — qlnope (22.35)
leading to:
Rao R
2 aa
opt = 13 =50 (22.36)
77 pt 2|G . q,| 2G

The simplest choice is to use the minimum values for R and G to have the same order of magnitude. That is:

_ 22.
Topt 2szn ( 37)

22.2.2 Determination of the cutoffs

The calculations shown up to now have lead us to a set of two fast converging sums, in real and reciprocal space,
and the determination of an optimal value of the dummy constant 7. Still we have to deal with infinite sums, which
have to be stopped at some cutoff radius R. (G. in reciprocal space) with the condition that the error due to this
partial sum is smaller than certain -in principe arbitrary- tolerance.

For the sum in real space, the error can be expressed as:

e 2 N
1 ez‘]'(Raa/)F()\ + %7 |:R:]a/:| )Y/\H (Raa’)
e > O(Ruw — R, 2238
R7)\ 1—\()\+ %) — R((Zj\l;‘rl) ( ) ( )

Where ©(z) is the Heaviside step function. Our interest is to limit the absolute value of the error. Since the
factor €’ faa’ only adds a phase to each term, the sum will always be bigger than taken it equal to one. A similar

reasoning can be applied to the Spherical Harmonic Y),, (Raa/), although in some particular angles it can be

bigger that one, its mean value will always be smaller®. Thus, we can confidently write:

2
T\ + 1, {&ML

1 ; } )
Cra < O(Raa — Re 22.39
R,A F()\ n %) Z Rl(l/l\lj_l) ( ) ( )

and then replace the sum by and integral

3In the extreme case of R. — oo the number of points in the sphere surface would also go to infinity, and the sum would became an
integral, which would be identically zero (except for A = 0 due to the orthogonality of the Y} ,’s)
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oo 1 T 2
3) rory DT
2 R

c

o0

o 477' T 1 A—% —t
_r(/\+%)/ml> /t e dtdr (22.40)
fie (5)*

If A # 2 it gives:

4 T a1 01 Aol g 1
= oy T Iy t2r2eT s — 17 2 gt (22.41)
2-NT(A+3) 7 R)

In the case of A = 2 the integral in equation 22.40 is:

ir T
Cro < — / t%e*tln(ﬂ[\,ﬁ) dt (22.42)
I'(3) 7, ©
(%)

This integral gives a too complicated result (including Hypergeometric functions), thus we simplify it further
by taking into account that, In(z) < & — 1 if 2 > 1. Then equation 22.42 can be written:

Cro < % 7 (%ﬁe*t - t%e*t) dt = % {Ergr [3, (137)1 -r [g (137)2” (22.43)
Re )2

n

Thus, given a maximum tolerance QE‘I%I , we can calculate the cutoff radius solving:

A3 (Re)? 1 (Rc\*
e (MR (R)1 s ()1,
_ 1 -2 R.7?
el = 07T ! (22.44)
2 2
e | (%) - 1 (%)) A2
2
The shape of the function is shown in figure 2? for n = \/E71 and A =0,...,8.
In a similar way, we can estimate the error for the sum in reciprocal space:
(2m) % (—i) G I —<nld{§|>2 = - 5
Eoy =—) ¢ (’aa’)G—“ e Yo (G- @‘G—"—GC<
@A Q2A3T(A 4 1) %: q Ap q ( q )
(22.45)

(27) 2 (—i)Mn
Q22 3T (A + 3)

s,
ks
>
(9]
iR
ol
N~—
M
I8
Q

. . . . 2 .
By changing the integration variable to x = (1723) we obtain:

126



Chapter 22 22.2. Treatment of more general lattice sums

(25=)? (22.46)

prres el e ol

Thus, given a maximum tolerance QE‘C"; , Wwe can calculate the cutoff radius solving:

8(m)3 2
tol A+1 nGe
eG,A - QF()\ + %)UA+1F |: 2 ( 2 ) :| (2247)

The shape of the function is shown in figure ?? for n = \/E71 and A =0,...,10.
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Chapter 23

The diagonal elements of the
exchange-correlation potential

In the Wien2k [15] code the exchange-correlation potential is expanded as:

Z ALM() res,

ey 23.1
V) Zw%s(r) rel @30

where Ay (t) are the real spherical harmonics defined in Eq. A.41, and ®,(r) are the stars defined in A.48.
According to eq. 2.14 we have to calculate:

(Gren| V¥ ) = / o )V () e () (23.2)
\%

As usual, we separate the integration into a MT-Sphere and an Interstitial part.

23.1 MT-Sphere integration

In this case we use the Spherical harmonics expansion of the wavefunctions given in Eq. 6.29, then we have:

[tV = (ACRCIVREINETY
Sa LMﬂ: l1m1,l2m2
(A (B) A (RN Vi ) 53
nllml( ) nZQmQ(E)<Zl|VaILCIW:I:|12>a+
vy BV By (B) (L Vi 1 li2) ot
i, (F)A mm< 0 (| Viareliz)a + -
where
R?WT
(Vi ellz)a = / ity () Vaiare (1) @ya (r)r?dr (23.4)
0
For the angular integral, using A.43 and ?? we have:
. A e DM o A R
Yl1m1 (r)ALMJr(r)Ybﬂw (r)dr = \/5 Yl1m1 (r)YLIW(r)Ybﬂw (r)dr
(7]‘)M * A * o A ~
+ \/5 Yl1m1 (r)YLM (r)Yl2m2 (r)dr (235)
M

- Iim lom *
= \/5 {ngb.}mm + (ngzljwml) }
and
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23.2. Interstitial integration

. ) o i(fl)k[”’l . . o
/ }/ltnn (r)ALIW* (r)Yl2m2 (r)dr :T / }/ltwn (r)YLM (r)}/lzmz (I‘)dI‘
i(—-1)M e v n e
+ \/5 lelm1 (r)YL]\/I (r)yvlﬂnz (I‘)dI’ (236)
i(_l)]\/j Iim lom *
= \/5 [_nglg,}ng + (gl?lleml) i|
Thus, sumarizing:
* xrc ( 1) 1mi > 2Mm2 * >
Vo OV e () = 3T S G, (= ) (G, ) (L4 9)]
MTS LI\/[.llml.lzﬂ’LQ
Aty (D) At () (Vi 12t
- o (23.7)
nl1m1 ( ) nlomo (k) <ll |V LM+ |12>
nl1m (k nlzm (k)<l1|VLMi|l2>
nllml( ) nlgmg( <l1| LM:i:|l2>
23.2 Interstitial integration
Using eq. A.48 we can expand the exchange correlation potential in the interstitial region as
veer) = Y vaeelt (23.8)
G
where Véc = LVIC Using the expansion 8.6 we have:
*M xTcrzn 1 7 42 Fa— _‘1 .r
/wkn wkn( ) = Z Zk+G1 62‘ 15+C33V/€ (G2+G5=Ga) d31‘ (239)
élézég I
Which, using eq. 6.16 can be written as:
/ Ui (V) n (r)dor = > ZE s VEZR 5 16, 6, (23.10)
I élézé
23.3 Final result
Finally, summing up eqs. 23.7 and 23.10 we obtain
WV = 3 286 VE 2 6, L6000t
élézég
( 1) 1M1 . 2Mm2 * .
> Gk (= + (98, ) (1)
LM,llml,Zsz
|: nl1m1 (E) nlomso (E) <l1 |V LM+ |l2>
nl1m1 (E) nlomso (E) <ll |V LM+ |l2>
nl1m1 (k) nlomo (k) <ll |V LM+ |l2>
s (B At RV Vi rr oo . 2311)
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Momentum matrix elements

We want to calculate the momentum matrix elements between different LAPW eigenfunctions.

24.1 Contribution from the MT-sphere

The use of spherical harmonics is the LAPW basis set suggest to calculate the expressions (n1k|0z £ i0y|nok)
and derive the 2 and y components as linear combinations. Inside the MT-Sphere of atom a a KS wave function
can be expanded as

wnk( ) _Z -Ank ( ) + chlmuul lem(97¢)
(24.1)
To simplify the notation, we have dropped the dependence on the atomic index a.
24.1.1 z— and y— components
Using the expression for the operators given by A.53
0 eti¢ 0 i 0
+ i0y = sin et — 0— + — 24.2
Oz £ i0y =sinfe o + " (cos 50 = 506 8¢> (24.2)
we have
P (r) = (0 £ i0y) Yk (r)
- 0 i 0 (24.3)
+i¢ nk +i¢ i
Z{ r) sin fe="? + — W "X(r)e <c05989 51n98¢)]ylm(9 o)
Using the relations between spherical harmonics (see A.37)
eE 50 011 (0, 0) =Fi VYie1,me1(0,0) + Bt D Yio1 s (6, 6)
) P i 0 24.4)
tis (cosa@ Z m) Vi (6,6) = — LEZFYi0 i1 (0.6) + (L+ DEEFIYi ) i (6,0)
with
F(l):7 (l+m+1)(l+m+2)
im 20+ 1)(21 + 3)
7O _ (l—m)l-m-1)
tm 20— 1)(20 + 1) 245)

204+ 1)(21 4 3)
@ :_\/(l—l—m)(l—i—m—l)

Joc) :\/(l—m+1)(l—m+2)

20— 1)(20 + 1)
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we get:

. awnk
Pil/ink(r) = ; %ﬁj) (F‘l(riqznyi-l-lmil(ev ¢) + F‘l(riq:l)%—lmil (95 ¢)) (24 6)

Wnk r
+ “:( ) (_lF‘l('an:Fl)le-l-lmil(ev ¢) + (l + 1)F‘l(7?1:':1)yvl_1mil(97 ¢))

which can be reordered to give:

0 l
5 0mle) = 3 (SIS = VRS ) BT Yiv10,0)
lm@ o (24.7)
+ (EW[‘,};(T) oWk (r )) ESTOY a1 (0, 6)

To simplify the notation, we introduce the intermediate operators

0 =0/0r —1/r

A =0/or + (1+1)/r (24.3)

so that we have

() =Y F T Wi (1) Yis im0, ¢)
Im (24.9)

+ F}g¢1)AlW%(T)}/lflmil (0,9)
Thus we have that the matrix elements are:
p,jfm;k = (nk|0z £ idy|n2k)
= Z Z (Wmik Y1m1|FI(2:F1)5 WKy e+ FBFOA, W12m2Y12 i)

limy 2Mmao lamg lama
limy lama

2$1 n1k nak (3¥1) nik
= Z Z F P OV (81, W25 V01, 1011 0ma ot + Fpo? OV | AWK V01, 13—16my mat1

l1m1 l2m2

2F1 wrik ngk 3F1 Wik
ZF( ) l+1mi1|5l > Fz(+1m):p1< |Al+1wl+1m:|11>

(24.10)
24.1.2 z— component
For the z—component, we start with
9z = cosf — Lenol (24.11)
z=costo — —sinfog .
therefore we have for r in the muffin-tin spheres S,
oxtui(r) = 3 [V cocovi 0, 6) - V™) 090 v 0,0 24.12)
" lm or e r a0 ’ :
Using the relations
€08 0Yin (6, 6) =Fy Yieeim (0, 9) + Fi Yo (0, )
) 5) ©) (24.13)
- Sln@%}/lm(e ¢) = lﬂm }/lJrlm(ov (b) + (l + 1)F‘lm }/lflm (95 ¢)
with
7O _ l=m+1)({I+m+1)
tm 20+ 1)(21 + 3)
(24.14)

© _ [=m){l+m)
Fim = 20— 1)(21 + 1)
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we have N
oW (r
o) =3 P [0, 1 (6,0) + FLOVi0,(0.0)]

lm

nk
4 Wl RO 1 (0,6) 4 (4 DE Vi (0,6)]
= SOV (1) Yi1n (0.6) + Fp) SO (r) Vi1 (6.6) (G419
—[ e 1méz WS (>+Fl&’1mAz+1wmm< )| Yim (0, )

Now the matrix element
<¢mk|az|wn2k>:z< Witk prizk)
I—1m

—ZFI VRIS V]2, + Bl Vi A Wi2Es,) (24.16)

(5 n1 na (6 n1
ZF )Wl-i-;(m Wlmk> F‘l-l—)lm(W k|Al+1Wl+1m>

24.1.3 Radial integrals

To summarize, we need to calculate

2F1 n n 3F1 n n
pnlng ik T Z F( Y W Jrli(mzl:lwlw 2k> + F‘Z(Jrfm)Il <Wl'nibk|Al+1Wl+2i(mIl>
(24.17)

(n110z|nak) ZF“’ WS 1EWEER) + B OV A W2k )

Now let’s give the detailed equations for radial integrals appearing in Eq. 24.17. Using Eq. 24.1, we have

W V)

{Aﬂlfm,} [AZZ (i [rug) + B2 (ug 1|0y ) +chlm Ul+1|5luul>‘|

wk 15| n . (24.18)
{Blﬁi(m} [ 12K G [Srug) + Br2R (110 +Zcufm Ul+1|5luyl>‘|

+ Z {Cle-il-(lm } lAZTZLk<u#H1|5ml> + B%k<u#l+1|5zﬂz> + ZCZfﬁ(u#Hﬂéluyl}]
I

1%
and

Wi AW s,) =

[Amk} l ?ﬁlfm/ (| A1) + Bl+1m (ug| A tg1) + Zcffm Ul|Al+1uvl+1>‘|

+ |:BZ’lrrllk:| lA?ﬁlfm/ (| Aqpruggr) + anffm/ (| A ty41) + ZCfolm/ <dl|Al+1uyl+1>]
+ Z [Cﬁiﬂ [ P2 (Wt | A ) 4 BU2S L (| A i) + ZCZl-:-(lm <uul|Al+1uul+1>]

(24.19)
Finally, the MT-Sphere contribution to the z—, y— and z— components of the momentum operator can be
obtained as:

pfnng;k == z<n1k|8a;|n2k> = (p::ﬂw;k +p7:1n2?k)

(24.20)

wl»—'L\DIN-

plTIllTIz?k = z<n1k|@y|n2k> (p"1"2 ik p’;ﬂw?k)

Phing x = — 1(n1k|0z|nk)
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24.2 Contribution from the Interstitial

In the interstitial region, the momentum matrix elements can be calculated by:

—i(n1k|V|nok); (24.21)

Pnin, =

Expanding the eigenfunctions according to equation 8.6 we have:

(nak|V|nzk) / () Vi (TP

Z ka*ka/ ikt G) T i (kG ) x g3,

G et (24.22)
Z ank*ank k—|— G/)/ i(G'—G)- rd3
G G’ it
which using eq. 6.12 can be writen as
nikx* >ngsk
(nk|V|nzk)r = 5 Z 28" 725" (k+ G )Ie-c (24.23)
G.G’
Applying eq. 24.23 into 24.21 we have
nik+* rnok /
Py s = Q Z 28 Zg (k+G)Ia-a (24.24)
G.G’
24.3 Core states
24.3.1 Matrix elements between two core states
For the core wave functions we can follow the same steps as in section 24.1, taking into account that:

(r|nkm) = Yngm () = Uni(r)Yim (6, @) (24.25)
where [ is determined by « through | = |x| + isgn(x) — 1) and a factor of s+ is absorbed into the radial
function w,,;(r). The action of the operators on the ket is:

) Oun (r l
(@2 20) o (5) = (22— L)) EETVir10510.0)
Oupi(r)  1+1 24.2
+ <% + Tunl(r)) F}siq:1)}/lflmil(95 ¢) ( 6)

=F 2 501 (1) Yig1met1 (6, 6) + FCTY A (7)Yie 1m0 (6, )

and
02 (t) = F{2 510 (1) Yis1m (8, 8) + FL9 Attt (r) Yi—1m (6, 6) (24.27)

Then the matrix elements are

(n1k1m1|0x + i0y|na2kams)

2F1 F
:<un111 limy |F‘l(2m2 )612’“71212 Y22+1m2i1 + F‘l(2m2 )Alz Unyly 5/22—1m2j:1> (2428)
27 T
7F‘l(2m2 ) <un111 |5lzun2lz>5ll,lz+15m1,m2:|:1 + Fl(2m2 ) <un1l1 |Al2un2l2>5l1,l2715m1,m2j:1

and
(n1k1M1|0z|nokamsa)
= (s 1y Vi o [ 83ttty Vg 1ma + L0 Atyingty Yig—1ms) (24.29)

( (6
*FWlQT)nQ <un111 |5lz un2l2>5l17l2+15m17m2 + F}27312 <un111 |Alz un2l2>5l17l2715m17m2 :
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24.3.2 Matrix elements between a core and a valence state

Using Eq. 24.9, we have

(n1k1mq |0z £ i0y|na, k) = Z (Uny1, Yiym, |Fz(2:F1)5lz Ky ima1 F(Sﬂ)Alz K Y tmat1)

2mM2 lama lomo lomo
l2m2
2F1 Kk 3F1 k
= Z F‘l(zrfz ) <un1l1 |612 Wl’r;%m2>5l1,l2+16m1,m2i1 + F‘l(zrfz ) <un1l1 |A12 W{;%m2>611,12_15m17m2i1
lzm2
2F1 k 3F1 k
:Fl(l Th?u:;l(“"lll |5l1—1wﬁi1m111> + Fl(1+1721111<“n1l1 |Al1+1wﬁ2+1m111>-
(24.30)
Using Eq. 24.15, we have
k
(n1k1m1|0z|nek) =(un,, [P]5) 2431
5 k 6 k ’
=F7 1, Wty 50,V )+ B (s | A W2, ).

The matrix elements used in the equations above are

(|0 W) = AP a1 a) + BY2K, G vi 1)+ Co L (1w 1) (0432

and

(| A WL ) = AP (| D) + BP2S (| Avprtugn) + > CLRES L (it vyt
174

(24.33)
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Chapter 25

Speeding up GW calculations

This chapter discusses various numerical techniques that can be used to speed up GW calculations.

25.1 Using static COHSEX to include static remainder in selfenergy

Following [?], we can use the static COHSEX approximation to the self-energy to reduce the number of unoccupied
orbitals. The full GWA correlation selfenergy reads

Yo(ry, rojw) = % /dw'G(rl,rg;w + W )W(rg,r1;w) (25.1)

The corresponding static COHSEX approximation reads

occ

1
ECiSCOHSEX(I‘h I‘Q) = 55(1‘1, I‘Q)WC(I‘Q, ry; 0) — Z WC(I'Q, ry; 0)¢nk(r1)"/)7*zk(r2)' (252)
nk

One notices that the static COHSEX approximation contains a d-function, implying a sum over complete KS
eigenfunctions. It has been well-known that the convergence of the correlation selfenergy X¢(r1,ro;w) is quite
slow, which poses a critical computational challenge. It is possible to speed up the convergence with respect to the
number of unoccupied states by including the following static correction

AEC(I‘l, r2) —_ chsCOHSEX(rl, 1‘2) _ ScfsCOHSEX (rh r2) (25.3)

where the second term is the static COHSEX correlation energy calculated with a finite number of unoccupied
states,

occ

S0 sCOHSEX (1) 1y) Z¢nk 1) (r2)We(ra, 115 0) — ZWc(rz,rl;0)1/1nk(1‘1)1/12k(1‘2)
nk

unocc occ (254)
1
=5 Z VY (1) Py (r2) W (r2, 11;0) — 3 > WO (ra, 13 0) ¥ (r1) 1 (r2)
nk
Now combining Eqgs.(25.2) and (25.4), we have
c 1 c 1 c *
AZ (I’l, I'Q) = 56(1‘1, I‘Q)W ’(1‘2, r, 0) — 5 Z W ’(1‘2, r, O)Q/Jnk(rl)lﬂnk(rg). (255)
Obviouly, when the sum over unoccupied states are complete, AX°(r1, ro) vanishes.
In practice, one needs the diagonal matrix elements of AX¢ with respect to KS eigenfunctions

ANy = -5 Z Z 1" Wi(a,0)M;,,(k, q) (25.6)

where X
W = / dr), (e)YWe(r, r, 0)nk(r). 25.7)

While the second term is straightforward to calculate in the current GW code, the first term requires some special
treatment. Expanding W¢(r, r, 0) and ¢,k (r)?, (r) by the mixed basis functions, we have

Wik = Z Z Z My, (k,0) / dry(r) [x3(r)] " x5 (r) (25.8)
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Denoting the integral in the equation above as I';;.;, and defining

To(q) = > Wi(q,0)lijy (25.9)
i
we have
W => 3 MP,(k,0)T,(q) (25.10)
q p

25.2 Core pproximations

One can speed up the GW calculations by neglecting core states in all or some parts of GW calculations. Roughly
three levels of core approximations can be defined, as controled by core:iopcore

i. All-electron calculation: core states are included in all calculations;
ii. Core states are included for the exchange self-energy, but neglected for the correlation part;

iii. Core states are neglected in all calculations.

25.3 Reducing the size of mixed basis set

25.4 Using symmetries

25.4.1 The LAPW basis functions

Let {T} be the set of symmetry operations of the reciprocal lattice in the three dimensional space. Then, two
reciprocal vectors are symmetry related if there exists a matrix operation T; such that k = T k.

Since T is a symmetry of the lattice, for each G vector of the reciprocal lattice there is a vector G’ such that
G = T;G. And thus we can also write: k + G = T;(k + G). It is easy to show then, that the LAPW basis
transforms as:

P& (T 'r) = o1& (r) (25.11)
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Appendix A

Mathematical Tools

A.1 Fourier series expansion of lattice periodic functions

A.1.1 Local functions
A.1.2 non-local function
We need to calculate a nonlocal function f(ry,rs)
fri+R,ro+R) = f(ri,r2) (A.1)

To calculate a function of this type, we use the expansion in a complete set of Bloch functions {x3(r)}, (x{(r —
R) = e *'Ry%(r)) normalized to unity in the crystal volume (V)

[ @@ ) = daady (A2)
%
Using this basis set we have
BZ BZ
f(ri,ra) ZZZXZ r1) fii(a, @) (r1))"
ij (A3)
fla ) = / / () Frn e X (02) B radPry
vJv
The matrix element f;;(q,q’) can be evaluated as
fij(a,q / / X (r1)) f(r1,12)x5 (r2)dProd®ry
— Z / / X (r1 —R))*f(r1 —R,ry — R — R/)x? ‘(r2 — R — R))drad’r;
R,R/
_Z/ / AR (A (ry))* f(r1, 72 — R e~ R RO (1) Py dPry
O'r /0 (A4)
*Z (a=da’): R/ / X (r1))* f(ri,r2 —R)e —id R X? (ra)d®rad®ry
Qr
~Nobaa / / () S Flrrre — R)e R () dradPry
aJa R
E6(1,(1’sz‘]’ (CI)
where we have made use of the closure relation for the Bravais lattice:
D e R = NGy o (A.5)
‘We have redined the matrix elements
fz; N / / Xz I‘1 Zf ry,ro— RI —iqR’ q(rg)d ng 1
(A.6)

// Xz I‘l I‘l,I‘Q)XJ ( )d37’2d37"1
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Thus, the expansion of equation A.3 is writen as

I'1,1'2 ZZXZ r f’Lj Xj (I‘2>>*

Using the 2-normalized basis functions,

fzj // Xl I‘1 Zf ri,r; — R ZqRXq(I‘z)dgTzdng
QJQ

/ 122)@ r fzy X] (1'2)]

If we have a product of operators, say:
h(ri,r2) = / f(r1,r3)g(rs,ra)d’rs
%

Then, according to Eq. A.7 the expansion of  in the set of functions {x{ (r)} is:
Q) Z/ / X ()] h(ry, vo)x (ro)dProd®r
vJv

_ /V /V (e )] < /V f(rl,rg)g(rg,rg)d3r3> X (r2)dradiry

We can now use the second line of equation A.7 for f and g and the orthogonality of the basis to get:

@=[ [ o ([ semg ) e dnen

- [ [ by (/zle 1) o) [ ()]

qi1 Im

ZZX (r3)gnp(az) (X2 (rz)}*d3T3>X?(rz)dgwdgﬁ
q2 np
BZ BZ

lezgnz</ X;(r1)] X?l(rl)dgﬁ) fim(a1)x
</V [k (r3)]” Xq2(r3)d3r3> Inp(a2) (/V [x32(r2)]*x?(r2)d3r2)

=3 330N (@) fim (a1)5(a1, A2)Smngnp(d2)8 (a2, 45y,

qi 92 Im np

And we arrive to the expected expression:

Zle gl]

A.2 Brillouin-zone integrations of singular functions

Consider the Brillouin-Zone integration of a function that diverges at the Gamma point (q = 0).
BZ
=N T
q

“ oy y, et

In the q — 0 limit we can separate the singular terms as:

s2 'rsl
+

T(q—0)= e . +7(q)
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where T (q) is the regularized form of Y(q).
The singularity at the I' point appearing in Eq. A.14 is integrable, but a direct numerical integration will
converge very slowly. Following [40], we introduces two auxillary functions which shows similar singularity

e—clat+Gl
¢ o (A.15)
FQ(q) _Z e_a|q+ |
- 2
o la+Gl
One can see that
1 -
Fi(q—0) ==+ Fi(q)
ql ) (A.16)
Fz(qﬁo):q—QﬂL 2(q)

where I (q) and F5(q) are regularized from of F} (q) and F»(q), respectively, obtained by neglecting G=0 in the
summation in the right hand side. Now the integration (or summation) of Y'(q) over q can be written as

S=NY T

— Nc_lz [T(q) _ Tlel(q) _ T52F2(q):| +N lTslel +N 1T52ZF2
q q

=N! Y(q) — Y Fy(q) — T*2F Y52 e + T,
S [T 1(q) 2(a)] + T2 Lz + T A7)

+ TS2

=N T(q) + T Lo - NP Fi(q)
q q

=Ca T + CuT? + N1 " T(q)
a

Iy — Nt ZFQ(Q)
a

with

ISlENc_lel(Q)
q
~alatG| c—ala+Gl c—alQl
iN 1
ZZ [t G| @n? /qz| el <2w>3/dQ ]

B Q
- (271)2a

2 =N"Y " Fa(q)
q
—ala+G/[? QO e—ala+Gl? QO e—alQf?
ZZ arer ~ @) Ul Tmer o) Qg

G

(A.18)

and
Ca=1Ia—N" ZE(Q)

i (A.19)
Cs2 = 152 - N(Tl ZFQ(q)

« is a parameter chosen so that the width of the Gaussian is comparable to the Brillouin zone diameter. To obtain

3
the parameter o we require «Rpz = 1, using 4—”R%Z = (2;;) we get:

O\
- <@) (A.20)
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Taking the BZ integration weight into account explicitly, we have
S=N"1D>"T(q)
4 } (A.21)
= Ca T + C ¥+ w;T(q))
A.3 The integration in frequency
In this section we show how to perform the integration of the following form ??:
L[ Wi =2 du 22

where w, 1= €px—q — iw.

A.3.1 Remove the peak at w' = w

The integrand in Eq. A.22 is very peaked around w’ = w when €,x_q is small. To handle this problem one can

add and subtract the term
1 [ . We 1 .
; /0 W(ZW)WCZWI = §sgn(en/k_q)W(2w)

Then we have:
00 B 1 .
X== /0 (W (iw') — W (iw)] ﬁdw’ — Ssen(enicta) W (iw)
The integrand is now smooth and a Gaussian quadrature may be used.
A more general treatment (following Ref. [7] is to add and substract the term

1 e 2, 72 e . 2 2
—Z /0 W(iw)e*a w ﬁdw/ _ W(zw)geo‘ we orfe [ozwe]
so that
1 > 2 s . 2 o
X = ;/0 {W(’Lw/) — W(Zw)e*a w :| de/ _ W(zw)geo‘ w? arfe [awe]

Now the previous scheme is just a special case of « = 0

A.3.2 Gaussian quadrature

To solve the semi-infinite integral of eq. A.26 which has the form:

x- | " )

we use the Gaussian quadrature.

A.3.2.1 Gauss-Legendre quadrature

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

To transform Eq. A.27 into the standard Gauss-Legendre form, we make the transform w = ﬁ, so that we have

X = /fl—x 1—ac) TS B
—ZwGL Hcl f<1jxi>

:Zwif w;)

GL

. .7 z;
with w; = w; =

1 -
a2 and w; 1= T
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A.3.2.2 Double Gauss-Legendre quadrature

In this scheme, we split the semi-infinite integral into (following [24])

X =X, + X» (A.292)

x = [ Flw)dw (A.29b)
0

Xo=| flw)dw, (A.29¢)

for X; we make the change of variables = = 2w /wg — 1 and thus dw = “*dx. Then we have:

wo 1
Xi= | flw)dw= % / fl(z + 1)wo/2)da (A.30)
0 -1
which can be solved by standard Gauss-Legendre quadrature. For Xs we make the change of variables x =
2wp/w — 1 and thus dw = — (Ifo)z dz. Then we have:
o 1 2CLJ() 2
Xo = / flw)dw = 2w0/ fl (z+1)"2dx (A31)
wo 10 x+1

which can also be solved by standard Gauss-Legendre quadrature.

A.3.2.3 Generalized Gauss-Laguerre quadrature

The generalized Gauss-Laguerre quadrature approximates the semi-infinite integral of a function in the following
way:

/ e " f(x)dx = Zwlf(acz) (A.32)
0 i=1

with x > —1. The values of the weights {w;} and abscisas {z;} can be determined using the subroutine
gaussq. f.

A.4 Matrix computation

A.4.1 Block-wise inversion

For a matrix with the following block form

A.5 Spherical Harmonics

o Definition: In the Condon Shortley convention the spherical harmonics are defined as

Yim(0,0) = (—1)™ 7)'le((;059)6””¢ (A.33)

where P/ (x) is the corresponding Legendre-polynomial (See [1]).
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e Recurrence relations:

1
Yoo(0, ) = Ir (A.34a)
3
Y10(0, ¢) = ECOS(Q) (A.34b)
Y110, ¢) = — gsm(e)ew (A.34c)
0
Yi—1(0,¢) = — Y11(0, ) (A.34d)
20+ 1 -
Yi(0,¢) = — 2+z sin(0)e Y111 (A.34e)
(20-1)(2l+1
Y, = Y,
lm(ea ¢) (l — m)(l i m) COS(G) l 1m(9, ¢)
(I—-14+m)(I—-1—m)(20+1)
Y o.m(0, A34
% Q= m)  am(09) (A.34D
Equations A.34 are used in subroutine y1m. £90
e Conjugation:
e Inversion:
Yin(F) = (=1)'Yim(—7) (A.36)
e Other relations:
€' $in 0Yin (0, 6) =F VY111 m11(0, ) + FOYi 111 (6, 9) (A.37a)
™' s 0 (0, 6) =F O Yi1m-1(0,0) + FADYi 10 1(0, 9) (A.37b)
c08 0Yim (0, 8) =F Y111 (0, 6) + FOYi1 (6, 9) (A37¢)

e (cos@ng i 9

5 @%> Yim(0,6) = = LY i41,mi1(0,0) + (1 + DFDYia 11 (6,0) (A37d)

et (cose2 9 ) Vi (0, 8) = — LF®Yis1 o 1(0,6) + (L + DVFDYi10 1(6,6) (A3T0)

00  sinf 00
- sino%mm(a, 0) = = IFOYig1n(0,0) + L+ DFYiam(0,0) (A3
where:

a_ l+m+1){+m+2)

Frm = \/ 2+ 1)(2 1 3) (A.382)
@ _ [U=m)(-m-1)

From \/ 2~ 1)(20 + 1) (A.38b)
3) (lfm+1)(lfm+2)

Eim \/ 20+ 1)(20 +3) (A-38¢)
@ _ _ [U+m)(+m-1)

Fim = \/ - 1)2+1) (A.38d)
5) l=m+1){I+m+1)

From _\/ 2+ 1)(20+3) (A.38¢)

p© _ [I=m)(+m)

Lm A 9T 1) (20 1 1) (A.38f)
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e Gaunt coefficients:
e = [ Vi)Yo ) Yirme ()

A.5.1 Expansion of Plane waves by spherical harmonics

Rayleigh expansion

eigff4ﬂz Z " ga(gr Y/\H(Tflg)Y,\u(Tflf’)
A=0 p=—X

o +A
=4m > > P (gr)YVau (T gV, (T )

A=0 p=—X

A.6 Lattice Harmonics

A.6.1 Normalized real spherical harmonics

e Definition:

20+1 —m)!
Almi(95¢)5 \/ l+ (l m)|le(COSH) {C.Osm¢ ) m:0715'-'al-

27 (1 4 6mo) (I +m)! sin mao

e Relation to Spherical Harmonics:

Ao (0, ¢) =Yi0(0, )

71)WLY}WL(6=¢)+}/I—WL(07¢)

(
Aim+ (6, 9) = { )Y 8,8V (6,6)]
V2

Using equation A.35 it can also be written as:

Ao (0, ¢) =Yi0(0, 9)

Yin (0,6)+ Y75 (0,6)
Aim+(0,¢) =(=1)™ { .[mm(ﬁ)m;(ew
v V2

Aio(0,9) =Yio(0, ¢)
Almu:i: (95 d)) :\/5(71)7” {

A.6.2 Normalized cubic harmonics

e Definition (taken from [31]):

Klj Zk Alm

e Cubic conversion factors (Table A.1)
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Table A.1: Cubic conversion factors k:fnj up to tenth order [31]

Even m
I 0 2+ 4+ 6+ 8+ 10+
0 1 1
NG Wi
o 14 -3/5
0 o i 15
R i N
01 BE 4 W
10 2 % % %6 ? %6\/%
Odd
2- 4- 6- 8-
3 1 1
T 3% e
o e W
0 2 WE W

146



Chapter A A.6. Lattice Harmonics

e Relation to spherical harmonics (up to tenth order):

Ko =Y00 (A.46a)
K3 =5 ( Y30+ Ys_9) (A.46b)
\/>Y40 + - \/> Yia +Ya_y) (A.46¢)
1
Ke1 =3 \/;Yeo - 4ﬁ(Y64 + Ys—4) (A.46d)
1 /11 1 /5
Koz ==/ = (Yoo + Yo2) + ~ \ﬁ (Yoo + Yo—o) (A.46c)
4V 2 4V 2
7 13 /11
Kn :Z [ 3 (=Yra +Y7_2) + 3 (=Y + Yr_¢) (A.461)
1 1 /7 1 /65
Ks :g\/ﬁyso + Z\/g (Ysa + Yg_4) + Ve (Ysg + Ys_3) (A.46g)
7 3 13
Ko =1 5 (=Yoo +Yy_2) + > (—Yos + Yo_s) (A.46h)
7 17 7 .
Koo o [ 3 (=Yoa+Yo_4) + \/g(—ygs + Yo_3g) (A.461)
1 /65 1 187 .
Kio1 ==/ —= Y100 — = V11 (Yig4 + Yio—4) — (Yios + Yi0-3s) (A.46))
8V 6 8 16 3
1 247 1 19 1 /85
Kigo =— Y; Y; Y; Y; Y; Y; A.46k
102 16 3 ( 102 + Y10— 2) 16 6 ( 106 + Y10— 6) 16 ( 1010 + Y10— 10) (A.46k)
we can also write
!
Kij(0,0) = Y by (1) Yim (0, 6) + Yiem (0, 6)] (A47)
m=0

with (Table A.2):
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Chapter A

© O 0 9 N &N B~ WO —_

—_— =
(=N}

(SIS

ﬁ\ wl~

2

ool

ol
=

m

6+

Table A.2: Cubic conversion factors &', ; up to tenth order
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Chapter A A.7. Fourier Transform

A.6.3 Stars

Taken from [54]

e Definition: The stars, ®(7), are defined by:

_ 1 iRG-(F—Tr)
(I)é(’l:‘) = E % e R

=3 peitna

iR, G-T

i e .
ms pm

m

(A.48)

where R are the rotational components of the space group operations, {R|¢}, Ny is the number of space
group operations and my is the number of independent planewaves in the star. ¢, are the phase factors
defined in A.50.

e Orthogonality:

1 1
Q / L (F) Py (M) d*7 = m—séssf (A.49)
e Phase factors:
_ M —iRG-#;
om =3 Z e R (A.50)

A.7 Fourier Transform

e Definition:

‘We use the following convention for the time-frequency Fourier Transform:

F(w) = / F(t)e™tat

(A.51)

1 T ,
F(t) =5 /F(w)e‘zmdw

e Imaginary axes:

The Fourier transform between imaginary axes work like its counterpart on the real axes, except that addi-
tional factors of 47 have to be included:

F(iw) =—1i / F(ir)e ™"dr
. (A.52)
F (i) :i / F(iw)e™  dw
A.8 Spherical coordinates
e Derivatives:
) +ig :
8xiiay:sin96iz¢8g+ ¢ (cos@%:l: '1982>
T sinf o¢ (A.53)

0 1. 0
0z 7cost9§ — ;smG%
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A.9 Special Functions

A.9.1 Complete Gamma Function
e Definition:(See [1])

I'(a) = / et tdt (A.54)
0
e Particular cases:
— Integer arguments:
I'(n)=(n—1)! (A.55)
— Half-integer argument:
D(n+ 1) = () (A.56)
with T'(3) = /7.
A.9.2 Incomplete Gamma Function
e Definition:(See [1])
I'(a,2) = / et ldt (A.57)
e Recurrence relation:
I'(a+1,z) =al (a,z) + 2%e™" (A.58)
e Particular cases:
I'(l,z)=€¢"" (A.59)
I (1,2) = VrErfe(Vx) (A.60)

A.9.3 The step function

Definition:
1 7 € interstitial
o) = { 0 7 ¢ interstitial (A6
Since the step function ©(7) has the periodicity of the lattice we may expand it in a Fourier series as:
CGED I F (A.62)
el
where © & can be calculated analytically, giving:
473 =
1— & =
~ 230 G=0
Of = a (A.63)

0

e

An : iGf A
—QGZ]l(Gra)TieG o @G
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Appendix B

Programming conventions

ii.

iii.

iv.

Vi.

vil.

viii.

iX.

Xi.

Xii.

Xiii.

Xiv.

XV.
XVI.

XVii.

XViil.

Strict ANSI Fortran90 should be used. Features marked as obsolescent in F90/95 should be avoided (i.e.
assigned format specifiers, labeled do-loops, statement functions).

Modules should be used in place of common blocks for declaring global variables.

use statements should include the only option and the corresponding list of global variables used by the
subroutine, unless all the variables in the module are used.

Any code should be written in lower-case form, starting from column 6. An extra indentation of 2 columns
should be added inside each loop level. The length of each line should be kept to fewer than 75 characters
using the & character for line continuation.

Every function or subroutine, no matter how small, should be in its own file named rout ine. £90, where
routine is the function or subroutine name. It is recommended that the routines are named so as to make
their purpose apparent from the name alone.

Use of implicit none is mandatory.

Each passed argument should have its intent option defined, and a short description of its purport should
be added as comment in the same line.

All called procedures within the subroutine (intrinsic or external) should be explicitly declared.

Declarations of the form datatype=N, as well as doble precision or double complex should
be avoided. The form datatype (N) should be used.

. Each variable should be declared separately, and, when possible, its purpose should be described in a short

comment on the same line.

Subroutines should be "plentifully" commented. If you are not sure, whether or not a comment should be
added here... do it.

The use of got o statements should be kept to a minimum. Only if it is impossible to avoid it. They should
be used for exiting loops only and always point to a cont inue statement.

Local allocatable arrays must be deallocated on exit of the routine to prevent memory leakage.

Every function or subroutine must be documented with the Protex source code documentation system.
This should include a short IATEX description of the algorithms and methods involved. Equations which
need to be referenced should be labeled with routinel, routine?2, etc. The autorship of each new
piece of code or modification should be indicated in the REVISION HISTORY part of the header. See the
Protex documentation for details.

Each routine should terminate the program when given improper input.
Report errors prior to termination with a short description using the out err subroutine.

Avoid redundant or repeated code: check to see if the routine you need already exists, before writing a new
one.

All internal units should be atomic. Input and output units should be atomic by default and clearly stated
otherwise (with exception of WIEN2k output files used as input, it does not depend on us).
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