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Abstract

Single particle excitations in electronic systems are measured by photoemission spec-
troscopy (PES) and its inverse counterpart (IPES) in experiments. Their theo-
retical description is a prerequisite for understanding them. State-of-the-art the-
ory addresses these problems by linking the density-functional theory (DFT) with
the many-body perturbation theory (MBPT). In recent years, the GW approach,
typically applied as a first order correction (G0W0 approximation) to the Kohn-
Sham (KS) eigenvalues, mostly within the local-density approximation (LDA), has
achieved great success in describing single-particle excitations in weakly correlated
semiconductors and insulators.

Favored by its implementation simplicity and computational efficiency, the pseu-
dopotential method has almost monopolized the development in this area. The
approximations implicit in this method and their limitations are well-known and
under control in ground state calculations based on DFT. This has been achieved
by taking the all-electron methods, and in particular the full-potential (linearized)-
augmented-plane-wave plus local orbitals (FP-(L)APW+lo) method, as benchmark.
However, the influence of these approximations on the calculation of the many-body
corrections to the LDA eigenvalues is still unclear.

The reported G0W0 calculations based on the pseudopotential method usually
show a better agreement with experiment than the all-electron calculations available
so far. On the other hand, in E. Shirley and R. Martin words “any calculation
following core-valence partitioning can never be better than the accuracy with which
the interactions between core and valence electrons have been treated” [Phys. Rev.
B 47, 015413 (1993)]. That is, the reasons for this disturbing discrepancy are to
be traced back to two approximations underlying PP-G0W0, namely, the exclusion
of the core electrons (core-valence partitioning) and the use of pseudo-valence wave
functions (pseudoization) in the calculation of the self-energy.

In this thesis, we present the development of an all-electron G0W0 code based
on the FP-(L)APW+lo method. With this code, we 1) analyze the discrepancy
between all-electron and pseudopotential based G0W0 results, mainly focusing on
the band gaps, and 2) study the electronic structure of IIb-VI semiconductors and
group III nitrides. Our results show that core-valence partitioning and pseudoization
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are equivalently important factors in explaining the difference between all-electron
and PP-G0W0 band gaps. In IIb-VI semiconductors and group III nitrides, the LDA
based G0W0 method systematically underestimates the fundamental band gaps, as
well as the binding energy of the semicore d-states. Thus, either going beyond the
first order correction to the Kohn-Sham eigenvalues (self-consistency), or starting
from an effective one-electron problem that approximates the many-body results
better than LDA, is required for an accurate description of these properties.
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Chapter 1

Introduction

Since the discovery of electron as a particle in 1896-1897, the theory of electrons
in matter has ranked among the great challenges in theoretical physics. The fun-
damental basis for understanding materials and phenomena ultimately rests upon
understanding electronic structure. [1] It is without any hesitation that I assent to
Richard M. Martin’s point of view and take it as the first sentence when it comes
to writing this introduction for my Ph.D thesis.

One point implied in this statement is that the concept of electronic structure
is polymorphous, in the sense that it covers all properties related to electrons in
matter. For example, it can refer to the total energy of the electrons, their density
distribution, the energy needed for extracting one electron out of the system, their
response to an external perturbation, etc. These properties are in principle measured
by different experiments. As a consequence, when saying “electronic structure”, one
must specify the corresponding property of the electrons it refers to. Among the
various properties which can be obtained from theories and experiments about the
electronic system, we will focus on those concerning spectroscopies throughout the
thesis. Direct and inverse photoemission and absorption are the prototype spectro-
scopies in this context. The processes of these experiments are described in Fig.
1. For these three processes, a knowledge of the single particle excitations, which
corresponds to the information obtained from direct and inverse photoemission, is
of fundamental importance. The work to be introduced in this thesis concerns their
all-electron theoretical description.

Direct photoemission experiments are an application of the Einstein’s photoelec-
tric effect for probing the electronic states in matter. The sample is perturbed by an
incoming photon with energy hν. One electron absorbs this energy and escapes out
of the system with a kinetic energy Ek measured at a large distance. The difference
between hν and Ek corresponds to the energy of the state originally occupied by
this photoelectron. In the inverse photoemission experiment, a beam of electrons
with kinetic energy Ek is incident upon the sample. After entering the system, these
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Chapter 1

Figure 1.1: Schematic representation of direct, inverse photoemission and absorp-
tion. Taken from Ref. [2].

electrons decay radiatively to unoccupied states of lower energy. The energy of the
outgoing photons is measured and its difference to Ek corresponds to the energy of
the unoccupied states in the system.

In the last years, the computational study of the electronic structure has bene-
fited considerably from the development of feasible simplified treatments in extended
systems. Among them, the density-functional theory [3, 4], a method overwhelm-
ingly dominated by the local-density approximation (LDA) and extensions thereof,
has achieved tremendous success for the theoretical description of ground state prop-
erties. Driven by this tremendous success, the corresponding Kohn-Sham eigenval-
ues have been conventionally used to interpret the single particle excitation energies
measured in direct and inverse photoemission experiments. Reasonably satisfactory
results were found in simple metals [5]. However, when the excited state proper-
ties of semiconductors and insulators are concerned, universal discrepancies with
experiments appear. A well-known example is the systematic 50-100% underesti-
mation of the fundmental band gaps of semiconductors in LDA when compared with
experiments.

A formally justfied framework for calculating the single particle excitations is the
many-body perturbation theory (MBPT) [6]. Within this framework, the quasipar-
ticle concept is introduced to describe an electron surrounded by a positive charge
cloud which is generated by its interaction with the system. This interaction, in turn,
acts on the quasiparticle, changing its energy. The resulting effective interaction of
the quasiparticle with itself is called the self-energy. So defined, the quasiparticles
obey a Schrödinger-like equation, where the self-energy plays the role of a non-local,
non-hermitian and time (or frequency) dependent potential. It can be formally
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demonstrated that the eigenvalues of the quasiparticle equation corresponds to the
total energy difference between the ground state and the state with the correspond-
ing quasiparticle removed (added), namely, the quantity that is measured in direct
(inverse) photoemission experiments.

The diagrammatic expansion introduced by R. Feynman [7] provides an intuitive
method for evaluating the self-energy to all orders in the Coulomb potential. How-
ever, this procedure is impractical, due to the long-range nature of the Coulomb
interaction, and one must resort to approximations. The simplest of them includ-
ing dynamical screening effects is the GW approximation proposed by Hedin in
1965, in which the self-energy is written as a product of the Green’s function and
the screened Coulomb interaction [8]. In their seminal work, Hybertsen and Louie
showed that applying Hedin’s GW approximation as a first order perturbation to
the fictitious, non-interacting Kohn-Sham (KS) particles of density-functional the-
ory (DFT) provides an accurate description of the photoemission spectra in weakly
correlated semiconductors and insulators [9, 10]. Since both the Green’s function
and the screened Coulomb interaction are obtained from the Kohn-Sham orbitals
and eigenvalues, this treatment is usually called one-shot GW or G0W0, we will
adopt the latter throughout this thesis. Nowadays, this approach has become the
standard method for the theoretical description of single particle excitations in real
extended systems.

Since its birth, the G0W0 approach has been dominated by implementations
within the pseudopotential framework, due to their simplified algebra and their
computational efficiency. An excellent agreement with experiments has been ob-
tained for a wide range of materials [2, 9, 10, 11, 12]. In 2002 the first all-electron
full-potential (FP) implementations of the G0W0 method appeared, based on the
LMTO [13] and the LAPW [14] methods. In both cases, the results obtained showed
a noticeable and systematic underestimation of the band gaps compared with both
pseudopotential results and experiments. This triggered a debate in which the valid-
ity of the approximations implicit in the pseudopotential method and the numerical
precission of the all-electron calculations were questioned [15, 16].

In this work, we present the implementation of a new all-electron G0W0 code
based on the full-potential (linearized) augmented plane wave plus local orbitals
(FP-(L)APW+lo). As its first applications, we carry out a detailed comparison
between the all-electron and pseudopotential-G0W0 results to uncover the origin of
the mentioned discrepancies. We also investigate the role of the electrons in the
semicore shell and deeper core states in G0W0 calculations.

The thesis is organized as follows. In Chapter 2 we introduce the most common
theoretical approaches to the electronic structure of materials. The basic principles
behind the pseudopotential method and the FP-(L)APW+lo method are presented
in Chapter 3. The many-body perturbation theory, with particular emphasis on
the GW approximation is summarized in Chapter 4. The implementation of our
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G0W0 code is then introduced in Chapter 5. Chapter 6 illustrates the precission and
stability of the code through an abridged set of tests. The origin of the differences
between all-electron and PP-G0W0 results is analyzed in Chapter 7. In Chapter
8 we carry out a systematic study of the role of semicore and deep core-states on
the G0W0 quasiparticle spectra of some selected II-VI semiconductors and group III
nitrides. Finally, we summarize our conclusions in Chapter 9.
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Chapter 2

First-Principles Electronic
Structure Theory

Any poly-atomic system can be viewed as the intermixture of two coupled sub-
systems, constituted by M nuclei and N electrons respectively. In principle, the
only prerequisite for the description of all the quantum mechanical properties of
such a system, in the non-relativistic regime, is the solution of the the many-body
Schrödinger equation:

ĤΨ (r1, r2, ...rN ,R1,R2, ...RM) = EΨ (r1, r2, ...rN ,R1,R2, ...RM) , (2.1)

where ri stands for the coordinate of the ith. electron and Ri stands for that of the
ith. nucleus. The Hamiltonian operator is given by:

Ĥ = −
N∑

i=1

1

2
∇2

i +
1

2

∑
i6=i′

V (ri−ri′)−
M∑

j=1

1

2Mj

∇2
j+

1

2

∑
j 6=j′

V (Rj−Rj′)+
1

2

∑
i,j

V (ri−Rj),

(2.2)
in atomic units (a. u.) with Hartree as the unit of energy, which will be used in all
equations throughout this thesis. The first two terms correspond to the electronic
kinetic energy and Coulomb interaction respectively. The third and fourth terms
represent the same physical quantities for the nuclei. The fifth term is the Coulomb
interaction between the electrons and the nuclei which couples the dynamics of both
subsystems.

Since the mass of the nuclei is several orders of magnitude larger than that
of the electrons, their velocities will be correspondingly smaller. Taking advan-
tage of these extremely different dynamical regimes, the adiabatic, better known
as Born-Oppenheimer, approximation allows to address the dynamics of the elec-
tronic subsystem separately from that of the nuclei by considering the later as static.
The poly-atomic quantum system including both electrons and nuclei is thus simpli-

9



2.1. Wave Function Based Methods Chapter 2

fied into a system that only includes the electrons as quantum particles1 [17]. The
Schrödinger equation for the electrons then reads:

ĤeΦ (r1, r2, ...rN) = EeΦ (r1, r2, ...rN) , (2.3)

where the Hamiltonian

Ĥe = −
N∑

i=1

1

2
∇2

i +
1

2

∑
i6=i′

V (ri − ri′) +
1

2

∑
i,j

V (ri −Rj), (2.4)

depends only parametrically on the nuclear coordinates.
The purpose of this chapter is to illustrate the basic principles underlying the

current standard methods to accurately solve Eq. 2.3, which represents the main
task for the ab initio calculations of the electronic structure of materials. The dif-
ferent schemes to achieve this goal can be separated in two big categories. The
wave function methods, traditionally known as quantum chemistry methods, and
methods based on the density-functional theory (DFT). Both of them have achieved
great success within the last half century as evidenced by the Nobel Prize of Chem-
istry awarded to W. Kohn and J. Pople in 1998. Hereinafter, I will address both of
these schemes, with a special emphasis on DFT. Knowledge of their successes and
limitations comprises the required point of departure for the discussions about the
Green’s function method afterwards.

2.1 Wave Function Based Methods

The variational principle, which can be viewed as another form of the many-body
Schrödinger equation, states that any state vector of the electrons for which the
average energy, defined as,

Ee[Φ] ≡ 〈Φ|Ĥe|Φ〉
〈Φ|Φ〉

, (2.5)

is stationary corresponds to an eigenvector of Ĥe, with eigenvalue Ee. Furthermore,
for any state of the system, the corresponding average energy satisfies

Ee[Φ] ≥ E0, (2.6)

where E0 is the ground state energy of the electronic system.
The essence of the wave function based methods consists in obtaining the sta-

tionary solutions of Eq. 2.5 within a trial-function space. The accuracy of the

1The description of the nuclear subsystem, usually treated classically, with the total energy of
the electronic system, which is a function of the nuclear coordinates, playing the role of an external
potential, is beyond the scope of this work.
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Chapter 2 2.1. Wave Function Based Methods

method is naturally determined by the choice of this trial-function space. By taking
more sophisticated approximations for the trial many-body wave function of these
electrons, the accuracy can be systematically improved, as well as, unfortunately, its
computational cost. In this section, we will introduce some of these approximations
in order of increasing complexity.

2.1.1 The Hartree and Hartree-Fock Approximations

Since the many body wave function can always be written as a linear combination of
products of one particle wave functions, the simplest possible ansatz, first proposed
by Hartree [18], for the many-body electronic wave function is to assume it as the
product of the single particle wave functions:

Φ(r1, r2, ..., rN) = ϕ1(r1)ϕ2(r2)...ϕN(rN). (2.7)

Substituting this trial wave function into Eq. 2.5, making use of the variational
principle, the many-body problem of this electronic system is mapped onto a set of
single particle, Schrödinger like, equations:

ĥiϕi(ri) = εiϕi(ri) (2.8)

with the Hamiltonian given by:

ĥi = [−∇
2

2
+ Vext(r) + V H(r) + V SIC

i (r)] (2.9)

The solutions of Eq. 2.8 are coupled through the Hartree potential

V H(r) =

∫
n(r′)

|r− r′|
dr′ (2.10)

which depends on the electron density, defined as:

n(r) =
N∑

j=1

|ϕi(r)|2. (2.11)

Thus, the set of Eqs. 2.8 to 2.11 has to be solved selfconsistently. Summarizing, the
Hartree approximation maps the many-particle problem into a set of independent
particles moving in the mean Coulomb field of the other particles.

The last term in Eq. 2.9 corrects for the interaction of the electron with itself
included in the Hartree potential.

V SIC
i (r) = −

∫
|ϕi(r

′)|2

|r− r′|
dr′ (2.12)
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Solving these equations, the ground state energy of the electronic system can be
calculated as

Ee =
N∑

i=1

εi −
1

2

N∑
i=1

N∑
j 6=i

∫∫
|ϕi(r)|2|ϕj(r

′)|2

|r− r′|
drdr′ (2.13)

The Hartree approximation has a major drawback, namely, the many-particle
wave function of the electrons does not obey the Pauli principle, which forbids
two Fermi particles to occupy the same quantum mechanical state, and therefore,
prevents electrons with the same spin from getting close to each other. Lacking this
feature, the Hartree approximation generally underestimates the average distances
between electrons. Correspondingly, the average Coulomb repulsion between them
is overestimated as well as the total energy.

In order to fulfill the Pauli principle, the many-particle wave-function has to be
antisymmetric among the exchange of two particles with same spin. The simplest
ansatz for a many-particle wave function, obeying Pauli’s principle, is obtained by
the anti-symmetrized product, known as the Slater Determinant. This improved
ansatz, proposed by V. Fock [19], is known as the Hartree-Fock approximation. For
non spin-polarized systems in which every electronic orbital is doubly occupied by
two electrons with opposite spins (closed shell), this method can be introduced in a
very simple form. For a N-electron system, the Slater Determinant representing the
many-particle wave function is written as:

Φ (r1, σ1, . . . , rN , σN) =
1√
(N)!

∣∣∣∣∣∣∣∣∣
ϕ1 (r1, σ1) ϕ1 (r2, σ2) · · · ϕ1 (rN , σN)
ϕ2 (r1, σ1) ϕ2 (r2, σ2) · · · ϕ2 (rN , σN)

...
...

...
ϕN (r1, σ1) ϕN (r2, σ2) · · · ϕN (rN , σN)

∣∣∣∣∣∣∣∣∣ ,(2.14)

where σi represents the spin coordinate of the i -th electron.
Substituting this equation into Eq. 2.5 and making use of the orthogonality of

the space orbitals and spin states, one arrives at a set of equations for the single
particle orbitals:[

−∇
2

2
+ Vext (r) + V H(r)

]
ϕi(r, σ)−

∫
dr′
∑

j

ϕ∗j(r
′, σ′)ϕj(r, σ)

|r− r′|
δσ,σ′ϕi(r

′, σ′)

= εiϕi(r, σ),
(2.15)

The only difference with Eq. 2.9 is the last term, representing the exchange interac-
tion between electrons and known as the Fock operator. It is non-local, and affects
only the dynamics of electrons with the same spin. Notice that when j = i, the

12
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exchange term equals the corresponding term in the Hartree potential, i. e. the
Hartree-Fock approximation is self-interaction free.

In terms of the single particle orbitals, the total energy of the system can be
represented as:

Ee = 〈Φ|Ĥe|Φ〉 =
N∑
i

Hi,i +
N∑
i

N∑
j

(
Ji,j

2
− Ki,j

4

)
(2.16)

where:

Hi,i =

∫
ϕ∗i (r, σ)

[
−1

2
∇2 + Vext(r)

]
ϕi (r, σ) drdσ (2.17)

Ji,j =

∫∫
ϕ∗i (r, σ)ϕi (r, σ)

1

|r− r′|
ϕ∗j (r′, σ′)ϕj (r′, σ′) drdσdr′dσ′ (2.18)

Ki,j =

∫∫
ϕ∗i (r, σ)ϕj (r, σ)

1

|r− r′|
ϕ∗j (r′, σ′)ϕi (r

′, σ′) drdσdr′dσ′. (2.19)

Here, Hii is the non-interacting single particle energy in the external field. Jij is
the “classical” Coulomb interaction between electrons in the states i and j and Kij

is the exchange interaction between them. The first two terms appear also in the
Hartree method, the last term is introduced by imposing the Pauli principle on the
many-body wave function and tends to reduce the total energy.

For spin-polarized systems the method becomes more cumbersome. Since the
number of electrons with each spin is not balanced anymore, the contribution from
the Fock operator will be different for different spins. Consequently, also the single
particle eigenvalues and eigenfunctions will be different [20].

2.1.2 Beyond the Hartree-Fock Approximation

In the Hartree-Fock approximation the electron-electron interaction is treated by
means of a time-independent average potential. The fulfillment of Pauli’s principle
imposes a “static” correlation of the position of electrons with the same spin (ex-
change hole). However, it completely neglects dynamical effects due to the Coulomb
interaction, in other words, the fact that the movement of a given electron affects
and is affected by, i. e. “is correlated with”, the movement of the other particles.
This is the main limitation of the Hartree-Fock approximation. For atoms, and
small molecules, where this approximation works at best, this limitation leads to
errors of around 0.5 % in the total energy. For example, in a carbon atom, where
the total energy is around 1000 eV, this corresponds to 5 eV, which already reaches
the order of magnitude of a chemical single-bond energy. Thus, to obtain a reliable
description of chemical reactions, more sophisticated approximations are required.
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Within the framework of the wave-function based methods, this can be achieved
by making more elaborate approximations for the many-body wave function. Among
the, so called, post Hartree-Fock methods, the Configuration Interaction (CI) method
[21], the Møller-Plesset (MP) perturbation theory [22], and the Coupled-Cluster
(CC) method [23, 24] have achieved the greater success in the last years. As a
general shortcoming of all these methods, their application is limited to atoms and
small molecules due to the scaling of the computational cost with the system size.

2.2 Density Functional Theory

The formalism of the density-functional theory (DFT) was introduced by Hohenberg
and Kohn (HK) in 1964 [3]. In 1965, Kohn and Sham (KS) [4] presented a scheme
to treat approximately the interacting electron system within this formalism. It is
currently the most popular and successful method for studying the ground state
electronic structures. Although far from a panacea for all physical problems in this
domain, very accurate calculations can be performed with a computational cost
comparable to the Hartree method. In this chapter, we will present some major
components of this theory. The discussion begins with its precursor: the Thomas-
Fermi Theory.

2.2.1 Thomas-Fermi Theory

The Thomas-Fermi theory was proposed independently by Thomas and Fermi in
1927 [25, 26, 27]. In its original version, the Hartree method is reformulated in a
density-based expression for an electron gas with slowly varying density. The kinetic
energy is locally approximated by that of a non-interacting homogeneous electron
gas with the same density.

Later, Dirac introduced the exchange term into the model using the same lo-
cal approximation [28]. The total energy of the electronic system, including the
exchange term, is written as:

Ee [n] = T + U ext + UH + UX

=
3

10

(
3π2
)2/3

∫
drn (r)5/3 +

∫
drVext (r)n (r)

+
1

2

∫ ∫
drdr′

n (r)n (r′)

|r− r′|
− 3

4

(
3

π

)1/3 ∫
drn (r)4/3 . (2.20)

This expression gives the exact energy for the homogeneous electron gas in the
Hartree-Fock approximation. It is also a good approximation for slowly varying
densities.
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The density is obtained by minimizing the total energy under the constraint of
particle number conservation

δ{Ee − µ[

∫
n(r)dr−N ]} = 0. (2.21)

Substituting Eq. 2.20 into Eq. 2.21, one obtains the Thomas-Fermi equation:

1

2

(
3π2
)2/3

n (r)2/3 + Vext (r) + V H (r) + V x (r)− µ = 0, (2.22)

where the Hartree potential, V H (r) is the same as defined in Eq. 2.10, and the
exchange potential is given by

V x (r) = −
[

3

π
n (r)

]1/3

. (2.23)

Being based on too crude approximations, lacking the shell character of atoms,
and binding behavior, Thomas-Fermi theory fails by destiny in a proper description
of real systems.

2.2.2 Density Functional Theory

In 1964, Hohenberg and Kohn formulated two theorems, which formally justified
the use of the density as the basic variable in determining the total energy of an
interacting many-body system [3]. The first theorem proved the existence of a
one-to-one correspondence between the external potential Vext (r), the ground state
many-body wave function Φ, and the ground state density n (r). Thus, the total
energy of a system, which is a functional of the many-body wave function Φ, can
also be reformulated as a functional of the density:

Ee[n (r)] =

∫
Vext (r)n (r) dr + F [n (r)]. (2.24)

F [n (r)] contains the potential energy of the electronic interactions and the kinetic
energy of the electrons. It is a universal functional independent of the external
potential. Unfortunately, its exact form is unknown.

Since the expression for the Hartree energy as a functional of the density is
known, the functional F [n (r)] in Eq. 2.24 can be further decomposed into:

F [n (r)] = UH[n (r)] +G[n (r)] (2.25)

where the expression of the Hartree energy UH[n (r)] is already given by the third
term on the right hand side of Eq. 2.20. Like F [n (r)], G[n (r)] is an unknown
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universal functional of the density independent of the external potential. The total
energy can then be written:

Ee =

∫
Vext (r)n (r) dr +

1

2

∫ ∫
n (r)n (r′)

|r− r′|
drdr′ +G[n (r)]. (2.26)

The second theorem proves that the exact ground state energy of the electronic
system corresponds to the global minimum of Ee[n (r)], and the density n (r) that
minimizes this functional is the exact ground state density n0 (r).

In 1965, Kohn and Sham proposed a scheme to calculate G[n (r)] [4]. One can
decompose it into two parts:

G[n] = T s[n] + Exc[n]. (2.27)

The first term is the kinetic energy of a non-interacting system with the same density.
The second term is the exchange-correlation energy.

Minimizing the total energy in Eq. 2.24 under the constraint of particle number
conservation (Eq. 2.21) one gets:∫

δn (r)

{
Veff (r) +

δT s[n]

δn (r)
− εi

}
dr = 0, (2.28)

where

Veff (r) = Vext (r) +

∫
n (r′)

|r− r′|
dr′ + V xc (r) . (2.29)

V xc (r) is called the exchange-correlation potential, given by:

V xc (r) =
δExc[n]

δn (r)
. (2.30)

Assuming a set of non-interacting particles with the same density:

n (r) =
N∑

i=1

|ϕi (r) |2, (2.31)

Eq. 2.28 is equivalent to:{
−1

2
∇2 + Veff (r)

}
ϕi (r) = εiϕi (r) . (2.32)

Thus, the Kohn-Sham scheme maps the complex, interacting electronic systems into
a set of fictitious independent particles moving in an effective, local potential. Since
this effective potential depends on the density, Eq. 2.29, 2.31, and 2.32 have to be
solved selfconsistently.
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The total energy in the KS scheme is given by:

Ee[n (r)] =
∑
occ

εi−
1

2

∫ ∫
n (r)n (r′)

|r− r′|
drdr′ +Exc[n (r)]−

∫
n (r)V xc (r) dr. (2.33)

Our discussion in this section is based on the original papers (Ref. [3, 4]), and
therefore restricted to the non-degenerate, non-spin-polarized, and non-relativistic
cases. Extensions to the spin-polarized system can be found in Ref. [29, 30, 31],
to the degenerate system in Ref. [32, 33, 34, 35, 36]. Overall discussion of these
extensions can be found in Chapter 3 of Ref. [37]. The inclusion of relativistic
effect are addressed in Ref. [38]. Further extension of the theory to superconductors
may be found in Ref. [39, 40]. Detailed discussion about the v-representability and
related questions can be found in Ref. [32, 35]. An excellent review on the formal
justification of the theory can be found in Chapter 2 of Ref. [37].

2.2.3 Exchange-Correlation Energy

In the Kohn-Sham scheme, all the complexity of the many-body interaction is put
into the exchange-correlation energy Exc [n (r)]. Unfortunately, not only the exact
expression of this functional is unknown, but also a systematic series of approxi-
mations converging to the exact result is missing. While semiempirical approaches
allow to obtain very precise results within the fitting sample space, their physical ori-
gin can be sometimes obscure and their precision outside that space unpredictable.
In order to remain within the first-principles framework, the most universal and, to
some extent, systematic scheme is the “constrain satisfaction” approach [41]. These
“constraints” consist of exact properties that the exchange-correlation functional can
be proven to fulfill. In this approach, the approximations to the exchange-correlation
functional are assigned to various rungs of the “so-called” Jacob’s ladder [41] accord-
ing to the number of ingredients they contain. The best nonempirical functional for
a given rung is constructed to satisfy as many exact theoretical constraints as pos-
sible while providing satisfactory numerical predictions for real systems. Increasing
the number of ingredients allows the satisfaction of more constrains, thus increasing,
in principle, the accuracy.

The simplest approximation for Exc [n (r)] is the local-density approximation
(LDA), proposed in the original paper of Kohn and Sham. It reads:

Exc[n (r)] =

∫
n (r) εxc (n (r)) dr, (2.34)

where εxc (n (r)) is the exchange-correlation (XC) energy per particle of a homoge-
neous electron gas with the same density n [4].
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The exchange contribution to εxc can be obtained analytically (Ref. [6]), giving

εx (n) = −3

4

(
3n

π

)1/3

. (2.35)

The correlation contribution has to be calculated numerically. In 1980, Ceperley and
Alder performed a set of Quantum Monte Carlo calculations for the homogeneous
electron gas with different densities [42]. The correlation term of the LDA functionals
used nowadays rely on different parametrizations of these results. One of the most
used parametrization is that proposed by Perdew and Zunger in 1981 [43].

The LDA is exact for the homogeneous electron gas, and expected to be valid for
inhomogeneous systems with slowly varying density. A large number of calculations
have shown that it works remarkably well for several real systems with strongly
inhomogeneous electron densities [31].

The natural ingredient to improve over the local-density approximation is the
inclusion of the dependence on the gradient of the density. This approach gave raise
to the generalized-gradient approximations (GGA) introduced in the late 1980’s
[44, 45]. The exchange-correlation energy is written as:

Exc [n (r)] =

∫
n (r) εxc (n (r) ,∇n (r)) dr. (2.36)

The so called PBE functional [46] is the most commonly used non-empirical GGA
functional nowadays. it improves over the LDA for many properties, for example,
the geometries and ground state energy of molecules [46, 47, 48, 49].

Further climbing Jacob’s ladder meta-GGA’s functionals are found in the third
rung, its description as well as prescriptions for the fourth and fifth rungs can be
found in Ref. [50].

2.2.4 Interpretation of the Kohn-Sham Energies

The Kohn-Sham eigenvalues appear as formal Lagrange multipliers in Eq. 2.21 and
correspond to the eigenstates of the fictitious, non-interacting Kohn-Sham particles.
A crucial question is therefore whether they have any physical meaning.

Janak’s theorem, together with Slater’s transition state theory, provide a jus-
tification for the interpretation of the highest occupied state’s eigenvalue as the
ionization energy in extended systems [51, 52]. Later this justification was extended
to the finite systems [53]. For the other states, the Kohn-Sham eigenvalue, when
calculated at a half occupation, gives a good estimation of the corresponding total
energy difference [54]. When the Kohn-Sham potential is continuous with respect
to the electron density, these energy differences can even be approximated by the
Kohn-Sham eigenvalues calculated with full occupation. However, since the exact
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form of Exc[n] is unknown, the comparison between the Kohn-Sham eigenvalues and
experiments always relies on approximations of the exchange-correlation potential.

For the local-density approximation and generalized-gradient approximations,
the result of such a comparison can be easily summarized: the work function
and bandstructures in metals are found to be reasonably well described [5, 55],
for semiconductors and insulators, universal underestimations of 50-100% for the
fundamental band gaps are found. A well-known problem of the local-density ap-
proximation is the self-interaction. By using the exact exchange optimized effec-
tive potential (OEPx), which is self-interaction free, these band gaps are improved
[56, 57, 58, 59, 60].

On the other side, the fundamental band gap is determined from the ground state
energy of the N − 1, N , and N + 1-electron systems. The Kohn-Sham band gap
is calculated as the difference between the lowest unoccupied and highest occupied
Kohn-Sham eigenvalues in a N -electron system. It was proven that the they differ by
a term given by the discontinuity of the exchange-correlation potential [61, 62, 63],
that is:

Eg = EKS
g + ∆xc, (2.37)

where
∆xc = lim

δ→0+
[V xc|N+δ − V xc|N−δ] . (2.38)

In both LDA and GGA, this discontinuity is zero. In OEPx, it is not zero. Adding
this term to the Kohn-Sham band gaps through the above equations, Grüning,
Marini, and Rubio have shown that silimar fundamental band gaps as the Hartree-
Fock method can be obtained [64]. The exact exchange-correlation functional would
allow the calculation of the band gap through Eq. 2.37. Nevertheless, for the
description of the excited state properties in general a different theoretical approach
is required. The standard treatment nowadays is the Green function method we are
going to address in this thesis.
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Chapter 3

Pseudopotential Method and the
FP-(L)APW+lo Method

As has been shown in the previous chapter, in the Kohn-Sham scheme to the Density-
Functional Theory the many-body electronic problem is reduced to an independent
particle problem (Eq. 2.32) under the action of an effective, density dependent
potential (Eqs. 2.29 and 2.30). Any numerical implementation of this scheme to
polyatomic systems has to deal with two extremely different regimes: The core
states tightly bound to the nucleus, and the delocalized valence states. The former
are represented by localized wave functions of atomic character, and their role in
the bonding of the system is mainly the screening of the nuclear potential. The
valence states play a determinant role in the bonding, which reciprocally determines
the characteristic of the wave functions of these states, going from localized states
in ionic systems, to fully itinerant ones in simple metals. However itinerant the
valence wave function may be, it also presents a fast oscillating behavior in the region
close to the nuclei, while it oscillates gently in the interstitial region. In particular
for periodic systems, where the reciprocal space representation is more efficient,
planewaves are a natural basis set. However, they are inefficient for representing
both the strongly localized core states and the rapid oscillations of the valence wave
functions in the nuclear region.

During the years, different strategies have been developed to address these co-
existent regimes. They can be arranged in two big groups, namely: all-electron and
pseudopotential methods. The all-electron methods rely on the use of more sophisti-
cated basis functions for the expansion of the wave functions. These basis functions
can address the oscillation of the wave functions in the nuclear region, as well as
the core states, at a reasonable computational cost. The pseudopotential methods,
on the other hand, replace the strong nuclear potential and the core contribution
to the Hartree and exchange-correlation potentials by an effective ionic potential (i.
e. the pseudopotential), which is designed to be much softer than the full-potential
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in the atomic region. In this way, the valence wave functions behave smoothly in
the nuclear region and can be efficiently expanded in planewaves. Only the valence
electrons are treated explicitly.

In this chapter, we will give a brief introduction of one class of pseudopoten-
tial method, the norm-conserving pseudopotentials, focusing on its basic principles.
We will also introduce one all-electron method: the Full-potential (Linearized-)
Augmented Plane Waves plus local orbitals method (FP-(L)APW+lo), which is
currently the most accurate method in DFT calculations.

3.1 Pseudopotential Method

The main idea behind the pseudopotential method is that, as long as the core
electrons are tightly bound, they do not participate actively in the bonding pro-
cess. Thus, the strong ion potential, including contributions from the nucleus and
the core electrons, can be replaced by an angular dependent pseudopotential con-
structed from the free atom of the corresponding element [65]. In this way, only the
valence states are included explicitly in the polyatomic system, which significantly
reduces the computational cost. Inside the core region, the pseudopotential is de-
signed to be much softer than the ionic one. Outside the core region, it is required
that the corresponding pseudo wave function equals its all electron conterpart in
order to obtain the correct behavior over a wide range of chemical environments
(transferability).

A pseudopotential fulfilling the above mentioned prerequisites can be generated
in arbitrarily many ways. The most used one is the “norm-conserving” scheme
originally proposed by Hamann, Schlüter, and Chiang [66], and later applied to
elements from H to Pu by Bachelet, Hamann, and Schlüter [67]. In this scheme
the integral of the pseudo charge density inside the core region is required to agree
with the all-electron one. This condition guarantees that the electrostatic potential
produced outside the core radius is equal in both cases. Furthermore, the energy
dependence of the scattering properties of the pseudopotential is of the second order
and can be ignored without affecting the transferability. Nevertheless, for some
cases, e. g. O 2p or Ni 3d orbitals, it has been found impossible to construct
a pseudo wave function much softer than its all-electron counterpart [68]. Such
drawbacks can be overcome by the ultra-soft pseudopotentials proposed in Ref. [68]
and [69], where the norm-conserving constraint is lifted. In this work, we restrict
ourselves to the norm-conserving scheme for a clear illustration of the principles
underlying the method.
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3.1.1 Generation of the Pseudopotential

The initial step for generating a norm-conserving pseudopotential is to perform an
all-electron DFT calculation for the free atom. This corresponds to obtain a self-
consistent solution of the radial, Schrödinger like equation:[

−1

2

d2

dr2
+
l (l + 1)

2r2
+ V (r)− εl

]
ul (εl, r) = 0 (3.1)

where V (r) is obtained from the set of equations 2.31, 2.30 and 2.29 with ϕl,m(r) =
ul(εl,r)

r
Yl,m(r̂).

For each angular momentum number “l” (from now on channel), a cutoff radius
(rc

l ) is chosen and the pseudo-valence radial wave function ups
l (εps

l , r) is derived from
its all-electron counterpart ul (εl, r) with the following minimal constraints:

i. The pseudo-valence state has the same eigenvalue as the all-electron one (εps
l =

εl).

ii. ups
l (εl, r) equals ul (εl, r) beyond the cutoff radius (designated by rmatch in Fig.

3.1).

iii. ups
l (r) is nodeless. In order to obtain a continuous pseudopotential regular at

the origin, it is also required to be twice differentiable and satisfy lim
r→0

ups
l ∝

rl+1.

iv. The pseudo-valence radial wave function is normalized (the norm-conserving
constraint), which, together with (ii) implies:∫ r′

0

|ups
l (εps

l ; r) |2dr ≡
∫ r′

0

|un,l (εn,l; r) |2dr for r′ ≥ rc
l . (3.2)

Once the pseudo wave function has been obtained, one can construct the screened1

pseudopotential V ps,scr
l (r), which acts as the effective potential on the pseudo-valence

state, by inverting the radial Schrödinger equation, leading to:

V ps,scr
l (r) = εps

l − l (l + 1)

2r2
+

1

2ups
l (r)

d2

dr2
ups

l (εl, r) . (3.3)

In a last step the pseudocharge density ñ0
v is obtained by:

ñ0
v(r) =

occ∑
l

∣∣∣ups
l (r)

r

∣∣∣2 , (3.4)

1In this context, the term screened is used in the sense that V ps,scr
l (r) also contains the inter-

action between valence states.
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Figure 3.1: Pseudo-valence wave functions in comparison with the all-electron ones.
The two wave functions agree with each other outside the matching radius, while
the pseudo one is much softer inside this radius. Their norms equal.

and the pseudopotential is unscreened by subtracting the Hartree and exchange-
correlation potential corresponding to this pseudocharge;

V ps
l (r) = V ps,scr

l (r)− V H
[
ñ0

v; r
]
− V xc

[
ñ0

v; r
]

(3.5)

So defined, the ionic pseudopotential generated from Eq. 3.5 includes all the
interactions of the valence electrons with the ion on the DFT level, and is much
softer in the core region than its all-electron counterpart (Fig. 3.2). The distinct
procedures for generating a norm-conserving pseudopotential differ only in the way
the pseudo-valence radial wave functions (Fig. 3.1) are designed and the constraints
they are required to fulfill.

In the Hamann scheme [66], an intermediate pseudopotential V ps,i
l is constructed

by cutting off the singularity of the full-potential at the nucleus:

V ps,i
l (r) = V (r)

[
1− f(

r

rcl

)

]
+ clf(

r

rcl

) (3.6)

where f(x) is a cutoff function which is unity at the origin, cuts off at x ∼ 1 and
decreases rapidly as x→∞. The free parameter cl is adjusted so that the nodeless
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Figure 3.2: Ionic pseudopotentials for l = 0, 1, 2 in Si atom. The pseudopotential is
much softer in the region close to the nuclear compared with the behavior of −Z/r,
where Z is the ionic charge.

solution wl of the radial equation:[
−1

2

d2

dr2
+
l (l + 1)

2r2
+ V ps,i

l (r)− ε
(i)
l

]
wl (εl, r) = 0 (3.7)

has the same eigenvalue as its all-electron counterpart (ε
(i)
l = εl). Since both wl and

ul are solutions of the same potential outside the core region, one can write:

γlwl(r) → ul(r), r > rcl. (3.8)

The pseudo wave function is now modified by adding a correction in the core region:

ups
l (r) = γl [wl(r) + δlgl(r)] (3.9)

where gl(r) must vanish as rl+1 for small r to give a regular pseudopotential at the
origin, and it must vanish rapidly for r > rcl since γlwl(r) is already the desired
solution in that region. At this point the normalization condition is used to set the
value of δl;

γ2
l

∫
|wl(r) + δlgl(r)|2 dr = 1. (3.10)
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The pseudo wave functions generated by this procedure fulfill conditions i), iii) and
iv). Condition ii) is reached exponentially beyond the cutoff radius. Even within
this procedure, the pseudopotential is not unique. It depends on the choice of states
included in the core, the selection of the cutoff functions and the core radii (See Ref.
[67] for details). Later on, Hamann [70] also extended this procedure to generate
pseudopotentials for the atomic unbound states.

In the Troullier-Martins scheme [71] the pseudo-valence radial wave function
equals exactly the all-electron one outside the cutoff radius. Inside the cutoff radius
it is assumed to have the following analytic form:

ups
l (r) = r(l+1)ep(r) (3.11)

where p(r) is a polynomial of sixth order in r2. The coefficients are determined
from conditions (ii)-(iv), plus the additional constraints of continuity of the first
four derivatives at rc

l and zero curvature of the screened pseudopotential at the

origin ( d2

dr2V
ps,scr
l (r) |r=0 = 0). Condition (i) is accomplished directly by solving

Eq. 3.3. As a consequence of the additional requirements, the Troullier-Marting
pseudopotentials are softer than the Hamann ones.

The different radial dependence of the above defined pseudopotentials for each
channel results in the total pseudopotential being semilocal (i. e. non-local in the
angular coordinates, but local in the radial one);

V ps (r, r′) = V loc (r) δ(r− r′) +
lmax∑
l=0

m=l∑
m=−l

Y ∗
l,m (r̂) δV ps

l (r)
δ (r − r′)

r2
Yl,m (r̂′) , (3.12)

where δV ps
l (r) = V ps

l (r)−V loc (r). The l-independent term (V loc (r)) is chosen such
that the semilocal terms (δV ps

l ) are confined to the core region and eventually vanish
beyond some lmax.

Kleinman and Bylander (KB) [72] proposed a transformation of the semilocal
terms into a fully non-local form defining:

δV KB (r, r′) =
∑
l,m

δV ps
l (r) ϕ̃l,m(r)ϕ̃∗l,m(r′)δV ps

l (r′)

〈ϕ̃l,m|V ps
l |ϕ̃l,m〉

(3.13)

where ϕ̃lm(r) =
ups

l (εl,r)

r
Ylm(r̂). It can be easily verified that∫
δV KB (r, r′) ϕ̃∗l,m(r′)d3r′ = δV ps

l (r) ϕ̃l,m(r) (3.14)

namely, the Kleinman-Bylander form is equivalent to the semilocal one in the sense
that it produces the same atomic pseudoorbitals. At the expense of a more com-
plicated expression in real space, the Kleinman-Bylander form is fully separable,
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strongly reducing the number of integrations necessary, e. g. in a plane waves basis
set, to calculate the Hamiltonian matrix elements. It is used in most of the electronic
structure codes nowadays.

3.1.2 Implicit Approximations

3.1.2.1 Frozen Core

The main assumption in the pseudopotential method is that the core states, strongly
bound to the nucleus and localized, are insensitive to the environment surrounding
the atom. Therefore, they can be excluded from the self-consistent calculation in
the polyatomic system. This is the “frozen core” approximation.

The pseudopotential is defined by the requirements that the wave functions and
eigenvalues are accurately reproduced, however, no conditions on total energies are
imposed. In 1980, von Barth and Gelatt [73] demonstrated that the error in the total
energy is of second order in the difference between frozen and true core densities.
Their calculations for Mo further confirmed this conclusion, thus validating the
application of the pseudopotential method in total energy calculations.

3.1.2.2 Core-Valence Linearization.

The definition of the pseudopotential in Eq. 3.5 implies that the self-consistent total
exchange-correlation potential in a condensed matter system is written as:

V xc [n(r)] =
{
V xc

[
n0(r)

]
− V xc

[
ñ0

v(r)
]}

+ V xc [ñv(r)] (3.15)

where the terms in curly brackets are included in the pseudopotential. Equation 3.15
would be exact, within the frozen core approximation, if the exchange-correlation
potential were a linear functional of the density2. As it is clearly not the case, the
assumption of validity of Eq. 3.15 is known as core-valence linearization.

However, the errors due to this approximation are small in most cases, as long as
the overlap between the core and valence densities are not significant. Louie, Froyen
and Cohen [74] developed a method for the generation and usage of pseudopotentials
that explicitly treats the nonlinear core-valence exchange-correlation interaction.
The method consists in modifying Eq. 3.5 to:

V ps
l (r) = V ps,scr

l (r)− V H
[
ñ0

v; r
]
− V xc

[
ñ0

v + ñc; r
]

(3.16)

where ñc is a partial core density. It reproduces the full core density in the region
where it overlaps with the valence density, outside a chosen cutoff radius rnlc. Inside

2Notice that Eq. 3.15 is also exact in a non-selfconsistent calculation, since in that case n(r) =
n0(r) and ñv(r) = ñ0

v(r).
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this radius, it is chosen to match the true density at rnlc, minimize the integrated
density and be easily Fourier transformed in order to optimize its use within the
plane wave basis set. This density has to be added to the pseudo-valence density in
the selfconsistent calculation whenever V xc or Exc are computed.

3.1.2.3 Pseudoization

By pseudoization we refer to the fact that the wave functions of the valence states
in the pseudopotential method are, by construction, nodeless and much smoother
than their all-electron analogue. It is only observable in the core region, which
constitutes a small portion of space. As long as one deals with a local potential, the
errors in the energies, within this region, are taken care for in the pseudopotential by
construction. Furthermore, the norm-conserving constraint ensures that the Hartree
potential generated by the pseudo-charge outside the core region is the same as in the
all-electron treatment. Nevertheless, whether it is also negligible in the calculation
of non-local operators is unclear, as was mentioned in Ref. [14]. The fact that
pseudoization can lead to qualitative differences between PP and AE calculations
has been pointed out in Ref. [75], where significant discrepancies in the electron-hole
distribution function of LiF were observed.

3.2 FP-(L)APW+lo Method

The FP-(L)APW+lo method is a development of the augmented planewave method
(APW) originally proposed by Slater [76]. Thus, we introduce our discussion with
an short overview of the APW method. The essential idea motivating the method
is that in the region close to nuclei, the potential and wave functions are similar
to those in the free atoms, strongly varying but nearly spherical. In the space
between the atoms, both of them are smooth. In his seminal work, Slater proposed
a division of the space in the unit cell into a set of non-overlapping spheres centered
at each atom and the interstitial region between them (Fig. 3.3). The potential
was taken as spherically symmetric inside the spheres and constant outside (later
on known as the muffin-tin approximation, for obvious reasons). Accordingly, the
eigenfunctions of the Hamiltonian corresponding to each of the regions are taken as
basis functions, namely, plane waves in the interstitial and atomic orbitals in the
“muffin-tin” spheres. Adding the continuity condition at the sphere boundary the
augmented planewaves were born:

φk
G (r) =

{
1
Ω
ei(G+k)·r r ∈ Interstitial∑
l,mAl,m (k + G)ul (r

α, ε)Yl,m (rα) r ∈ MT.
(3.17)
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Interstitial region

MT sphere

MT sphere

r
αr

αr

Figure 3.3: Schematic view of the space partition in the augmented plane wave
method. The space is divided into the interstitial region and a series of non-
overlaping muffin-tin regions. The potential in the muffin-tin region is atomic like,
while that in the interstitial region is much softer.

Inside each muffin-tin sphere, the radial wave function ul (r
α, ε) at the reference

energy εl, is obtained from:{
− d2

dr2
+
l (l + 1)

r2
+ V (r)− εl

}
rul (r, εl) = 0. (3.18)

The augmentation coefficients ensuring the continuity of the wave function at the
sphere boundary are given by:

Al,m (k + G) =
4πil

Ω1/2ul (Rα
MT, εl)

jl (|k + G|Rα
MT)Y ∗

l,m (k + G) . (3.19)

This optimized choice of basis functions in different regions is the essence of the
augmented methods and all its descendants. The wave function is expanded in terms
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of these augmented plane waves as:

ϕn,k (r) =
∑
G

Cn
Gφ

k
G (r) , (3.20)

The coefficients Cn
G are obtained solving the eigenvalue equation:∑

G′

(HG,G′ − εnSG,G′)Cn
G = 0 (3.21)

for each k. Where HG,G′(SG,G′) are the Hamiltonian (overlap) matrix elements in
the APW basis.

The major drawback of this method is that, inside the muffin-tin sphere, the
APWs are solutions of the Schrödinger equation only at the reference energy (i.e.
εl = εn). Thus, the eigenvalue equation (3.21) becomes non-linear and its solution
much more computationally demanding for each k-point. Furthermore, it is hard,
though not impossible (Ref. [77, 78]) to extend the method to the full potential case.
When the potential inside a muffin-tin sphere is not spherical, the exact solution of
the particle’s wave function inside this muffin-tin sphere does not correspond to the
solution of the radial Schrödinger equation with the same eigenvalue.

Another shortcoming of the APW method, known as the asymptote problem,
is related to the indetermination of the augmentation coefficients when the radial
function has a node at the muffin-tin radius (ul(RMT) in the denominator of Eq.
3.19). In the vicinity of this region, the relation between Al,m and CG becomes
numerically unstable.

With the aim of overcoming these limitations, Andersen [79] proposed a modifica-
tion of the APW method in which the wave functions and their derivatives are made
continuous at the muffin-tin radius by matching the interstitial plane waves to linear
combination of a radial function, and its energy derivative, calculated at a fixed ref-
erence energy. The method, known as Linearized Augmented Plane Waves (LAPW)
method, rapidly demonstrated its power and accuracy, becoming, during decades,
the benchmark for electronic structure calculations within the Kohn-Sham scheme.
Recently, Sjösted, Nordström, and Singh [80] proposed an alternative method in
which the APW wave functions are recovered, but with the radial functions calcu-
lated at a fixed energy. The flexibility of the basis is achieved by adding a set of local
orbitals constructed as linear combinations of the same radial functions and their
energy derivatives, with the condition that the function cancels at the sphere radius.
This method, called APW plus local orbitals (APW+lo), requires less plane waves
for an accurate description of the electronic structure properties, thus increasing the
computational efficiency. However, this improvement is limited by the large num-
ber of required local orbitals for large l’s. Nowadays, the state-of-the-art method
is a combination of both, using APW+lo’s for small l and LAPW’s for the large
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ones [81], known as (L)APW+lo method. The rest of the chapter is devoted to an
overview of this method.

3.2.1 LAPW Basis Functions

The LAPW basis set is defined by:

φk+G (r) =
1
Ω
ei(G+k)·r r ∈ Interstitial∑

l,m

[Al,m (k + G)ul (r
α, εl) +Bl,m (k + G) u̇l (r

α, εl)]Yl,m (rα) r ∈ MT,

(3.22)
where (u̇l(r, εl) = ∂ul(r, ε)/∂ε|ε=εl

). The augmentation coefficients Al,m and Bl,m

are obtained by requiring both the value and the slope of the basis function to be
continuous on the MT sphere boundary.

Making a Taylor expansion of the radial wave function around the reference
energy εl, one has:

ul (r, ε) = ul (r, εl) + (ε− εl)u̇ (r, εl) +O
(
(ε− εl)

2) , (3.23)

which shows that in the linearized treatment, the error in the wave function is of
second order in (ε− εl). Taking into account the variational principle, this leads to
an error of fourth order, (ε− εl)

4, in the band energy. In other words, the LAPWs
form a good basis over a relatively large energy region, typically allowing the cal-
culation of all the valence bands with a single set of reference energies, i. e. by a
single diagonalization of Eq. 3.21.

However, there are situations in which the use of a single set of reference energies
is inadequate for all the bands of interest. Such a situation arises, for example,
when two (or more, but rarely) states with the same l participate in the chemical
bonding (semi-core states), or when bands over an unusually large energy region are
required, like for high lying excited states. To address such cases, the local orbitals
were introduced by D. J. Singh in 1991 [82]:

φLO
LAPW (r) ={
0 r ∈ Interstitial[
Aα

l,mul (r
α, εl) +Bα

l,mu̇l (r
α, εl) + Cα

l,mul(r
α, ε

(2)
l )
]
Yl,m (rα) r ∈ MT.

(3.24)

In this way, a second set of energy parameters ε
(2)
l is introduced to provide the

additional variational freedom required for an accurate representation of the different
states with the same l. The coefficients Al,ms, Bl,ms and Cl,ms are determined by
requiring the local orbital and its radial derivative to be zero at the MT sphere
boundary and normalized.
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3.2.2 APW+lo Basis Functions

The LAPW basis set is designed to be flexible in describing the wave functions in the
vicinity of the reference energy. However, the requirement of continuous derivatives
at the muffin-tin radius increase the number of plane waves needed to achieve a
given level of convergence with respect to the APW method.

Recently, Sjösted, Nordström, and Singh [80] proposed an alternative way to
linearize the APW method in which the continuous derivative condition is released,
while keeping the energy independence and flexibility of the basis. In this method,
the APW basis (Eq. 3.17) is used with a fixed reference energy. The flexibility of
the basis set with respect to the reference energy is obtained by adding a set of local
orbitals:

φlo
APW (r) =

{
0 r ∈ Interstitial

[Al,mul (r
α, El) +Bl,mu̇l (r

α, El)]Yl,m (rα) r ∈ MT,
(3.25)

The coefficients are obtained by requiring the function to be zero at the sphere
boundary and normalized.

The APW+lo basis set keeps the convergence behavior of the original APWs
while the local orbitals make it flexible with respect to choice of the reference energy.
As in the LAPW method, when different states with the same l have to be treated,
a second set of local orbitals of the form:

φLO
APW (r) =

{
0 r ∈ Interstitial[
Al,mul (r

α, El) + Cl,mu
(2)
l

(
rα, E

(2)
l

)]
Yl,m (rα) r ∈ MT

(3.26)
can be added. The coefficients are determined by matching the function to zero at
the muffin-tin radius, with no condition on the slope.

3.2.3 Core States

As already mentioned, the (L)APW+lo is an all-electron method. However, it does
not mean that core and valence states are treated in the same way. While the latter
are expanded in the previously described basis set using the crystal potential, the
former are calculated numerically solving the relativistic radial Schrödinger equation
for the atom. The influence of the core states on the valence is carried out by the
inclusion of the core density in the Hartree and exchange-correlation potentials.
Reciprocally, the core states are calculated using the spherical average of the crystal
potential in the muffin-tin sphere. Thus, both core and valence states are calculated
selfconsistently.

In the Wien2k code, the wave function of each core state is represented as:

ϕ̃core
an,j,mj

(~r) = uan,κ(r
a)|jmj〉l (3.27)
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Table 3.1: Relativistic quantum numbers
j = l + s

2
κ max. occupation

l s = −1 s = +1 s = −1 s = +1 s = −1 s = +1
s 0 1/2 -1 2
p 1 1/2 3/2 1 -2 2 4
d 2 3/2 5/2 2 -3 4 6
f 3 5/2 7/2 3 -4 6 8

where

|jmj〉l ≡
1
2∑

σ=− 1
2

(
l 1

2
ml σ|j mj

)
Ylml

(r̂a) |σ〉δm+σ,mj
(3.28)

and
(
l 1

2
ml σ|j mj

)
is the corresponding Clebsch-Gordon coefficient (Ref. [83]).

The radial wave function is defined by the relativistic quantum number κ =
−s(j + 1

2
) as shown in Table 3.2.3.

3.2.4 Potential and Density

The representation of the density and the potential has to confront the same diffi-
culties as the representation of the wave functions, namely, rapid variations in the
muffin-tin spheres and soft oscillations in the interstitial. The use of a dual repre-
sentation as for the wave functions, which is the basis of the (L)APW+lo efficiency,
seems the natural choice. However, an expansion in spherical harmonics inside the
spheres and plane waves in the interstitial is clearly inefficient. The complete repre-
sentation of the density requires a basis set at least eight times larger that the basis
required for the wave functions. Since also the number of augmentation functions
in the MT sphere increases four times, the number of augmentation coefficients is
25 times larger.

This can be reduced by exploiting the symmetries of the density(potential),
namely:

i. Inside the muffin-tin sphere they respect the symmetry of the corresponding
nuclear site.

ii. In the interstitial region they have the symmetry of the corresponding space
group.

iii. Both are real quantities.
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Inside the muffin-tin spheres, properties i and iii allow the representation of the
density in a lattice harmonic expansion [84]. For the interstitial region, the use of
stars ensures both properties ii and iii to be fullfiled with a minimum number of
coefficients. More details can be found in Ref. [65].
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Chapter 4

Many-Body Green Function
Theory and the GW
Approximation

In Sec. 2.2.4, we pointed out that although the Kohn-Sham eigenvalues provide a
good zeroth order approximation for the single particle excitation energies, LDA
fails for a good description of the fundamental band gaps in semiconductors and
insulations. On the other hand, many-body Green function theory provides the
formal basis for evaluating the experimentally observed quasiparticle band structure.
This chapter presents a short overview of the Green function method in the many-
body electronic system, with a special emphasis on the GW approximation. This
will set up the theoretical framework for our numerical implementation and the
analysis of the results presented in this thesis.

In the first part of the chapter (Sec. 4.1) we describe the main ingredients of the
theory. Starting from the definition of the single-particle Green function, the central
physical quantity in this method, in Sec. 4.1.1 we show the correspondence between
its poles and the single-particle excitation energies of the many-body system. In Sec.
4.1.2 we present a short deduction of the Dyson equation, that relates the Green
function in the interacting system to the non-interacting one through the self-energy.
Section 4.1.3 is devoted to the concept of self-energy and its expansion in terms of
the dynamically screened Coulomb potential (Hedin equations). We end the section
by introducing the quasiparticle concept (Sec. 4.1.4).

The simplest approximation to the self-energy, including dynamical screening
effects, is the GW approximation, which we address in the second part of this
chapter (Sec. 4.2). The current standart treatment for condensed matter systems,
the G0W0 approach, is described in Sec. 4.3. In the end, a brief summary of the
chapter is given in Sec. 4.4.
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4.1 Green Function Method

4.1.1 The Green Function

The single-particle Green function is defined as:

G (r, t; r′, t′) = −i
〈
N
∣∣∣T̂ {ψ̂ (r, t) ψ̂† (r′, t′)

}∣∣∣N〉 , (4.1)

where ψ̂ (r, t) and ψ̂† (r, t) are the quantum field operators describing the annihila-
tion and creation of one electron at position r and time t. The operator T̂ is the
time-ordering operator, which reorders the field operators in ascending time order
from right to left. |N〉 is the groundstate eigenfunction of the N electrons system.
Making use of the Heaviside function (Appendix J), and the commutation relations
for Fermionic operators, Eq. 4.1 can be rewritten as:

G (r, t; r′, t′) =− i
〈
N
∣∣∣ψ̂ (r, t) ψ̂† (r′, t′)

∣∣∣N〉Θ (t− t′)

+ i
〈
N
∣∣∣ψ̂† (r′, t′) ψ̂ (r, t)

∣∣∣N〉Θ (t′ − t) .
(4.2)

making evident that for t > t′ (t < t′) the Green function describes the propagation
of an added electron (hole) in the system.

In the Heisenberg representation, the field operator is written as:

ψ̂ (r, t) = eiĤtψ̂ (r) e−iĤt, (4.3)

where Ĥ is the Hamiltonian operator and ψ̂ (r) is the field operator in the Schrödinger
representation.

Inserting Eq. 4.3 into Eq. 4.2 and making use of the completeness relation in
the Fock-space:

1 =
∞∑

n=0

∑
s

|n, s〉 〈n, s| , (4.4)

where |n, s〉 corresponds to the s-th eigenstate of the the n-electron system, we can
transform Eq. 4.2 into:

G (r, t; r′, t′) =− i
∑

s

〈
N
∣∣∣ψ̂ (r)

∣∣∣N + 1, s
〉
e−i(Es

N+1−EN)(t−t′)

.
〈
N + 1, s

∣∣∣ψ̂† (r′)
∣∣∣N〉Θ (t− t′) + i

∑
s

〈
N
∣∣∣ψ̂† (r′)

∣∣∣N − 1, s
〉

.e−i(Es
N−1−EN)(t′−t)

〈
N − 1, s

∣∣∣ψ̂ (r)
∣∣∣N〉Θ (t′ − t) .

(4.5)
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Here, EN stands for the ground state energy of the N -electron system, and Es
N±1

for the s-th excited state energy of the N ± 1 electronic system.
Using the excitation energy εs and amplitude ψs (r) defined by:

εs = Es
N+1 − EN , ψs (r) = 〈N | ψ̂ (r) |N + 1, s〉 , for εs > µ

εs = EN − Es
N−1 , ψs (r) = 〈N − 1, s| ψ̂ (r) |N〉 , for εs ≤ µ, (4.6)

where µ is the chemical potential of the N -electron system (µ = EN+1 − EN =
EN − EN−1 +O(N−1)), we can further simplify Eq. 4.5 into the form:

G (r, r′; t− t′) = −i
∑

s

ψs (r)ψ∗s (r′) e−iεs(t−t′)

[Θ (t− t′) Θ (εs − µ)−Θ (t′ − t) Θ (µ− εs)] . (4.7)

Performing a Fourier transform to the frequency axis, we obtain the spectral, or
Lehmann [85], representation:

G (r, r′, ω) = lim
η→0+

∑
s

ψs (r)ψ∗s (r′)

[
Θ (εs − µ)

ω − (εs − iη)
+

Θ (µ− εs)

ω − (εs + iη)

]
. (4.8)

The key feature of Eq. 4.8 is that the Green function has single poles corre-
sponding to the exact excitation energies of the many-body system. For excitation
energies larger (smaller) than the chemical potential, these singularities lie slightly
below (above) the real axis in the complex frequency plane (Fig. 4.1).

It can be easily shown that in the non-interacting case, Eq. 4.8, reduces to:

G0 (r, r′, ω) = lim
η→0+

∑
n

ϕn (r)ϕ∗n (r′)

[
Θ (εn − εF )

ω − (εn − iη)
+

Θ (εF − εn)

ω − (εn + iη)

]
. (4.9)

where εn(ϕn) is the eigenvalue (eigenfunction) of the single particle Hamiltonian and
εF is the Fermi energy.

4.1.2 The Dyson Equation

The time evolution of the field operator, in the Heisenberg representation is given
by the equation of motion:

i
∂

∂t
ψ̂ (r, t) =

[
ψ̂ (r, t) , Ĥ

]
, (4.10)

with the Hamiltonian operator given by:

Ĥ =

∫
drdtψ̂† (r, t)

[
−1

2
∇2 + Vext (r)

]
ψ̂ (r, t)

+
1

2

∫ ∫
drdtdr′dt′ψ̂† (r, t) ψ̂† (r′, t′) v (r, t; r′, t′) ψ̂ (r′, t′) ψ̂ (r, t) ,(4.11)
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Figure 4.1: Position of the poles of the Green function (Eq. 4.8) in the complex
frequency plane. Those corresponding to the unoccupied states are slightly below
the real frequency axis while those corresponding to the occupied states are slightly
above it.

where v (r, t; r′, t′) = δ (t− t′) /|r − r′| is the Coulomb interaction. By evaluating
the commutator in Eq. 4.10, the equation of motion for the single particle Green
function can be obtained:

[
i
∂

∂t
+

1

2
∇2 − Vext (r)

]
G (r, t; r′, t′)

+ i

∫
dr1

1

(r− r1)
〈N |T

[
ψ̂† (r1, t) ψ̂ (r1, t) ψ̂ (r, t) ψ̂† (r′, t′)

]
|N〉

= δ (r− r′) δ (t− t′) , (4.12)

the quantity in the integrand of the second term is the two-particle Green function.
Following the same procedure to obtain the equation of motion for the two-particle
Green function will give a term depending on the three-particle Green function, and
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so on. To break this hierarchy, the mass-operator is introduced, defined by:∫
dr1dt1M (r, t; r1, t1)G (r1, t1; r

′, t′) =

− i

∫
dr1v (r− r1) 〈N |T

[
ψ̂† (r1, t) ψ̂ (r1, t) ψ̂ (r, t) ψ̂† (r′, t′)

]
|N〉. (4.13)

Eq. 4.12 can then be rewritten:[
i
∂

∂t
+

1

2
∇2 − Vext (r)

]
G (r, t; r′, t′)−

∫
dr1dt1M (r, t; r1, t1)G (r1, t1; r

′, t′)

= δ (r− r′) δ (t− t′) .

(4.14)

Since the Hartree interaction is a one-particle operator, it is usually separated from
the mass operator M to define the self-energy, Σ = M − VH. Replacing the mass-
operator in Eq. 4.14 we arrive at:[

i
∂

∂t
−H0 (r)

]
G (r, t; r′, t′)−

∫
dr1dt1Σ (r, t; r1, t1)G (r1, t1; r

′, t′)

= δ (r− r′) δ (t− t′) ,

(4.15)

where:

H0 (r) = −1

2
∇2 + Vext (r) + V H (r) . (4.16)

In the Hartree approximation Eq. 4.15 becomes:[
i
∂

∂t
−H0 (r)

]
G0 (r, t; r′, t′) = δ (r− r′) δ (t− t′) . (4.17)

Multiplying Eq. 4.15 by G0 on the left and using the hermiticity of the single
particle operator together with Eq. 4.17, and integrating, yields the well-known
Dyson equation:

G (r, t; r′, t′) =G0 (r, t; r′, t′) +∫∫
dr1dt1dr2dt2 G0 (r, t; r2, t2) Σ (r2, t2; r1, t1)G (r1, t1; r

′, t′) .

(4.18)
Recurrently replacing G on the right-hand side by G0 + G0ΣG

1 leads to the series
expansion:

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + ... (4.19)

1In this symbolic notation, products imply an integration, as a product of matrices with con-
tinuous indices, i. e. AB =

∫
A(1, 3)B(3, 2)d3
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which shows that the single-particle propagator G(r, t; r′, t′) is equal to the “free”
particle propagator G0(r, t; r

′, t′) plus the sum of the probability amplitudes of prop-
agating from (r, t) to r′, t′ after single, double, etc.. scattering processes, with Σ
playing the role of the scattering potential. Diagrammatically, this relation is shown
as:

�= + Σ�+ + ...
Σ

Σ

where the double plain arrow represents the interacting Green function, the plain
arrow represents the non-interacting one.

4.1.3 Self-energy: Hedin Equations

For an electron propagating in a solid or molecule, the origin of the scattering pro-
cesses lies in the Coulomb interaction with the Fermi sea. Thus, it is natural to
expand the self-energy in terms of the bare Coulomb interaction. In the diagrams
below, we show examples of some simple (low order) scattering processes. Dia-
gram (a) is a first order scattering process that describes the propagating electron
exchanging instantaneously, via the Coulomb interaction, its position with one elec-
tron from the Fermi sea. It corresponds to the exchange interaction. Solving the
Dyson equation (4.15) including only this term in the self-energy and updating the
Green function self-consistently yields the Hartree-Fock approximation. In diagram
(b) the interaction of the probe electron with the Fermi sea excites an electron out
of it, generating an electron-hole pair, which annihilate each other at a later time,
interacting again with the probe electron. This second order scattering process,
called “bubble” diagram, represents an electron repelling another from its neighbor-
hood, thus generating a positive charge cloud around it. It is the simplest dynamical
screening processes. In diagram (c), the excited electron in the electron-hole pair
of diagram (b) further excites another electron-hole pair from the Fermi sea, chang-
ing the positive charge cloud around the probe electron again. Nevertheless, the
long-range of the bare Coulomb interaction results in a poor convergence of this
expansion for the self-energy, in fact, it diverges for metals.

�
a)

�
b)

�
c)

In 1965, L. Hedin [8] proposed a different approach for obtaining the self-energy,
by expanding it in terms of a dynamically screened Coulomb potential instead of
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the bare one. The derivation using the functional derivative technique can be found
in Ref. [8, 86, 87]. Here, we just present the resulting set of equations:

Γ (1, 2, 3) = δ (1, 2) δ (2, 3) +

∫
d (4, 5, 6, 7)

δΣ (1, 2)

δG (4, 5)
G (4, 6)G (7, 5) Γ (6, 7, 3)

(4.20a)

P (1, 2) = −i
∫
G (2, 3)G (4, 2) Γ (3, 4, 1) d (3, 4) (4.20b)

W (1, 2) = v (1, 2) +

∫
W (1, 3)P (3, 4) v (4, 2) d (3, 4) (4.20c)

Σ (1, 2) = i

∫
d (3, 4)G

(
1, 3+

)
W (1, 4) Γ (3, 2, 4) . (4.20d)

where we used 1 = (r1, t1) to simplify the notation. Γ is a vertex function, P the
polarizability and W the dynamically screened Coulomb potential. In Eq. 4.20a the
vertex function is written in terms of a four point kernel (given by the functional
derivative of the self-energy). Replacing the self-energy by the expression in Eq.
4.20d would allow to expand the vertex function in terms of the screened Coulomb
potential. For the aim of this thesis, it will nevertheless be sufficient to represent it
by a filled triangle:

�
Eq. 4.20b, 4.20c, and 4.20d can then be represented diagrammatically as:

�=P

�W =	
v
+��

41



4.1. Green Function Method Chapter 4

and

Σ =�
where the double wiggly line represents the screened Coulomb potential.

The set of equations 4.20, together with the Dyson equation (4.18), constitute
the definitive solution of the quantum mechanical many-body problem. One just
needs to solve them self-consistently to obtain the single-particle Green function
of the interacting system (see Fig. 4.2). However, a direct numerical solution is
prevented by the functional derivative in Eq. 4.20a, and, as usual, one has to rely
on approximations. This will be the subject of the second part of this chapter.

Figure 4.2: Schematic representation of the self-consistent solution of the Hedin
equations in conjunction with the Dyson equation for the determination of the Green
function (G) and the self-energy (Σ). Entries in boxes symbolize the mathematical
relations that link Σ, G, Γ, P and W .

4.1.4 The Quasiparticle Concept

Defining the excitation energies εs and amplitudes ψs (r) (Eq. 4.6) allowed us to
write the Green function of the interacting system in the spectral representation
(Eq. 4.8). The expression obtained has the same form as the Green function of the
non-interacting system (Eq. 4.9), with the excitation energies (amplitudes) playing
the role of the single particle eigenvalues (eigenfunctions). We may ask, under which
condition can the object defined by ψs (r) and εs be interpreted as a “particle” that
can be measured experimentally.
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The experimentally measured quantity in photoemission experiments is the spec-
tral function2, i. e., the density of the excited states that contribute to the spectrum.
For a finite system it is defined by (Fig. 4.3, left panel):

A(r, r′;ω) =
∑

s

ψs (r)ψ∗s (r′) δ(ω − εs) (4.21)

And the Green function can be rewritten as:

G (r, r′, ω) = lim
η→0+

∫
dω′

A(r, r′;ω′)

ω − ω′ + i sgn(ω′ − µ)η
. (4.22)

Therefore, the interpretation of the excitation as a “particle” presents no diffi-
culty in a finite system. Furthermore, inserting the expression for the Green function
in terms of εs and ψs (r) (Eq. 4.7) in Eq. 4.15 it can be shown that they are solutions
of the quasiparticle equation3:[

1

2
∇2 + Vext (r) + VH (r)

]
ψs (r) +

∫
dr′Σ (r, r′; εs)ψs (r′) = εsψs (r) . (4.23)

In an extended system, the delta functions in Eq. 4.21 form a continuous spec-
trum (Fig. 4.3, right panel). However, if in a given energy window the spectrum
can be described by a series of Lorenzian peaks with finite widths, so that the the
spectral density function can be written as:

A(r, r′;ω) =
∑

s

ψs (r)ψ∗s (r′)
Γs

(ω − εs)2 − Γ2
s

(4.24)

where εs is the center of the peak and Γs the width. Then Eq. 4.22 can be integrated
analytically, and the results of Eq. 4.7 and 4.8 are recovered, provided one redefines
εs = εs + iΓs. In this case, the object defined by ψs (r) and the complex εs is
called a “quasiparticle”. It describes the group behavior of a set of excitations with
continuous excitation energies. The real part of εs corresponds to the average energy
of these related excitations. The imaginary part leads to a decaying factor e−Γst,
i. e. the excitation has a finite lifetime given by τ = Γ−1

s . That the quasiparticle
“disappears” can be physically understood taking into account that one is dealing
with an infinite system. In other words, the quasiparticle can decay to the “infinite”
Fermi sea. The quasiparticle equation 4.23 remains valid provided one performs an
analytic continuation of the self-energy to the complex frequency plane. A more
detailed discussion on the subject can be found in Ref. [92].

2Assuming the cross section of the perturbation to be independent of the energy and neglecting
experimental errors.

3This equation was first derived by J. Schwinger in Ref. [88]. It was applied to the many-body
electronic system by G. Pratt in Ref. [89, 90], and later systematically by L. Hedin in Ref. [91]
and Ref [8]
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Figure 4.3: Spectral function for a discrete (left) and a continuous (right) spectrum.

4.2 GW Approximation

The GW approximation was also first proposed by L. Hedin in 1965 (Ref. [8]).
Mathematically it amounts to take the zeroth order expansion of the vertex function
in terms of W . Thus we are left with:

Γ (1, 2, 3) = δ (1, 2) δ (2, 3) (4.25a)

P (1, 2) = −iG (1, 2)G (2, 1) , (4.25b)

W (1, 2) = v (1, 2) +

∫
d (3, 4)W (1, 3)P (3, 4) v (4, 2) , (4.25c)

Σ (1, 2) = iG (1, 2)W
(
1+, 2

)
. (4.25d)

Diagrammatically, the three-point Γ function is collapsed into a point. The ele-
mentary unit in this set of equations is the bubble diagram of the polarizability
operator:

�=P

This approximation for the polarizability is known as the random-phase approxi-
mation (RPA). Physically, it represents the polarization generated by the creation
and annihilation of a dressed electron-hole pair, while the interaction between the
(dressed) electron and hole is neglected. In other words, scattering processes where
the electron or the hole in the electron-hole pair interact with the medium are taken
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into account. For example, the process represented by the following diagram:

�
can be included. However, processes like:

�
where the electron and the hole interact with each other are neglected.

The screened Coulomb interaction resulting from Eq. 4.25c is the same as in Eq.
4.20c:

�W =��v
+��

Except that now the polarizability is represented in the RPA.

In Eq. 4.25d, the self-energy is written as a product of the Green function and
the screened Coulomb interaction, diagrammatically:

�Σ =�
The shape of this diagram is similar to the Hartree-Fock approximation, with the in-
stantaneous bare Coulomb potential replaced by the dynamically screened Coulomb
one. This approximation to the self-energy includes processes represented, for ex-
ample, by the diagrams:

� and��
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etc. through the screened Coulomb potential. Also processes like:

�
are included through the interacting Green function. However, diagrams like:

�
where the added electron interacts with that of the electron hole pair, are neglected.

In Fig. 4.4 we show a sketch of the selfconsistent procedure required to solve the
GW equations (4.25) together with the Dyson equation. However, this procedure is
still extremely compuntationally demanding and rarely carried out.

Figure 4.4: Schematic representation of the self-consistent solution of Hedin equa-
tions in GW approximation. Entries in boxes symbolize the mathematical relations
that link Σ, G, P and W .

4.3 G0W0 Approximation

Assuming one counts on an effective single-particle potential V xc(r), which contains
some of the exchange-correlation effects in a many-body system and approximates
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reasonably well the self-energy, i. e., the solutions of the single particle equation,

Ĥeff(r)ϕi(r) = εiϕi(r) (4.26)

with

Ĥeff(r) =
1

2
∇2 + Vext(r) + V H(r) + V xc(r) (4.27)

are such that ϕi(r) ≈ ψs(r) and εi ≈ <(εs) (ψs(r) and εs are the solutions of Eq.
4.23). The quasiparticle equation (4.23) can be rewritten,[

1

2
∇2 + Vext (r) + V H (r) + V xc (r)

]
ψs (r) +

∫
dr′∆Σ (r, r′; εs)ψs (r′) = εsψs (r)

(4.28)
where

∆Σ (r, r′; εs) = Σ (r, r′; εs)− V xc (r′) δ(r− r′). (4.29)

Since, according to our assumptions, the correction due to ∆Σ are small, one
can obtain the quasiparticle energies applying first order perturbation theory;

ψi(r) = ϕi(r)

εqp
i = εi + 〈ϕi (r1) |< [∆Σ (r1, r2; ε

qp
i )]ϕi (r2)〉 .

(4.30)

Taking the self-energy in the GW approximation, and further assuming that the
non-interacting Green function G0 corresponding to Ĥeff is a good approximation to
the interacting one, the self-energy can be calculated through:

P0 (1, 2) = −iG0 (1, 2)G0 (2, 1) , (4.31a)

W0 (1, 2) = v (1, 2) +

∫
d (3, 4)W0 (1, 3)P (3, 4) v (4, 2) , (4.31b)

Σ (1, 2) = iG0 (1, 2)W0

(
1+, 2

)
. (4.31c)

usually known as the G0W0 approximation.
The Kohn-Sham scheme to the density-functional theory naturally provides a

single particle effective potential that includes exchange-correlation effects. Thus,
one usually starts from the Kohn-Sham Green function:

G0 (1, 2) = −i
∑

j

ϕKS
j (r1)ϕ

KS∗
j (r2) e

−iεKS
j (t1−t2)

[
Θ (t1 − t2) Θ

(
εKS
j − µ

)
−Θ (t2 − t1) Θ

(
µ− εKS

j

)]
. (4.32)

The first application of this method to real materials was carried out by Hy-
bertsen and Louie in 1985 [9]. Since then, it has achieved an impressive success in
reproducing the experimental single particle excitation spectra for a wide range of
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systems; among others: simple metals [93, 94], and weakly correlated semiconductors
and insulators [11, 12, 95], becoming nowadays the standard method to calculate the
single-electron excitations of condensed matter systems. The numerical implemen-
tation of the G0W0 approximation on the Full-Potential, Linear Augmented Plane
Wave (LAPW) method and some of its application is the main subject of this thesis.

4.4 Summary

In summary, the Green function method within many-body perturbation theory
offers a theoretically justified method for the interpretation of the bandstructure
as the experimentally measured single particle excitations. The key issue is the
approximation chosen for the self-energy. Hedin equations offer an efficient scheme
to get reasonably good approximations for the self-energy. The simplest one, taking
the zeroth order expansion of the vertex function in terms of the screened Coulomb
potential, yields the GW approximation. However, its expensive computational cost
inhibits the application to real system. The standard approach nowadays is the “so
called” one-shot treatment (G0W0), where the self-energy is calculated from the
Green function and the screened Coulomb potential generated from the Kohn-Sham
states and used as a perturbation to the exchange-correlation potential. In the last
years, this approach has achieved a great success in reproducing the single particle
excitation energies measured experimentally.
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Implementation and Tests
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Chapter 5

Numerical Implementation of the
G0W0 Code

This chapter describes the implementation of our all-electron G0W0 code based
on the Full-Potential (Linearized) Augmented Plane Wave plus local orbitals (FP-
(L)APW+lo) method [79, 80]. Due to its combined abilities to provide the most
reliable results for periodic systems within DFT, and to address the widest range of
materials, this method is currently considered to set the benchmark in DFT calcula-
tions. Consequently, the development of a G0W0 code has constituted a demanding
task. The whole process has been imbued by the compromise between computational
efficiency and the numerical precision necessary to achieve the ambitious goals of
reliability and wide applicability complying with the FP-(L)APW+lo standards.

Among the different existing implementations of the method, we have taken
Wien2k code [96] as the base on top of which we have built ours.

In the first section (5.1) we present a summary of the G0W0 equations, the
system we want to solve numerically. The representation of the non-local operators
(polarization, dielectric function, bare and screened Coulomb potentials) requires
an efficient basis set, able to address extended as well as localized valence states and
core states. We use an optimized set of functions consisting of plane waves in the
interstitial region and a spherical harmonics expansion within the muffin-tin (MT)
spheres, the latter based on the product basis originally proposed by Aryasetiawan
and Gunnarsson [87]. This mixed basis functions are introduced in Sec. 5.2. In Sec.
5.3 we summarize the matrix form of the G0W0 equations after expansion in the
mixed basis.

Calculating the polarization for a given wavevector q requires the integration
over all possible transitions from occupied to unoccupied states and back which
conserve the total wavenumber. In other words, a precise q-dependent Brillouin-
zone integration is required. The efficiency of the linear tetrahedron method is
comparable to the special points methods for semiconductors and insulators, while it
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is clearly superior for metallic systems. To be able to treat the widest possible range
of materials, we have extended the linear tetrahedron method to the q-dependent
case. A description of this development, together with the special requirements for
the polarization, are described in section 5.4.

The frequency dependence of the polarization is calculated numerically, without
relying on further approximations such as plasmon pole models. A well known
difficulty in reciprocal space implementations of MBPT is the divergence of the
Coulomb potential at the Γ-point (q = 0). By taking the symmetrized dielectric
function, and calculating analytically the limit for q → 0 using the k·p perturbation
theory we obtain a regular expression at Γ within our basis set. The calculation of the
self-energy still has to deal with the divergence of both, bare and screened Coulomb
potentials. However, this singularity is integrable in 3 dimensions, provided that
the necessary care is taken to avoid the numerical instabilities, as we will show in
Sec. 5.5. The frequency convolution of the correlation self-energy is presented in
Sec. 5.6.

We are confident that all these features make the code the most accurate im-
plementation of the G0W0 approximation to date, at the same time applicable to a
wide range of materials. We end the chapter with an outline of the flowchart of the
code.

Important to mention, the code was basically written by Dr. Ricardo I. Gomez-
Abal. The main contribution from the author of the thesis is the development of
the q-dependent linear tetrahedron method in section 5.4.

5.1 Summary of the G0W0 Equations

In the G0W0 approach, the quasiparticle energy εqp
n,k is obtained as a first order

correction to the Kohn-Sham energy eigenvalue εn,k:

εqp
n,k = εn,k +

〈
ϕn,k (r1) |<

[
Σ
(
r1, r2; ε

qp
n,k

)]
− V xc (r1) δ (r1 − r2) |ϕn,k (r2)

〉
, (5.1)

where ϕn,k(r) and V xc are the Kohn-Sham eigenfunctions and exchange-correlation
potential respectively. The self-energy Σ(r1, r2;ω) is obtained from the Fourier trans-
form of Eq. 4.31c:

Σ(r1, r2;ω) =
i

2π

∫
G0(r1, r2;ω + ω′)W0(r2, r1;ω

′)dω′, (5.2)

where G0 is the Green’s function in the Kohn-Sham scheme, defined by:

G0(r1, r2;ω) =
∑
n,k

ϕn,k(r1)ϕ
∗
n,k(r2)

ω − εn,k ± iη
(5.3)
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and the dynamically screened Coulomb potential W0(r2, r1;ω) is given by:

W0(r1, r2;ω) =

∫
ε−1(r1, r3;ω)v(r3, r2)dr3. (5.4)

ε(r1, r2;ω) is the dielectric function, it can be calculated from:

ε(r1, r2;ω) = 1−
∫
v(r1, r3)P (r3, r2;ω)dr3, (5.5)

where the polarizability P (r1, r2;ω), in the random phase approximation (RPA), is
written as:

P (r1, r2;ω) = − i

2π

∫
G0(r1, r2;ω + ω′)G0(r2, r1;ω

′)dω′ (5.6)

The self-energy can be separated into the exchange and correlation terms. If we
define:

W c
0 (r1, r2;ω) = W0(r1, r2;ω)− v(r1, r2), (5.7)

where v(r1, r2) = 1
|r1−r2| is the bare Coulomb potential, the exchange and correlation

term of the self-energy can be calculated from:

Σx(r1, r2) =
i

2π

∫
G0(r1, r2;ω

′)v(r2, r1)dω
′

=
occ∑
n,k

ϕn,k(r1)v(r2, r1)ϕ
∗
n,k(r2)

(5.8)

and

Σc(r1, r2;ω) =
i

2π

∫
G0(r1, r2;ω + ω′)W c

0 (r2, r1;ω
′)dω′ (5.9)

separately.
The required input for solving this set of equations are the eigenfunctions,

(ϕn,k (r)), eigenvalues (εn,k) and the exchange correlation potential (Vxc (r)) from
a Kohn-Sham calculation. These data are obtaining from a self-consistent DFT
calculation using the Wien2k [96] implementation of the FP-(L)APW+lo method.

5.2 The Mixed Basis

For periodic systems, the reciprocal space representation improves the efficiency by
exploiting explicitly the translational symmetry of the Bravais lattice. However, a
direct Fourier transform of the operators, which implies taking plane-waves as a
basis set, is computationally inefficient for their representation in a full-potential,
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all-electron implementation (see Chapter 3). Analogous to the proposal of Kotani
and van Schilfgaarde [13] we expand the different operators in an optimized set of
functions satisfying Bloch’s theorem. This “mixed” basis set uses the space partition
in muffin-tin spheres and interstitial region following the APW philosophy. In this
section, we introduce the mixed basis set and show its efficiency and numerical
stability through different sets of tests.

5.2.1 Definition

Replacing the expression of Eq. 5.3 for the Green’s function into Eq. 5.6, one obtains
an expression for the polarizability where its spatial dependence on each coordinate
is written as a series of products of two Kohn-Sham wave functions. Thus, the basis
set chosen to expand it should be efficient in representing those products.

The Kohn-Sham wave functions are linear combinations of (L)APW+lo basis
functions (Appendix 3.2). In other words, they are expanded in terms of spheri-
cal harmonics in the muffin-tin spheres and plane waves in the interstitial region.
Obviously, the product of two plane waves is also plane wave and the product of
two spherical harmonics can be expanded in spherical harmonics using the Clebsch-
Gordan coefficients.

The same kind of space partition is taken to define our basis set. Inside the MT
sphere of atom α, we define our basis functions as:

γα,N,L,M (rα) = vα,N,L (rα)YL,M (rα) . (5.10)

To obtain an optimal set of radial functions vα,N,L (rα), we proceed as follows:

• u̇l(r)’s are not taken into account because
∫
|u̇l(r)|2r2dr is typically less than

10% of
∫
|ul(r)|2r2dr. Possible errors will be taken care by the other basis

functions.

• To truncate the expansion, we take a maximum lmax for the choice of ul(r
α)’s.

• For each L in vα,N,L (rα), we take all the products of two radial functions
ul(r

α)ul′(r
α) which fulfill the triangular condition |l − l′| ≤ L ≤ l + l′.

• We calculate the overlap matrix between this set of product radial functions:

O(l,l′);(l1,l′1) =

Rα
MT∫

0

uα,l(r
α)uα,l′(r

α)uα,l1(r
α)uα,l′1

(rα)(rα)2drα (5.11)

• The matrix O(l,l′);(l1,l′1) is diagonalized, obtaining the corresponding set of eigen-
values λN and eigenvectors {cNl,l′}.
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• Eigenvectors corresponding to eigenvalues (λN) smaller than a certain toler-
ance λmin are assumed to be linear dependent and discarded.

• The remaining eigenvectors, after normalization, constitute the radial basis
set: vα,N,L (rα) =

∑
l,l′
cNl,l′ul (r

α)ul′ (r
α)

So defined, the functions {γα,N,L,M} constitute an orthonormal basis set. The
translational symmetry of the lattice is imposed by taking the Bloch summation:

γq
α,N,L,M(r) =

1√
Nc

∑
R

eiq·(R+rα)γα,N,L,M(r α), (5.12)

where rα is the position of atom α in the unit cell, and R is a Bravais lattice vector.
Since the interstitial plane waves are not orthogonal, we diagonalize the overlap

matrix by solving the eigenvalue equation (details in Appendix A):∑
G′

OG,G′SG′,i = εiSG,i, (5.13)

where Oq
G,G′ ≡ 〈P q

G|P
q
G′〉 and 〈r|P q

G〉 = 1√
V
ei(G+q)·r.

The orthogonal basis set in the interstitial region is defined by:

P̃ q
i (r) ≡

∑
G

S̃G,iP
q
G(r). (5.14)

where S̃G,i = 1√
εi
SG,i so that the orthogonal IPW’s are normalized. The plane

wave expansion is truncated at a certain Gmax. In fact, we introduce a parameter
Q that defines Gmax in units of GLAPW

max (the plane wave cut off of the LAPW basis
functions). Finally, our orthonormal mixed basis set is:{

χq
j (r)

}
≡
{
γq

α,N,L,M(r), P̃ q
G(r)

}
, (5.15)

5.2.2 Completeness Tests

The basis set was derived from the requirement of efficency to expand products of
Kohn-Sham eigenfunctions. The principal quantity for such expansion, and also a
central quantity for the whole implementation are the matrix elements (see Appendix
D):

M i
n,m(k,q) ≡

∫
Ω

[χq
i (r)ϕm,k−q(r)]

∗
ϕn,k(r)d

3r. (5.16)

Assuming that the basis is complete, i. e.∑
i

|χq
i (r)〉〈χq

i (r′) | = δ (r− r′) , (5.17)
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any product of two Kohn-Sham wave functions can be expanded as:

ϕn,k (r)ϕ∗n′,k−q (r) =
∑

i

M i
n,n′ (k,q)χq

i (r) . (5.18)

Eq. 5.18 can be directly applied to analyze pictorially the quality of the basis
set. To be more clear, we analyze the interstitial and muffin-tin regions separately.

In Fig. 5.1, we show the real part of the product of two Kohn-Sham wave func-
tions in the line joining two Si atoms in bulk Si and compare it with the expansion
defined in Eq. 5.18 for different values of Q. The pair of wave functions selected is
arbitrary, but the trend observed is similar in all the cases. As expected, increasing
Q improves the quality of the expansion. The product of two Kohn-Sham wave
functions is well represented in the interstitial region with Q ≥ 1.0.
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Figure 5.1: Expansion of the real part of the product of two Kohn-Sham wave
functions of Si for k = Γ, k′ = π

2a
(1, 1, 1), and n = 5, m = 4 using different values

of Q with lmax = 2 and λmin = 10−4. a is the lattice constant of the crystal.

The same expansion is shown in Fig. 5.2 for fixed Q and different values of lmax

and λmin. It is clear that with lmax = 0 the basis set is inappropriate for representing
the product of these two Kohn-Sham wave functions. Taking lmax = 1 gives very poor
results. The results improve by increasing lmax. Already with lmax = 2, the product
is represented rather well. Fixing lmax = 2, the basis set is improved decreasing λmin

from 10−2 to 10−3. The improvement obtained by further reducing it to 10−4 cannot
be distinguished by bare eyes.
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Figure 5.2: Expansion of the real part of the product of two Kohn-Sham wave
functions of Si for k = Γ, n = 5, k′ = π
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different lmax and λmin. a is the lattice constant of the crystal. The lower panel
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To be able to observe further improvements we take the mean square error of
the expansion, defined as:∫

Ω

∣∣∣∣ϕn,k (r)ϕ∗n′,k− q (r)−
∑

i

M i
n,n′ (k,q)χq

i (r)

∣∣∣∣2dr
=

∫
Ω

|ϕn,k (r)ϕm,k−q (r) |2dr−
∑

i

|M i
n,m (k,q) |2.

(5.19)

The relative error is then given by:

∆ = 1−
|M i

n,m (k,q) |2∫
Ω
|ϕn,k (r)ϕm,k−q (r) |2dr

. (5.20)
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Figure 5.3: Dependence of the relative completeness error with the number of basis
functions in the MT region. It decreases with the increase of the number of basis
functions. For each lmax, there exists a satuaration value for λmin, after which when
decreasing this tolerance the relative error doesn’t change, indicating a larger lmax

is required for higher accuracy.
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We have calculated the relative error for a large set of product functions. In
Fig. 5.3, we show the maximum and minimum values as a function of the number
of basis functions in the muffin-tin region. The error in the interstitial region is
shown in Fig. 5.4. In both cases the error decreases by increasing the size of the
basis set, evidencing the capability of the mixed basis for the expansion of products
as well as the numerical stability of the algorithm to generate it. We want to call
the attention to the plateaus for fixed lmax appearing in Fig. 5.3. Further reduction
of λmin beyond its maximum value at the plateau increases the size of the basis set
without improving its quality. The beginning of each plateau clearly determines the
optimum λmin for each given lmax. In the interstitial region (Fig. 5.4), increasing
Q decreases the relative error monotonically. The optimum Q is chosen to give a
relative error comparable to the muffin-tin region.
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Figure 5.4: Relative completeness error as a function of the number of basis functions
in the interstitial region.
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5.3 Matrix Form of the G0W0 Equations

Following the expansion of non-local operators in periodic systems (Appendix I, Eq.
I.6), we can write the Coulomb potential matrix elements in the mixed basis as:

vi,j(q) =

∫
Ω

∫
Ω

(χq
i (r1))

∗
∑
R

v(r1, r2 −R)e−iq·Rχq
j (r2)dr2dr1. (5.21)

Detailed expressions are given in Appendix C.
Using the matrix element defined in Eq. 5.16, the polarizability can be calculated

by:

Pi,j(q, ω) =
BZ∑
k

occ∑
n

unocc∑
n′

M i
n,n′(k,q)

[
M j

n,n′(k,q )
]∗

{ 1

ω − εn′,k−q + εn,k + iη
− 1

ω − εn,k + εn′,k−q − iη
} (5.22)

To avoid the divergence at q = 0 of the dielectric function as defined in Eq. 5.5,
we resort to the symmetrized dielectric function (see Appendix F), defined as:

ε̃i,j(q, ω) = δi,j −
∑
l,m

v
1
2
i,l(q)Pl,m(q, ω)v

1
2
m,j(q). (5.23)

Using Eq. G.3, the correlation term of the screened Coulomb interaction can be
calculated through:

W c
i,j(q, ω) =

∑
l,m

v
1
2
i,l(q)

[
ε̃−1

l,m − δl,m
]
(q, ω)v

1
2
m,j (5.24)

The diagonal matrix element of the self-energy in the basis of the Kohn-Sham
states is:

Σc
n,k(ω) =〈ϕn,k|Σc(r1, r2;ω)|ϕn,k〉

=
BZ∑
q

∑
i,j

∑
n′

[
M i

n,n′(k,q)
]∗
M j

n,n′(k,q)×

i

2π

∫ ∞

−∞
W c

i,j(q, ω
′){ 1

ω − εn′,k−q + εn,k + iη
− 1

ω − εn,k + εn′,k−q − iη
}dω′.

(5.25)
for the correlation term, and

Σx
n,k =〈ϕn,k|Σx(r1, r2)|ϕn,k〉

=−
BZ∑
q

∑
i,j

vi,j(q)
occ∑
n′

[
M i

n,n′(k,q)
]∗
M j

n,n′(k,q)
(5.26)
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for the exchange term.
The quasiparticle energies should be obtained solving Eq. 5.1 self-consistently,

since the self-energy depends on the quasiparticle energy εqp
n,k. Usually, a first order

Taylor expansion of the self-energy around εKS
n,k is used instead. The quasiparticle

energies are then given by:

εQP
n,k = εKS

n,k + Zn,k

[
Σc

n,k

(
εKS
n,k

)
+ Σx

n,k −
〈
ϕKS

n,k

∣∣V KS
XC (r)

∣∣ϕKS
n,k

〉]
(5.27)

where:

Zn,k =

[
1−

(
∂

∂ω
Σc

n,k (ω)

)
εKS
n,k

]−1

. (5.28)

In our implementation, these two equations are used to get a first set of quasiparticle
energies, which are then taken as the starting point to sovle Eq. 5.1 iteratively
with respect to εqp

n,k. To ensure the conservation of the quasiparticle number, the
quasiparticle Fermi level is aligned to the Kohn-Sham one after each iteration for
Eq. 5.1. We stop the iteration when this shift is smaller than a chosen tolerance.

5.4 Brillouin-Zone Integration of the Polarization

Brillouin-zone integration is an important ingredient of any reciprocal space method
and has been a subject of interest since the earliest implementation of electronic
structure codes. Fundamental quantities like the total energy or the density of
states require an integration over the Brillouin-zone of a certain operator, e. g. the
eigenvalues weighted by the Fermi distribution function for the former, the energy
derivative of the Fermi distribution for the latter.

In the 1970’s, a large number of studies were carried out for solving these prob-
lems, among which the special point [97, 98, 99, 100] and the linear tetrahedron
method [101, 102, 103] are the most used ones nowadays. These two methods per-
form identically well for insulators and semiconductors. For metals, the Brillouin-
zone integration becomes more cumbersome due to the presence of the Fermi surface,
which defines the integration region in the Brillouin-zone. The linear tetrahedron
method becomes advantageous in these systems thanks to its better description of
the Fermi surface (Fig. 5.5) and, therefore, of the integration region[104].

In the linear tetrahedron method, first proposed by Jepsen and Andersen in Ref.
[101] and Lehmann et al. in Ref. [102], the Brillouin-zone is divided into a set of
tetrahedra. The energy eigenvalues (εn,k) and the integrand are calculated on the
vertices of these tetrahedra and, through the procedure known as isoparametriza-
tion, linearly interpolated inside each of them. The values of the integrand can be
factorized out of the integral. The remaining integrals, independent of the values at
the vertices, can be integrated analytically and added to obtain integration weights
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dependent only on the k-point and the band index (Appendix E). In metallic sys-
tems the Fermi surface is approximated, through the isoparametrization, by a plane
that limits the integration region inside the tetrahedra it intersects. The occupied
region of the Brillouin-zone can thus be described much better than in any of the
special points methods (Fig. 5.5).

Figure 5.5: Two dimensional sketches of the description of the Fermi surface in the
special points (left panel) and the linear tetrahedron method (right panel). In full
red line the exact Fermi surface, in dashed blue line the approximated one. The k-
points grid is represented by red dots. Tetrahedron method gives better description
of the Fermi surface.

The calculation of quantities like the polarizability (Eq. 5.22) or magnetic sus-
ceptibility, presents particular characteristics that require a different treatment. The
integral depends on a second vector q, it is weighted by two Fermi functions, so that
the states at k are occupied while those at k − q are unoccupied, and finally, the
eigenvalues appear in the denominator of the integrand. The grid of k-points for
this integration is chosen as usual in the tetrahedron method. On the other hand,
the calculation of the self-energy (Eq. 5.25 and 5.26), requires a grid of q-points
also be suitable for integration. To avoid the repeated generation of eigenvalues
and eigenvectors at several different grids, the set of q-points should be such that
{k} = {k−q}. For this equality to hold, the set of q-points has to be commensurate
with the k.

Due to the presence of the eigenvalues in the denominator of the integrand, a
simultaneous isoparametrization of both, the integrand and the eigenvalues, becomes
inappropriate. In 1975, Rath and Freeman proposed a solution to this problem
for the calculation of the static magnetic susceptibilities in metals [103]. They
approximated the numerator of the integrand by its mean value in each tetrahedron,
while the denominator was included in the analytic integration to obtain the weights.
In this work, we go two steps further. We apply the isoparametrization not only to
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the eigenvalues but also to the numerator of the integrand, improving the accuracy,
and also extended the method to include the frequency dependence. The integration
inside each tetrahedron can still be performed analytically (See Appendix E).

Since the integration runs simultaneously on two tetrahedra (at k and k − q),
there will be situations, in metallic systems, where both tetrahedra are intersected
by the Fermi surface. In this case the integration region inside the tetrahedron
is delimited by the two Fermi “planes” under the condition εnk < εF < εmk−q,
as shown in Fig. 5.6. The complexity of the integration region is such that the
integration can not be performed analytically on the whole tetrahedron as in the
standard tetrahedron method. However, as pointed out in Ref. [103], the integration
region can always be subdivided into, at most six, tetrahedra. The integration can
be performed analytically inside each of these tetrahedra and then projected onto
the vertices of the original tetrahedron to obtain the weights for each k-point. We
have analyzed and classified the different configurations of the distinct integration
regions determined by two Fermi “planes” (See Fig. E.2 in Appendix E).

Figure 5.6: The integration region in the tetrahedron method for q-dependent
Brillouin-zone integration. The two tetrahedra on the left side are connected by
the vector q (green arrow). The blue zone corresponds to the occupied region for
the state (n,k), the red one to the unoccupied region for the state (n′,k− q). The
resulting integration region, determined by superimposing the two tetrahedra on the
left and taking the intersection of the blue and red zones, is the lilac region in the
tetrahedron on the right hand side.

To test the accuracy and stability of our implementation, we have calculated
the static polarizability of the free electron gas and compared it to its well-known
analytical solution (the Lindhard function). The results are shown in Fig. 5.7.
Our method performs really well for the free electron gas, which is one of the most
demanding examples for the Brillouin-zone integration. Comparison of Fig. 5.7(a)
with Fig. 4 in Ref. [103], shows that our implementation achieves a comparable
accuracy with a coarser mesh (13x13x13 compared to 24x24x24 in Ref. [103]).
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Figure 5.7: Comparison of the numerical (points) and analytical (line) results for
the polarizability of the free electron gas (Lindhard function) as function of q (a)
on the (100) direction and (b) on other directions.
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5.5 Γ Point Treatment for the Brillouin-Zone In-

tegration of the Self-energy

Calculating the matrix elements of the self-energy (Eq. 5.25 and Eq. 5.26) requires
an integration in q over the Brillouin-zone. For the exchange term, Eq. 5.25, the
integral runs over the occupied states at k − q, while for the correlation term, Eq.
5.26, it runs over all, occupied and unoccupied states. The integration itself presents,
therefore, no new requirements; the former can be integrated by the standard linear
tetrahedron method, while a direct sum is enough for the latter.

In the previous section, we pointed out that the q mesh has to be commensurated
with the k mesh, that is,

∀ k1 ∧ k2 ∈ {k} ∃ q ∈ {q}�k1 − k2 = q. (5.29)

Taking k1 = k2 it is obvious that the Γ-point belongs to the q-mesh. This entails
the treatment of the divergency of the Coulomb potential at q = 0, which affects
the calculation of the dielectric function and both terms of the self-energy. We have
already mentioned (Section 5.3) that the divergence of the dielectric function can
be avoided by resorting to the symmetrized one (Appendix F). In this section we
discuss how to handle the divergence in the q-point integration.

To simplify the notation, we write the matrix elements of the self-energy as:

Σα
n,k =

BZ∑
q

Υα
n,k(q). (5.30)

where α = x (exchange) or c (correlation), and from Eq 5.26 and 5.25:

Υx
n,k(q) =−

∑
i,j

vi,j(q)
occ∑
n′

[
M i

n,n′(k,q)
]∗
M j

n,n′(k,q)

Υc
n,k(q, ω) =

∑
i,j

∑
n′

[
M i

n,n′(k,q)
]∗
M j

n,n′(k,q)

i

2π

∫ ∞

−∞
{ 1

ω − εn′,k−q + εn,k + iη
− 1

ω − εn,k + εn′,k−q − iη
}W c

i,j (q, ω′) dω′

(5.31)
In the following, we disregard in the equations the explicit dependence of the cor-

relation term on the frequency to simplify the notation. Since Υx(c) is proportional
to the bare (screened) Coulomb potential, its divergent terms can be separated as
in Eq. C.33 and Eq. G.8. Thus, we can rewrite Eq. 5.30 as:

Σα
n,k =

BZ∑
q

{
Υαs2

n,k (q)

|q|2
+

Υαs1
n,k (q)

|q|
+ Υ̃α

n,k(q)

}
(5.32)
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The singularity at the Γ point appearing in Eq. 5.32 is integrable, but a direct
numerical integration will converge very slowly. Following Ref. [105], we add and
subtract to the right hand side of Eq. 5.32 an auxiliary function Gα having the same
singularities as Υα:

Gα(q) = Υαs2
n,k (0)F2(q) + Υαs1

n,k (0)F1(q) (5.33)

with Fn(q) → |q|−n for q → 0. Thus we have:

Σα
n,k =

BZ∑
q

{
Υαs2

n,k (q)

|q|2
−Υαs2

n,k (0)F2(q) +
Υαs1

n,k (q)

|q|
−Υαs1

n,k (0)F1(q) + Υ̃α
n,k(q)

}
+

Υαs2
n,k (0)

BZ∑
q

F2(q) + Υαs1
n,k (0)

BZ∑
q

F1(q)

(5.34)
For the auxiliary functions we choose:

F1(q) =
1

Ω

∑
i

e−β|q+Gi|2

|q + Gi|
(5.35a)

F2(q) =
1

Ω

∑
i

e−β|q+Gi|2

|q + Gi|2
(5.35b)

The periodicity ensures that its gradient is continuous at the zone boundary. β is a
parameter chosen so that the width of the Gaussian is comparable to the Brillouin-
zone diameter. The mean value of the functions is:

Ω

(2π)3

∫
BZ

F1(q)dq =
1

4π2β
(5.36a)

Ω

(2π)3

∫
BZ

F2(q)dq =
1

4π2

√
π

β
(5.36b)

To obtain the parameter β we require βRBZ = 1, using 4π
3
R3

BZ = (2π)3

Ω
we get:

β =

(
Ω

6π2

) 1
3

(5.37)

Finally, we can write the self-energy as:

Σα
n,k =

BZ∑
q6=0

{
Υα

n,k(q)−Υαs2
n,k (0)F2(q)−Υαs1

n,k (0)F1(q)
}

+
Υαs2

n,k (0)

4
√
π3β

+
Υαs1

n,k (0)

4π2β
(5.38)

The function in curly brackets has no singularities and can be integrated numerically.
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5.6 The Frequency Integration

In this section, we discuss the methodology to calculate the frequency convolution
for the correlation term of the self-energy (Eq. 5.25). Due to the poles of both
the Green’s function and W c, infinitesimally close to the real axis (Fig. 5.8), this
integral is difficult to converge numerically, requiring a large number of frequencies.

Several schemes have been proposed to improve the computational efficiency in
the evaluation of this convolution. One of the first methods was proposed by Godby,
Schlüter, and Sham [106]. Using the idea of the well-known Matsubara summation
[6, 107], which analytically continuates the integrand into the complex frequency
plane and calculates the integral over the real frequency axis from the integral over
the imaginary axis plus the sum of the residues corresponding to the poles of the
Green’s function between the given frequency and the Fermi energy, they have shown
that the simple form of the integrand in the imaginary axis allows a precise calcu-
lation of the integral with few frequencies only. In a different approach, proposed
by Rieger et al.[108], the screened Coulomb potential is Fourier transformed to the
imaginary time axis. The self energy is then obtained by direct product, according
to Eq. 4.31c and transformed back to the imaginary frequency axis. Afterwards it
is fitted by an analytic function and continued to the complex plane to obtain its
dependence on the real frequency axis.

In our implementation, we calculate the screened Coulomb potential, the Green’s
function and the self-energy directly on the imaginary frequency axis. Eq. 5.25 in
this case becomes:

Σc
n,k(iω) =

1

π

BZ∑
q

∑
i,j

∑
n′

[
M i

n,n′(k,q)
]∗ ∫ ∞

0

(εn′,k−q − iω)W c
i,j(q, iω

′)

(iω − εn′,k−q)2 + ω′2
dω′M j

n,n′(k,q)

(5.39)
where we have made use of the inversion symmetry ofW c on the imaginary frequency
axis:

W c
i,j(q, iω) = W c

i,j(q,−iω), (5.40)

The integrand in Eq. 5.39 is singular when ω = ω′ and εn′,k−q = 0. Therefore, a
direct numerical integration becomes unstable for small eigenvalues. The numerical
details, as well as the method to avoid this instability are shown in Appendix H.
The extreme efficiency of these scheme can be seen in the numerical tests in the
next chapter, Section 6.2.

Each matrix element of the self-energy is fitted with a function of the form:

Σc
n,k (iω) =

∑m
j=0 an,k,j(iω)j∑m+1
j=0 bn,k,j(iω)j

(5.41)

which is then analytically continued onto the real frequency axis.
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Figure 5.8: The analytic structure of Σc = iGW c from ω > µ (a) and ω < µ
(b). Frequency integration of the self-energy along the real axis is equivalent to the
integration along the imaginary axis including the path C.

5.7 Flowchart

We conclude this chapter with a short summary of the procedure carried out by our
implementation of the G0W0 method. The flowchart of code is show in Fig. 5.9.
The Kohn-Sham eigenvalues and eigenfunctions, as well as the exchange-correlation
potential are taken from Wien2k. The eigenfunctions are used to obtain the mixed
basis as was described in Sec. 5.2. Having defined the basis functions, we can cal-
culate the bare Coulomb matrix according to Appendix C and the matrix elements
M i

n,n′(k,q) following Appendix D. Afterwards, the Kohn-Sham eigenvalues are re-
quired for calculating the Brillouin-zone integration weights as described in Sec. 5.4
and Appendix E. Together with the matrix elements, M i

n,n′(k,q), these weights are
used to obtain the polarization matrix (Eq. 5.22). The latter, together with the
bare Coulomb matrix, is the input required to obtain the dielectric matrix (numeri-
cal details in Appendix F). The screened Coulomb potential is calculated following
Appendix G. The matrix elements of the exchange and correlation terms of the self-
energy are calculated separately. The coefficients of the expansion described in Sec.
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3.2.4 of the exchange-correlation potential are obtained from the Wien2k code, and
used to obtain its diagonal matrix elements for each eigenstate. Finally, a first set
of G0W0 quasiparticle energies are obtained solving Eq. 5.27, which are used as the
starting point for solving Eq. 5.1 selfconsistently.
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Figure 5.9: Flowchart of our G0W0 code
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Convergence Tests

The advantage of all-electron methods in general, and the FP-(L)APW+lo in par-
ticular, is that they rely on no other approximation but the theory which they
implement. In other words, they are exact, except for the numerical accuracy. For
the evaluation of the self-energy, the latter include:

i. The completeness of basis functions (Sec. 5.2),

ii. the density of the k- and q-point meshes for the Brillouin-zone integration
(Sec. 5.4 and 5.5),

iii. the number of frequencies (Sec. 5.6 and Appendix H) used to calculate the
self-energy, and

iv. the cutoff for the number of unoccupied states included in the calculation of
the correlation term (Ref. [109]) and the linearization error for these states.

The convergence of the results with respect to the choice of these parameters is
essential for the reliability of values obtained. In addition, the convergence of the
Kohn-Sham results used as input also requires attention, since they could affect the
G0W0 output.

In this chapter we study systematically the convergence of the G0W0 results with
respect to the various parameters mentioned. Si is taken as the trunk example, but
tests for other materials are also included. In Sec. 6.1 we study the convergence of
the results with respect to the parameters defining the basis set. The convergence
with respect to the grid for the frequency integration is tested in Sec. 6.2. In Sec.
6.3, we analyze the convergence with respect to the number of k- and q-points used
for the Brillouin-zone integration. In the end, the effect of the number of unoccupied
states included in the G0W0 calculations is discussed (Sec. 6.4).
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6.1 The Basis Set

In Sec. 5.2, we verified the endowment of the mixed basis set to expand the products
of two Kohn-Sham wave functions. In this section, we analyze how the convergence
of theG0W0 results, in particular the fundamental band-gap and the matrix elements
of the exchange and correlation terms of self-energy, are affected by the parameters
defining the basis set. The rest of the parameters are fixed at ω0 = 10.88 eV
and Nω = 16 for the frequency integration, Nk = Nq = 64 for the Brillouin-zone
integration, the number of excited states is limited by an energy cutoff of 34.0 eV,
which corresponds to around 19 excited states. For the (L)APW+lo basis set we
take RKmax = 7.00. With these parameters, the fundamental band gaps shown
in this section can not be converged. However, they still provide insight into the
convergence behavior of the G0W0 results with respect to these parameters related
to the definition of the basis set. As in Sec. 5.2, the tests with respect to the
parameters defining the basis set in the muffin-tin and interstitial regions are carried
out separately.

In the muffin-tin sphere, the linear dependence tolerance λmin for each lmax is
chosen at its optimum value, i. e. at the beginning of the corresponding plateau
in Figure 5.3. In Table 6.1 we present the result for the fundamental bandgap and
the matrix elements of the self-energy for the valence band maximum at the Γ point
(VBM) and the conduction band minimum at theX point (CBM) for different values
of lmax . The results clearly show that lmax = 3 (λmin = 10−4) ensures convergence
of both the fundamental band gap and the matrix elements within 1 meV.

Table 6.1: Fundamental G0W0 band gap and matrix elements of the self-energy of
Si for different basis sets in the muffin-tin spheres. NMT

wf represent the total number
of basis functions in the muffin-tin region. Since the energy cutoff for the excited
states is low, these results are not converged. In all cases Q = 1.0 and eV units are
used.

lmax 2 3 4
λmin 10−3 10−4 10−5

NMT
wf 148 296 568

Eg 0.8155 0.8113 0.8114
Σx

VBM -14.9280 -14.9309 -14.9309
Σx

CBM -5.9791 -5.9813 -5.9814
Σc

VBM 1.7922 1.7920 1.7917
Σc

CBM -3.4031 -3.4135 -3.4126

With the value of lmax fixed, we test the convergence of same quantities as a
function of the number of interstitial plane waves. The results in Table 6.2 show
that taking Q = 1.0 already attains a precision of 1 meV. Summarizing, a mixed
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basis set defined by the parameters lmax = 3, λmin = 10−4 and Q = 1.0 (433 wave
functions, 296 in the muffin-tin spheres and 137 in the interstitial region) ensures
that the errors due to basis set incompleteness remain below 2 meV in the G0W0

results for Si.

Table 6.2: Fundamental G0W0 band gap and matrix elements of the self-energy in
Si using different number of interstitial plane waves. Same as Table 6.1, since the
energy cutoff for the excited states is low, these results are not converged. In all
cases lmax = 3 and eV units are used.

Q 0.8 1.0 1.2 1.4
N Int

wf 65 137 242 388

Eg 0.8077 0.8113 0.8122 0.8122
Σx

VBM -14.9283 -14.9309 -14.9310 -14.9291
Σx

CBM -5.9789 -5.9813 -5.9813 -5.9808
Σc

VBM 1.7954 1.7920 1.7912 1.7909
Σc

CBM -3.4134 -3.4135 -3.4130 -3.4128

It is known ([109]) that accurate G0W0 calculations require a large number of
excited states to be included in the calculation of the correlation term of the self-
energy (see Sec. 6.4). This raises a further question of whether a basis set ensuring
converged results for a small number of excited states is also reliable when more
unoccupied states are included in the G0W0 calculations. To this end, in Table 6.3,
we compare the matrix elements of the correlation term of the self-energy on the
valence band maximum state at the Γ point and conduction band minimum state at
the X point together with the fundamental band gaps in Si obtained with different
lmax for εmax = 142.8 eV (∼134 unoccupied bands). The rest of the parameters
are kept constant, except for RKmax = 8.00 in the Wien2k calculations, since the
LAPW-basis has to be able to address a larger number of states. We keep Q = 1.0,
since it increases the basis proportionally with RKmax. The exchange term of the
self-energy is not shown because it is independent of the excited states. Clearly,
in the muffin-tin region the same basis set as in Table 6.1 (lmax = 3) ensures the
convergence for the fundamental band gap and the matrix elements of the correlation
term of the self-energy in the same order of magnitude (2 meV for the band gap and
4 meV for the matrix elements respectively).

In Table 6.4 and 6.5, we display the convergence of the bandgap and the matrix
elements of the self-energy for the valence band maximum (VBM) and the conduc-
tion band minimum (CBM), both at the Γ point with respect to the size of mixed
basis set within the muffin-tin sphere and the interstitial regions in GaAs respec-
tively. The behavior is similar to that observed for Si. Using lmax = 3, λmin = 10−4,
and Q = 1.0 ensures convergence within 3 meV.

73



6.2. Frequency Integration Chapter 6

Table 6.3: Fundamental G0W0 band gap of Si for different basis sets in the muffin-
tin spheres for εmax = 142.8 eV. In all cases Q = 1.0 and eV units are used. The
corresponding values of λmin are the same as in Table 6.1. Since the energy cutoff is
much bigger than what we have taken in Table 6.1 and 6.2, the fundamental band
gaps are bigger than the ones shown there.

lmax 2 3 4
Eg(eV) 0.936 0.963 0.965
Σc

VBM 1.093 1.035 1.031
Σc

CBM -4.002 -4.034 -4.036

Table 6.4: Fundamental band gap and the matrix elements of the self-energy and
exchange-correlation potential in GaAs using different basis sets in the muffin-tin
Region. In all cases Q = 1.0 and eV units are used.

lmax 2 3 4
λmin 10−3 10−4 10−5

Nwf 317 489 787
Eg 1.3771 1.3884 1.3888
Σx

VBM -17.1233 -17.1313 -17.1313
Σx

CBM -11.7849 -11.7884 -11.7884
Σc

VBM 2.2103 2.2080 2.2078
Σc

CBM -3.0233 -3.0187 -3.0185

In both materials the bonding valence bands are of sp character. In Si one
would expect that the inclusion of s and p wave functions would suffice for a good
description. For GaAs, where 3d semicore states are present, inclusion of d orbitals
would be necessary. However, in both cases the wave functions of f character have
to be included in the generation of the mixed basis to obtain accurate G0W0 results.
This is a clear indication that, for high precision calculations, physical intuition is
insufficient and one has to rely on systematic numerical tests.

6.2 Frequency Integration

The numerical precision of frequency integration, required to obtain the correlation
term of the self-energy (Sec. 5.6) is determined by two parameters, ω0 and Nω (See
Appendix H). Clearly, Nω is the value that ultimatelly determines the precision of
the procedure. However, the Nω-dependence of the convergence will be affected by
the choice of ω0. In this section we test the convergence of the results with respect
to both parameters. The basis set is defined according to the values obtained in
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Table 6.5: Fundamental band gap and the matrix elements of the self-energy and
exchange-correlation potential in GaAs using different number of interstitial plane
waves. In all cases lmax = 3 and eV units are used.

Q 0.8 1.0 1.2 1.4
N Int

wf 65 137 242 388

Eg 1.3883 1.3884 1.3921 1.3903
Σx

VBM -17.1232 -17.1313 -17.1329 -17.1303
Σx

CBM -11.7787 -11.7884 -11.7860 -11.7869
Σc

VBM 2.2101 2.2080 2.2076 2.2072
Σc

CBM -3.0191 -3.0187 -3.0196 -3.0182

the previous section, i.e. lmax = 3, λmin = 10−4 and Q = 1.0. The rest of the
parameters, not related to the frequency integration are kept at the same values as
before, namely, Nk = 64, εmax = 34.0 eV and RKmax = 7.

In Fig. 6.1, we show four convergence curves of the Γ−X band gap with respect
to Nω with different ω0. From this figure, we see that convergence is reached very
quickly when ω0 = 10.9 or 13.6 eV, where Nω = 16 already ensures accuracy within
2 meV. In the rest of our calculation, we take always ω0 = 10.9 eV and Nω = 16 for
the frequency integration in Si.

Figure 6.1: Convergence of the Γ − X band gap of Si with respect to the number
of sample frequency points Nω for different values of ω0. It converges by increasing
Nω. For ω0 = 10.9, 13.6 eV, the convergence can be obtained quickly.

In Fig. 6.2, we show the results of a similar test for GaAs (other parameters the
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same as what we used in Si). Again, choosing ω0 = 10.9 or 16.3 eV ensures quicker
convergence compared other options. However, choosing Nω = 16 only ensures the
convergence of the band gap within 4 meV. To get it converged within 1 meV, one
needs Nω = 30.
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Figure 6.2: Convergence of the fundamental band gap with respect to Nω using
different ω0 in GaAs. Same as what we found in Si, the convergence is also obtained
faster if we choose ω0 = 10.9.

6.3 Number of k-points

In this section we test the convergence of the results with respect to the number of k
and q-points used for the Brillouin-zone integration. Since in our implementation the
number of k and q-points are always the same, only one parameter, namely Nk has
to be tested. The parameters for the mixed basis set and frequency integration are
taken from the previous sections. The number of unoccupied states 19 (εmax = 34.0
eV) and RKmax = 7.00.

The macroscopic dielectric constant neglecting local field effects (also known
as the “head” of the dielectric matrix - Appendix F) converges very slowly with
respect to Nk. As can be seen in Fig. 6.3, at least a (12× 12× 12) mesh is required
for a convergence within 0.01. Such a dense mesh would make G0W0 calculations,
which scale quadratically with Nk, unacceptably expensive. Thus, the question
raises about to what extent the convergence of the head affects the final G0W0

results. In addition, the same question raises about the number of k-points used to
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generate the LDA density, and correspondingly, the exchange correlation potential.
These considerations lead to four different schemes for the convergence of the G0W0

results with respect to the number of k-points, namely:

• scheme 1: The LDA-density and the “head” of the dielectric matrix are con-
verged with a large number of k-points. These quantities are used in the G0W0

calculation with a coarser mesh, defined by Nk.

• scheme 2: The density generated from the LDA calculation is converged with
a dense mesh. The “head” is calculated using the same coarse mesh as the
G0W0 calculation.

• scheme 3: The “head” is converged separately with a dense mesh. The LDA-
density is generated with the same mesh as the G0W0 calculation.

• scheme 4: The LDA density, the “head” and the G0W0 calculation are per-
formed using the same mesh.
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ε 00
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Figure 6.3: Convergence of the macroscopic dielectric constant without local field
effects with respect to Nk in Si. To get a convergence within 0.01, one needs a
(12× 12× 12) mesh.

The convergence of the Γ −X band gap in Si with respect to the density of k-
points (N−1

k ) using these four schemes is shown in Fig. 6.4. For a convergence within
0.01 eV, a (6 × 6 × 6) mesh is required in all cases. However, comparing scheme 4
with the convergence of the LDA band-gap one observes they behave similarly. In
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Fig. 6.5 we show the convergence of G0W0 band gap correction with Nk, we found
that scheme 4 converges already with a (4×4×4) mesh, within 0.01 eV, much faster
than any other scheme. This indicates that the slow convergence of the G0W0 band
gap using this scheme in Fig. 6.4 is due to a low convergence of the LDA band gaps.
In Fig. 6.6, we shown similar tests for GaAs. A (6 × 6 × 6) mesh is required for a
convergence of this band gap correction within 0.01 eV. Again, scheme 4 works best
among these four schemes. We deduce that some favorable error cancellations exist
when the band gap correction is calculated in this way. Either a special treatment
of the Γ-point (separate convergence of the “head”) or of the exchange-correlation
potential with respect to the self-energy remove this cancellation, worsening the
k-point convergence.
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Figure 6.4: Convergence of the Γ − X band gap with respect to N−1
k in Si using

different schemes. The band gap does not converge with a (4× 4× 4) mesh. Among
these four schemes, using the same mesh for everything gives the best convergence
behavior.

Based on this analysis, in the rest of this work, we will use scheme 4 to converge
the G0W0 band gap corrections with respect to Nk. The G0W0 band gaps are
obtained by adding these corrections to the LDA eigenvalues converged separately.

In the next chapter, we will analyze the reasons for the difference between all-
electron and pseudopotential G0W0 band gaps by introducing a set of all-electron
valence-only calculations (AE-valence), where the self-energy and exchange-correlation
potential in Eq. 5.1 are calculated from the all-electron valence wave functions and
valence density. The matrix elements obtained from these AE-valence calculations
will be compared with those from the all-electron and pseudopotential based G0W0
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Figure 6.5: Convergence of the G0W0 correction to the Γ−X band gap with respect
to N−1

k in Si using different schemes. The band gap correction obtained using scheme
4 converges within 0.01 eV with a (4× 4× 4) mesh.

calculations. Thus, we have to analyze the convergence of the matrix elements of
the self-energy and xc potential with respect to the number of k-points. For Si,
the convergence of all these quantities for the valence band maximum at Γ point
and conduction band minimum at X point are shown in Fig. 6.7 and Fig. 6.8
respectively. It can be observed that the matrix elements of the xc potential are
well-converged using a (4×4×4) mesh. However, those of the exchange and correla-
tion terms of the self-energy (Σx and Σc) are not. The fast convergence of the band
gap correction is due to an error cancellation between these two terms. Fortunately,
the same behavior can be observed in the pseudopotential based (red lines) and AE-
valence G0W0 calculations (blue lines). Although the values of the matrix elements
are not converged, the relations among them are. The validity of our conclusions
are therefore unaffected, as long as they are drawn on the comparison between the
matrix elements and not their absolute values. The same behavior is found in GaAs
(Figs. 6.9 and 6.10) and the rest of the materials we have calculated.

6.4 Number of Unoccupied States

Finally, we study the convergence of the fundamental band gap with respect to the
number of unoccupied states involved in the G0W0 calculation, which is also the
main criticism against the fundamental band gap of Si obtained by Ku and Eguiluz
in Ref. [14].
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Figure 6.6: Convergence of the G0W0 correction to the fundamental band gap with
respect to N−1

k in GaAs using different schemes. Same as what we found in Si, using
the same mesh for everything gives the best convergence behavior.

In order to enable the LAPW-basis to describe a large number of excited states,
we take RKmax = 9.00 in the Wien2k calculations. In Fig. 6.11, we show the
convergence of the G0W0 correction to the fundamental band gap in Si. It converges
within 5 meV when ∼ 150 bands are used. The result increases monotonically
with the number of unoccupied states, the saturated fundamental band gap for
Si is 1.00 eV. Summing all the possible sources of errors related to our numerical
implementation analyzed above, we estimate a precision of 0.02 eV for this result.

Since our calculation is based on the (L)APW+lo method, the linearization error
of the basis set for the highly excited states forms another possible source of error for
the final result. There are two schemes to eliminate it, i. e. adding local orbitals for
the highly occupied states, and including the non-linear energy dependency of the
basis. In Ref. [110], it was shown that including this non-linear energy dependency
of the basis functions only increases the fundamental band gap of Si by 0.03 eV,
in the same order of magnitude as the precision of our implementation. Since the
discrepancy between all-electron and PP-G0W0 results is always of the order of 0.1
eV, this error is negligible when it comes to the applications of our code.

In Fig. 6.12, we also show the convergence of the fundamental band gap correc-
tion in GaAs. Using ∼ 150 bands ensures the convergence of the band gap correction
within 0.001 eV. The convergence is faster than in Si.
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Figure 6.7: Convergence of the self-energy (exchange and correlation terms) and
exchange-correlation potential matrix elements of the valence band maximum of Si
at the Γ-point with respect to N−1

k . These correlation self-energies, Σc, are not
converged with respect to the number of unoccupied states included in the G0W0

calculations. Thus, absolute values of them are meaningless.
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Chapter 7

Analysis of the Difference between
All-electron and Pseudopotential
based G0W0 Band Gaps

In chapter 5, we introduced a new all-electronG0W0 code based on the FP-(L)APW+lo
method. Its reliability and precision were demonstrated through an extensive set of
tests in chapter 6. In this chapter we will apply it to analyze the difference between
all-electron (AE) and pseudopotential (PP) based G0W0 band gaps.

As mentioned in Chapter 1, for already more than two decades, the G0W0 ap-
proach implemented within the pseudopotential method has achieved an impressive
success in reproducing the fundamental band gaps and bandstructures of weakly cor-
related semiconductors and insulators [2, 87]. A few years ago the first all-electron
G0W0 implementations appeared. The results obtained showed noticeable discrep-
ancies with the PP-G0W0 ones (Table 7.1). Usually, the all-electron band-gaps were
smaller, and in worse agreement with experiments.

Taking Si as the guiding example, PP-G0W0 calculations obtain values between
1.18eV and 1.29 eV for its fundamental band gap [12, 111, 112, 113]. This is within
0.12 eV accuracy compared with the experimental value of 1.17 eV. On the other
hand, first all-electron G0W0 calculations obtained 0.85 eV [14] and 0.90 eV [13].
These results triggered a debate about the reliability of both pseudopotential and
all-electron based G0W0 results [15, 16]. In Ref. [14], this discrepancy was assigned
mainly to the exclusion of the core electrons in the calculation of the self-energy, the
possible role of pseudoization was only tangentially mentioned. On the other hand,
the main criticism to the value of 0.85 eV in Ref. [14], put forward in Ref. [15], was
the lack of convergence with respect to the number of unoccupied states included in
the calculation1. The validity of this criticism has been confirmed by the all-electron

1Related to other arguments put forward in this discussion, namely the cancellation of errors
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G0W0 result from Friedrich et al. [110], who obtained, after careful convergence with
respect to the number of unoccupied states, a fundamental band-gap in Si of 1.05
eV. Our own results, shown below, also confirm this trend. The value of 0.90 eV in
Ref. [13], based on the LMTO method, has been further increased to 0.95 eV in Ref.
[114] after including local orbitals. However, a discrepancy of around 0.2 eV with
the PP-G0W0 results still remains. In 2004, Tiago, Ismail-Beigi, and Louie [109]
performed a set of pseudopotential calculations for Si in which only the 1s orbitals
are treated as core, obtaining a fundamental band gap of 1.04 eV for Si. Although
the precision of these results can be questioned due to the application of the plasmon-
pole approximation, they were interpreted by the authors as a corroboration of the
validity of the pseudopotential based G0W0 calculation. In the light of the recent
all-electron results, it confirms, in fact, the important role of the core states for a
correct calculation of the self-energy.

Once the convergence issue has been settled, these discrepancies can be traced
back to the approximations underlying the PP-G0W0 method. We have discussed
them within the Kohn-Sham scheme in section 3.1.2. When G0W0 approximation is
applied, the correction to the Kohn-Sham energy eigenvalues is calculated from the
pseudo-valence wave functions only, thus one has

∆εpp
n,k = <

(
〈ϕ̃n,k|Σ

(
{ϕ̃n,k} , εqp

n,k

)
|ϕ̃n,k〉

)
− 〈ϕ̃n,k|V xc[ñval]|ϕ̃n,k〉, (7.1)

where the tilded symbols indicate pseudo wave functions and density. This implies
not only a core-valence linearization of the self-energy but also replacing the core
contributions to the self-energy by the core-valence xc potential included in the
pseudopotential, which is kept at the Kohn-Sham level. To correct for this “core-
valence partitioning”, Shirley and Martin extended the PP-GW formalism to include
core contributions to the self-energy through the incorporation of core polarization
potentials (CPP) [116] into the GW method [12]. A deviation from the traditional
PP-G0W0 results towards the recent all-electron values can be observed for Si, Ge,
and GaAs.

On the other hand, in an all-electron G0W0 calculation, the correction to the
Kohn-Sham energy eigenvalue is calculated from:

∆εn,k = <
(
〈ϕn,k|Σ

(
{ϕn,k, ϕcore} , εqp

n,k

)
|ϕn,k〉

)
− 〈ϕn,k|V xc[n]|ϕn,k〉. (7.2)

The difference between Eq. 7.1 and Eq. 7.2 can be separated into two contributions:
Core-valence partitioning, namely, the omission of the core wave functions (density)
in the calculation of the self-energy (xc potential), and pseudoization, meaning the
use of the pseudo wave functions and pseudo density in the calculation. While the

between lack of self-consistency and absence of vertex correction, we consider them pertinent to
support the G0W0 approach itself, but irrelevant to an explanation of the differences between
all-electron and pseudopotential based calculations
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Table 7.1: Comparison of band gaps from formerly reported all-electron and pseu-
dopotential based G0W0 calculations.

Expt all-electron-G0W0
a traditional PP-G0W0

C 5.50 5.49 5.54c

Si 1.17 0.90, 0.85b 1.18c, 1.19d,
1.24e, 1.42f ,

AlAs(Γ−X) 2.23 1.68 2.08f

AlAs(Γ− Γ) 3.13 2.69 2.75f

AlP 2.50 2.15 2.59g

AlSb 1.69 1.32 1.64g

Ge(Γ− L) 0.74 0.47, 0.51a 0.75f

Ge(Γ-Γ) 0.89 0.79, 1.11a 0.71f

GaAs 1.63 1.42 1.29f

GaP(Γ−X) 2.35 1.90 2.55h

GaP(Γ− Γ) 2.86 2.53 2.93h

GaSb 0.82 0.49 0.62g

InP 1.42 1.25 1.44g

InAs 0.42 0.32 0.40g

InSb 0.24 0.32 0.18g

ZnS 3.80 3.22 3.98i

ZnSe 2.80 2.21 2.84i

CdTe 1.61 1.07 1.76i

a Ref. [13], b Ref. [14], c Ref. [112], d Ref. [111], e Ref. [113], f Ref. [12],
g Ref. [11], h Ref. [115], i Ref. [95].

former effect on GaAs and Si has been reported in Ref. [13, 114], which explains
part of the discrepancy between the all-electron and PP-G0W0 results, the latter has
never been studied. In this chapter, we analyze in detail the discrepancy between
AE and PP-G0W0 band gaps by separating the effects of pseudoization from those
of core-valence partitioning.

7.1 Disentanglement of Core-Valence Partition-

ing and Pseudoization

In order to separate the two effects, one should compare both methods with a third
calculation in which only one of the approximations is done. To this end we have
carried out a series of calculations in which the G0W0 correction, i. e. self-energy
and the xc potential matrix elements, is obtained only from the all-electron valence
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wave functions and valence density (in the following referred to as “AE-Valence”
calculations). That is:

∆εval
n,k = <

(
〈ϕn,k|Σ

(
{ϕn,k} , εqp

n,k

)
|ϕn,k〉

)
− 〈ϕn,k|V xc[nval]|ϕn,k〉, (7.3)

In this way, the interaction between the valence electrons is corrected to the G0W0

level, while the core electrons’ contribution to the self-energy still stays at the Kohn-
Sham level, which is implicitly included in the Kohn-Sham eigenvalues. The differ-
ences between the corrections defined by Eq. 7.3 and Eq. 7.2 can therefore be
assigned exclusively to core-valence partitioning errors, while the discrepancies be-
tween Eq. 7.1 and Eq. 7.3 are caused by the pseudoization.

We take diamond, Si, BN, AlP, GaAs, LiF, NaCl, and CaSe as example materials
for our analysis. Experimental lattice constants (Table 7.2) and the local-density
approximation are used throughout this chapter in order to compare with other
G0W0 results.

Table 7.2: Numerical parameters used for the AE-G0W0 calculations. In all cases
the parameters defining the mixed basis are lmax = 3, λmin = 10−4, and Q = 1.0;
and ω0 = 0.40 Hartree.

C Si BN AlP LiF NaCl GaAs CaSe

a [Å] 3.57 5.43 3.62 5.45 4.02 5.63 5.66 5.91
Nk 216 64 64 64 64 64 216 64
∼ Nunocc 90 200 120 150 150 250 150 200
Nω 16 16 16 16 16 16 30 16

For the PP-G0W0 calculations, we use the SFHIngX package for the PP-KS
calculations [117] and the GWST [108, 118] code for the G0W0 correction. The
norm-conserving pseudopotentials (Chapter 3) are generated using fhi98PP [119].
Only the ourtermost shell of each atom is included explicitly in the calculation.
Except in GaAs and NaCl, the Troullier-Martin scheme is used to generate the
pseudopotentials. In GaAs we use the Hamann scheme to avoid the ghost states of
the p channel that appear when using Troullier-Martin pseudopotentials. In NaCl,
in order to get an optimum tuning of scattering and transferability behavior, we use
a mixed scheme, where different pseudopotentials are used for different l-channels.

The numerical parameters used for the AE (and AE-Valence) G0W0 calculations,
were summarized in Table 7.2. Based on our tests, as shown in Chapter 6, we
estimate these parameters to ensure a precision of 0.02 eV in all cases. For the AE-
Valence calculation we take the same valence configuration as in the corresponding
pseudopotential calculation.
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In Table 7.3, we compare our all-electron and PP-G0W0 band gaps with theoret-
ical and experimental results from the literature. Our all-electron band gaps agree
with those of Kotani and van Schilfgaarde [13] and Friedrich et al. [110] within 0.05
eV. In all cases the value is underestimated compared to experiments. Comparing
our PP-G0W0 results with those from the literature, we obtain an agreement within
0.1 eV for diamond, Si, BN, and AlP. For GaAs, the results in the literature scatter
between 1.02 eV and 1.58 eV. The lower limit compares well to our result. For NaCl,
our band gap is ∼0.7 eV smaller than the one reported in Ref. [120]. This is because
they use the LDA lattice constant, which significant increases the band gap. For
LiF, the core-polarization potential and a partial self-consistency by updating the
energy eigenvalues are used in Ref. [121], explaining the discrepancy of ∼0.7 eV.

Table 7.3: The band gaps [in eV] in comparison with other calculations and exper-
iments

C Si BN AlP LiF NaCl GaAs CaSe
This work
AE-LDA 4.10 0.49 4.35 1.44 8.97 4.74 0.25 1.86
AE-G0W0 5.42 1.00 6.03 2.18 13.19 7.60 1.29 3.36
PP-LDA 4.15 0.50 4.39 1.47 8.79 4.70 0.35 1.84
PP-G0W0 5.68 1.25 6.35 2.50 13.56 7.89 0.97 3.30
Literature
AE-G0W0 5.48 a 1.05 b 2.15 c 1.31 c

PP-G0W0 5.60 d 1.18 e 6.30 f 2.59 g 14.3 h 8.64 i 1.02 j, 1.58 k

Expt. 5.48 l 1.17 l 6.10 m 2.50 l 14.2 n 8.50 o 1.63 p

a Ref. [122] b Ref. [110] c Ref. [13] d Ref. [10]
e Ref. [112] f Ref. [123] g Ref. [11] h Ref. [124]
i Ref. [120] j Ref. [12] k Ref. [106] l Ref. [125]
m Ref. [126] n Ref. [121] o Ref. [127] p Ref. [128]

In Fig. 7.1 we show the core-valence partitioning error (∆εval
n,k −∆εn,k) and the

pseudoization error (∆εpp
n,k − ∆εval

n,k) for the band gap correction of the mentioned
set of materials. It can be observed that the pseudoization effect is an important
source of error. In addition, in NaCl, GaAs, and CaSe, core-valence partitioning
reduces the G0W0 correction. The common characteristic of these materials, that
differentiates them from the rest, is the presence of semicore states. Accordingly,
we will analyze the materials with and without semicore states separately.
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Figure 7.1: Pseudoization (blue) and core-valence partitioning (magenta) errors in
the G0W0 correction to the fundamental band gap (in eV).

7.2 Materials without Semicore States

This category includes diamond, Si, BN, AlP, and LiF. Their common feature is a
clear splitting of the core and valence states. The former lie low in energy and the
corresponding wave functions are confined within the atomic region. Accordingly,
the pseudopotential method gives reliable results within density-functional theory.
We start our discussion with Si, which has been historically taken as the test case in
the debate about the discrepancies between all-electron and pseudopotential G0W0

calculations [14, 15, 16].

The fundamental band gap of Si is indirect, with the bottom of the conduction
band lying at 85% of the distance between Γ and X. In Fig. 7.2, we show its band
diagram obtained by the AE-G0W0 method and compare it with the corresponding
LDA values. The blue circles are taken from the k-resolved inverse photoemission
spectra (KRIPES) measured by Straub, Ley, and Himpsel in Ref. [129]. The G0W0

correction clearly improves the agreement with the experimental results. However,
the all-electron G0W0 method still underestimates systematically the conduction
band positions, which is consistent with the results for the fundamental band gaps.

Taking into account the separation of the self-energy in its exchange and correla-
tion terms according to Eq. 5.25 and 5.26, the G0W0 correction to the Kohn-Sham
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Figure 7.2: Band diagram of Si (in eV, referenced to the Fermi level) obtained
from the all-electron LDA (black solid) and G0W0 (red dash) calculations. The
experimental results (blue circles) are taken from Ref. [129].

eigenvalues (Eq. 7.1, 7.2, and 7.3) can be written as:

∆εn,k = Σc
n,k + Σx

n,k − V xc
nk (7.4)

where we have defined V xc
n,k = 〈ϕn,k|V xc[n]|ϕn,k〉. This matrix element of the exchange-

correlation potential can be further separated into the pure exchange term, cal-
culated from V x

n,k = 〈ϕn,k|V x[n]|ϕn,k〉, and the correlation term, using V c
n,k =

V xc
n,k − V x

n,k, in the AE-Valence- and AE-G0W0 calculations.

In Fig. 7.3 we show these matrix elements for the valence band maximum state
at the Γ-point (denoted as Γv) obtained by the three different schemes. The corre-
sponding source data, as well as those for the conduction band minimum state at
the X-point (denoted as Xc) and the difference between them are taken from Table
7.4. To analyze the effect of core valence partitioning on this valence band maximum
state we compare the AE-Valence- and AE-G0W0 values. The main features are:

i. Core-valence partitioning has a negligible influence (∼ 0.02 eV) on the corre-
lation term of self-energy (Σc). The core electrons of Si, low in energy and
tightly bound to the nucleus, don’t contribute to the screening of the valence
states.
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ii. It has a very strong effect, in the order of eV, in the xc potential (V xc) and
the exchange term of the self-energy (Σx).

iii. From table 7.4, we see that this strong effect on V xc is dominated by the con-
tribution from V x. The core-valence partitioning effect on the matrix elements
of the correlation potential V c is negligible.

iv. When calculating the G0W0 correction, the errors on V xc (1.97 eV) and Σx

(2.10 eV) tend to cancel each other.

These features lead to an overall error in the G0W0 correction generated by core-
valence partitioning in the order of 0.1 eV. Comparison between the pseudopotential
and AE-valence matrix elements reveal the influence of pseudoization. In all cases,
i. e. Σc, Σx and V xc, it is in the order of 0.1 eV.

-16

-12

-8

-4

0

4

PP
AE-Valence
AE

1.97 eV
2.10 eV

cΣ xΣ xcV

Figure 7.3: Matrix elements of the self-energy [in eV] (correlation term: Σc, exchange
term: Σx) and exchange-correlation potential V xc for the valence band maximum
state at Γ point (Γv) in Si in our all-electron, AE-Valence, and PP-G0W0 calcula-
tions.

Summarizing, the main, and large, differences between all-electron and pseu-
dopotential G0W0 calculations appear in the Σx and V xc matrix elements, and are
due to core-valence partitioning. These differences, however, tend to cancel each
other. For Σc, the main, and in this case small, differences are due to the effect of
pseudoization. The same conclusions can be drawn for the matrix elements on the
conduction band minimum at X point, shown in Fig. 7.4 and Table 7.4.
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Table 7.4: Matrix elements of the self-energy [in eV] (correlation term: Σc, ex-
change term: Σx) and exchange-correlation potential V xc (correlation potential: V c,
exchange potential: V x) for Si in our all-electron, AE-Valence, and PP-G0W0 cal-
culations.

εLDA Σc Σx V c V x V xc Σx − V xc εG0W0

All-electron G0W0:
Γv 0.00 0.96 -14.93 -1.57 -11.98 -13.55 -1.38 0.00
Xc 0.62 -4.09 -5.98 -1.36 -8.82 -10.18 4.20 1.15

Xc − Γv(∆) 0.62 -5.05 8.95 0.21 3.16 3.37 5.58 1.15
AE-Valence G0W0 (3s, 3p):

Γv 0.00 0.94 -12.96 -1.52 -9.93 -11.45 -1.51 0.00
Xc 0.62 -4.09 -5.04 -1.33 -7.82 -9.15 4.11 1.21

Xc − Γv(∆) 0.62 -5.03 7.92 0.19 2.11 2.30 5.62 1.21
PP-G0W0 (3s, 3p):

Γv 0.00 0.90 -12.92 -11.26 -1.64 0.00
Xc 0.63 -3.96 -5.14 -9.09 3.96 1.38

Xc − Γv(∆) 0.63 -4.86 7.78 2.17 5.60 1.38

The G0W0 correction to the band gap can be calculated directly taking the
difference between the correction to the energies of the valence band maximum
and the conduction band minimum states. Accordingly, the contribution from each
term (Σc, Σx and V xc) can be obtained as the difference between the corresponding
matrix elements. In Fig. 7.5 (also in Table 7.4), we show these contributions to the
Γ − X gap of silicon (∆F = F (Xc) − F (Γv) where F = Σc,Σx, V xc) for the three
types of calculations. The situation is the same as found for the matrix elements
themselves: core-valence partitioning effects are very large on the contribution of the
exchange term of the self-energy and the exchange-correlation potential to the gap,
and negligible on the contribution of the correlation term. The former two effects
cancel each other, reducing the error by almost two orders of magnitude (∼0.04 eV).
The influence of pseudoization is in the order of 0.1 eV for the three terms. The
corresponding changes in ∆Σx and ∆V xc almost cancel each other. With the left
differences on ∆Σc (0.17 eV) accounting for the band gap opening in the PP-G0W0

calculations. In Fig. 7.6, the effects of core-valence partitioning and pseudoization
on the band gap correction are separated. As we have shown in Fig. 7.1 for the
fundamental band gap, pseudoization gives the main contribution to the discrepancy
between all-electron and PP-G0W0 results.

All the materials without semicore states studied here present a situation similar
to that found for Si. To avoid repeating ourselves, we just summarize the results
obtained for the matrix elements and the different contributions to the gaps in Tables
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Figure 7.4: Matrix elements of the self-energy [in eV] (correlation term: Σc, ex-
change term: Σx) and exchange-correlation potential V xc for the conduction band
minimum state at X point (Xc) in Si in our all-electron, AE-Valence, and PP-G0W0

calculations.

7.5, 7.6, 7.7, and 7.8. As general trends we can state:

i. The effect of core-valence partitioning on the correlation term of the self-
energy, and its contribution to the gap are in the order of 0.01 eV and therefore
negligible.

ii. The largest errors appear in the exchange term of the self-energy Σx, the
exchange-correlation potential V xc (dominated by the contribution from V x)
and the corresponding contributions to the band gap. They are in the order
of 1 eV and due to core valence partitioning.

iii. These errors cancel each other. The differences in the contribution to the
gap of the difference between the exchange term of the self-energy and the
exchange-correlation potential are reduced to values between 0.00 eV in AlP
and 0.24 in diamond.

iv. Core-valence partitioning increases the band bap correction, but not enough
to explain solely the discrepancies between all-electron and pseudopotential
G0W0 results.
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Figure 7.5: Differences between the matrix elements of the self-energy [in eV] (cor-
relation term: ∆Σc, exchange term: ∆Σx) and exchange-correlation potential ∆V xc

over the conduction band minimum state at X point (Xc) and the valence band
maximum state at Γ point (Γv) in Si in our all-electron, AE-Valence, and PP-G0W0

calculations.

v. Pseudoization effects, although small in general (∼0.1 eV) play an important
role in the differences observed, ranging from 0.06 eV in diamond, almost
within our numerical error, to 0.36 eV in LiF.

7.3 Materials with Semicore States

The common feature of the remaining materials studied in this chapter, namely
NaCl, CaSe, and GaAs, is the presence of semicore states. This distinctive charac-
teristic seems to correlate with the effect of core-valence partitioning in the G0W0

calculations (Fig. 7.1), which in these cases is negative. In NaCl and CaSe, the
semicore states are the p orbitals in the second outermost shell of the cation. In
GaAs, the 3d states of Ga are even closer to the Fermi level. Thus, we will analyze
it separately.
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Figure 7.6: The G0W0 correction (in eV) to the Γ−X band gap in Si obtained from
the PP, AE-Valence, and AE-G0W0 calculations.

7.3.1 NaCl and CaSe

For the analysis of the different contributions to the G0W0 correction we follow
the same procedure as for Si. The matrix elements of the self-energy and the xc
potential on the valence band maximum (at the Γ-point, denoted as Γv throughout
the discussion) of NaCl obtained from the three calculations are shown in Fig. 7.7.
The source data, as well as those for the conduction band minimum (at the Γ
point, denoted as Γc) and their differences are shown in Table 7.9. In this case,
core-valence partitioning has a noticeable influence, in the order of 0.1 eV, on the
correlation term of the self-energy (Σc) at the valence band maximum. The semicore
states contribute to the screening of the valence electrons and consequently to the
correlation term of the self-energy. However, this behavior is not observed from the
matrix element of the correlation potential V c in Table 7.9. This is because the
energy dependence of the correlation interaction is absent when it is described using
this correlation potential. Consequently, effects like screening, which is sensitive to
the energy dependence, may be hard to be observed. For Σx and V xc (still, mainly
on V x) the effects of core-valence partitioning are very large and tend to cancel each
other, similar to the situation in materials without semicore states. Pseudoization
produces errors in the order of 0.1 eV for Σx and V xc, while its effect is quite larger
(∼0.5 eV) on Σc. Similar conclusions can be drawn for matrix elements at the
conduction band minimum shown in Fig. 7.8, except that in this case, the effect of
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Table 7.5: Matrix elements of the self-energy [in eV] (correlation term: Σc, exchange
term: Σx) and exchange-correlation potential V xc (correlation term: V c, exchange
term: V x) for C in our all-electron, AE-Valence, and PP-G0W0 calculations.

εLDA Σc Σx V c V x V xc Σx − V xc εG0W0

All-electron G0W0:
Γv 0.00 1.58 -20.14 -1.80 -16.20 -18.00 -2.14 0.00

CBM∗ 4.10 -5.01 -9.75 -1.67 -13.85 -15.52 5.77 5.42
CBM−Γv(∆) 4.10 -6.59 10.39 0.13 2.35 2.48 7.91 5.42
AE-Valence G0W0 (2s, 2p):

Γv 0.00 1.60 -19.15 -1.76 -15.00 -16.76 -2.39 0.00
CBM 4.10 -5.03 -8.69 -1.65 -12.80 -14.45 5.76 5.62

CBM−Γv(∆) 4.10 -6.63 10.46 0.11 2.20 2.31 8.15 5.62
PP-G0W0 (2s, 2p):

Γv 0.00 1.24 -19.15 -16.81 -2.34 0.00
CBM 4.15 -5.20 -8.67 -14.30 5.63 5.68

CBM−Γv(∆) 4.15 -6.44 10.48 2.51 7.97 5.68
∗ In diamond the bottom of the conduction band, denoted as CBM in this table, lies at 66.7% of

the distance between Γ and X, and belongs to the (6× 6× 6) mesh used in the calculations.

pseudoization and core-valence partitioning on Σc tend to cancel each other.

Analyzing the contribution of each term to the band gap correction (Fig. 7.9),
we observe a discrepancy of 0.26 eV in ∆Σc due to core-valence partitioning. The
effect of the removal of the core (and semicore) states on ∆Σx and ∆V xc is strongly
reduced with respect to the one on the matrix elements. However, in this case, they
do not cancel each other, and tend to reduce the gap correction, opposite to the
situation observed in the absence of semicore states. Fortunately, these remaining
difference is almost cancelled by the change in ∆Σc, leading to a very small, and
negative, effect. The effect of pseudoization has an influence in the order of 0.1 eV
on all three terms, with the corresponding change in ∆Σc accounting for the opening
of the band gap in the PP-G0W0 calculation.

In Fig. 7.10 we show the G0W0 corrections to the band gap according to the
different calculations. The discrepancy between all-electron and PP-G0W0 band
gaps can be decomposed into the errors stemming from core-valence partitioning
and pseudoization respectively. The error from core-valence partitioning is small
and negative in this case. Pseudoization is responsible for the increasing of the
correction in PP-G0W0 and, therefore, the discrepancy with the all-electron results.

The results obtained for CaSe are summarized in Table 7.10. The trends are the
same as observed for NaCl, core-valence partitioning effects on ∆Σx and ∆V xc do
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Table 7.6: Matrix elements of the self-energy [in eV] (correlation term: Σc, exchange
term: Σx) and exchange-correlation potential V xc (correlation term: V c, exchange
term: V x) for BN in our all-electron, AE-Valence, and PP-G0W0 calculations.

εLDA Σc Σx V c V x V xc Σx − V xc εG0W0

All-electron G0W0:
Γv 0.00 2.72 -23.01 -1.85 -17.62 -19.47 -3.54 0.00
Xc 4.35 -4.91 -7.91 -1.59 -12.09 -13.68 5.77 6.03

Xc − Γv(∆) 4.35 -7.63 15.10 0.26 5.53 5.79 9.31 6.03
AE-Valence G0W0 (2s, 2p):

Γv 0.00 2.73 -22.00 -1.81 -16.47 -18.28 -3.72 0.00
Xc 4.35 -4.93 -7.17 -1.57 -11.35 -12.92 5.75 6.16

Xc − Γv(∆) 4.35 -7.66 14.83 0.24 5.12 5.36 9.47 6.16
PP-G0W0 (2s, 2p):

Γv 0.00 2.30 -21.92 -18.31 -3.61 0.00
Xc 4.39 -4.91 -7.34 -12.90 5.56 6.35

Xc − Γv(∆) 4.39 -7.21 14.58 5.41 9.17 6.35

not cancel each other completely and their contribution to the band gap correction
is negative. This effect is weakened by the corresponding change in ∆Σc, yet still
leading to a negative core-valence partitioning error for the band gap correction.
Pseudoization again increases the band gap correction, but, in this case, its total
effect is smaller than that due to core-valence partitioning.

7.3.2 GaAs

GaAs is a prototype III-V semiconductor with a direct band gap of 1.52 eV at the Γ
point. The lowest conduction band has a narrow tip. This tip gives a small effective
mass for electrons at these states and correspondingly high electron velocity in the
electronic devices. In Fig. 7.11, we compared our LDA, AE-G0W0 band diagrams
with experimental results from Ref. [128, 130, 131]. The LDA results already agree
well with the experimental values for the valence bands. The G0W0 correction shifts
up the conduction bands significantly, however, the fundamental band gap and the
conduction band positions at X point are still underestimated by ∼0.3 eV and ∼0.6
eV respectively.

In Fig. 7.12, Fig. 7.13, and Fig. 7.14 we show the matrix elements for the highest
occupied and the lowest unoccupied states as well as their differences at the Γ point
respectively. The corresponding source data are shown in Table 7.11. Again, the
effect of core-valence partitioning on Σx and V xc is very large. Compared with NaCl
and CaSe, the error cancellation between them is even worse. The hybridization
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Table 7.7: Matrix elements of the self-energy [in eV] (correlation term: Σc, exchange
term: Σx) and exchange-correlation potential V xc (correlation term: V c, exchange
term: V x) for AlP in our all-electron, AE-Valence, and PP-G0W0 calculations.

εLDA Σc Σx V c V x V xc Σx − V xc εG0W0

All-electron G0W0:
Γv 0.00 1.45 -16.05 -1.58 -12.49 -14.07 -1.98 0.00
Xc 1.44 -3.93 -5.26 -1.31 -8.09 -9.40 4.14 2.18

Xc − Γv(∆) 1.44 -5.38 10.79 0.27 4.40 4.67 6.12 2.18
AE-Valence G0W0 (3s, 3p):

Γv 0.00 1.43 -14.09 -1.53 -10.50 -12.03 -2.06 0.00
Xc 1.44 -3.92 -4.47 -1.29 7.25 -8.54 4.06 2.21

Xc − Γv(∆) 1.44 -5.35 9.61 0.24 3.25 3.49 6.12 2.21
PP-G0W0 (3s, 3p):

Γv 0.00 1.34 -14.09 -11.82 -2.27 0.00
Xc 1.47 -3.82 -4.57 -8.49 3.92 2.50

Xc − Γv(∆) 1.47 -5.16 9.52 3.33 6.19 2.50

of the semicore 3d states with the valence electrons is much stronger than that of
the semicore p orbitals in the previous two materials. As a result, the effect of
core-valence partitioning on ∆Σx − ∆V xc reduces the band gap correction by 0.90
eV. Since the semicore states are also shallower than those in NaCl and CaSe, the
core-valence partitioning effect on ∆Σc is also larger (0.45 eV). This effect increases
the the gap correction, counteracting the core-valence partitioning effect on ∆Σx −
∆V xc. Still, a discrepancy of -0.45 eV remains. Pseudoization effects on ∆Σc,
∆Σx and ∆V xc are again in the order of 0.1 eV, slightly opening the band gap
compared with the AE-Valence result. Nevertheless, this change is much smaller
than the corresponding core-valence partitioning effect (Fig. 7.15). The core-valence
partitioning has a very large, and negative, effect on the band gap correction which
constitutes the main reason for the discrepancy between AE and PP-G0W0 results.

7.3.3 Including the Semicore States into Valence

Summarizing our analysis, in materials without semicore states the errors due to
core-valence partitioning increase the band gap correction in G0W0 calculations in
the order of 0.1 eV. Their influence on Σc is negligible, while for Σx, and V xc, the
large errors observed cancel each other (Sec. 7.2). In the presence of semicore
states these conclusions fail. The higher in energy the semicore states are, the larger
the core-valence partitioning errors become. Going from NaCl, through CaSe, to
GaAs, where the center of the semicore band is -22.7 eV, -17.3 eV, and -10.6 eV
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Table 7.8: Matrix elements of the self-energy [in eV] (correlation term: Σc, exchange
term: Σx) and exchange-correlation potential V xc (correlation term: V c, exchange
term: V x) for LiF in our all-electron, AE-Valence, and PP-G0W0 calculations.

εLDA Σc Σx V c V x V xc Σx − V xc εG0W0

All-electron G0W0:
Γv 0.00 5.60 -31.85 -1.97 -22.26 -24.23 -7.62 0.00
Γc 8.97 -3.34 -7.61 -1.45 -11.70 -13.15 5.53 13.19

Γc − Γv(∆) 8.97 -8.94 24.24 0.52 10.56 11.08 13.16 13.19
AE-Valence G0W0 (2s, 2p):

Γv 0.00 5.58 -30.61 -1.94 -21.03 -22.97 -7.64 0.00
Γc 8.97 -3.31 -5.47 -1.39 -9.74 -11.13 5.66 13.38

Γc − Γv(∆) 8.97 -8.89 25.14 0.55 11.29 11.84 13.30 13.38
PP-G0W0 (2s, 2p):

Γv 0.00 4.45 -30.43 -22.81 -7.62 0.00
Γc 8.79 -3.68 -5.77 -11.05 5.28 13.56

Γc − Γv(∆) 8.79 -8.13 24.66 11.76 12.90 13.56

respectively, the corresponding core-valence partitioning errors are -0.09 eV, -0.22
eV, and -0.46 eV. In Ref. [132], it was illustrated that the PP-G0W0 results in this
kind of materials can be improved by including the full shell of the semicore states
into the valence region. Based on this consideration, we have studied the effect of
core-valence partitioning and pseudoization for GaAs when the shell of the semicore
states is treated as a valence shell. Since the pseudopotential codes we used in this
work are limited to one projector per channel, we have taken the PP-G0W0 results
form Ref. [109], albeit its limited reliability due to the use of the plasmon-pole
approximation.

We performed a second set of all-electron valence-only G0W0 calculations includ-
ing the 3s, 3p, 3d, 4s, and 4p states of both Ga and As in the valence region, denoted
as AE-Valence2 hereafter. The matrix elements for Σc, Σx, and V xc obtained from
the AE-Valence, AE-Valence2, and AE-G0W0

2 calculations for the valence band
maximum and conduction band minimum of GaAs are shown in Fig. 7.16 and
Fig. 7.17. The effect of core-valence partitioning in Σc, of 0.28 eV when the 3rd.
shell is treated as core, becomes negligible when these states are included in the
valence region. The errors in Σx and V xc are reduced from several to less than 1 eV
when going from AE-Valence to AE-Valence2 calculations. The same happens for
the contributions of the different terms to the band-gap correction (see Fig. 7.18).
Summing all these contributions, the effect of core-valence partitioning for the band
gap correction, -0.45 eV in the AE-Valence calculations, is strongly reduced in mag-

2The pseudopotential results for the matrix elements are not available in the literature
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Figure 7.7: Matrix elements of the self-energy [in eV] (correlation term: Σc, exchange
term: Σx) and exchange-correlation potential V xc for the valence band maximum
state at Γ point (Γv) in NaCl in our all-electron, AE-Valence, and PP-G0W0 calcu-
lations.

nitude and changes sign when including the semicore shell in the G0W0 correction,
becoming 0.12 eV.

This clearly demonstrates that the distinct effects of core-valence partitioning in
materials with (Sec. 7.3) and without (Sec. 7.2) semicore states is, as expected, due
to the treatment of these states as core.

Comparing our AE-Valence2 calculations with the PP-G0W0 results with the
same valence configuration in Ref. [109], Fig. 7.19, we observe the same trend as in
materials without semicore states, i. e. the PP-G0W0 band gap correction is slightly
larger than the AE-Valence2, which is also slightly larger than the AE result. While
the latter discrepancy is clearly due to core-valence partitioning, we can not assign
the former to the effect of pseudoization, which could be either cancelled or increased
by the plasmon-pole approximation used in Ref. [109]. Nevertheless, the similarity
with Fig. 7.5 is a clear indication that a pseudoization error of the order of 0.1 eV
is to be expected.

7.4 Conclusion

From the results shown in this chapter, we can conclude that, although the G0W0

method substantially improves the band gap of low correlated materials, it still

103



7.4. Conclusion Chapter 7

Table 7.9: Matrix elements of the self-energy [in eV] (correlation term: Σc, exchange
term: Σx) and exchange-correlation potential V xc (correlation term: V c, exchange
term: V x) for NaCl in our all-electron, AE-Valence, and PP-G0W0 calculations.

εLDA Σc Σx V c V x V xc Σx − V xc εG0W0

All-electron G0W0:
Γv 0.00 2.62 -21.07 -1.64 -15.22 -16.86 -4.21 0.00
Γc 4.74 -3.31 -5.37 -1.15 -8.70 -9.95 4.58 7.60

Γc − Γv(∆) 4.74 -5.93 15.70 0.49 6.52 6.91 8.79 7.60
AE-Valence G0W0 (Na: 3s; Cl: 3s, 3p):

Γv 0.00 2.51 -18.66 -1.62 -12.91 -14.53 -4.13 0.00
Γc 4.74 -3.16 -3.34 -1.15 -6.50 -7.65 4.31 7.51

Γc − Γv(∆) 4.74 -5.67 15.32 0.47 6.41 6.88 8.44 7.51
PP-G0W0 (Na: 3s; Cl: 3s, 3p):

Γv 0.00 1.99 -18.63 -14.22 -4.41 0.00
Γc 4.70 -3.33 -3.51 -7.61 4.10 7.89

Γc − Γv(∆) 4.70 -5.32 15.12 6.61 8.51 7.89

underestimates them systematically. The impressive agreement of PP-G0W0 cal-
culations with experimental results in the last decades relies in fact on a system-
atic overestimation of these values, originated in the approximations implicit in the
method.

Core-valence partitioning, the usual suspect, leads to large errors, up to several
eV’s, in the calculation of the many-body self-energy, mainly due to an underestima-
tion of the exchange term. However, when applied as a perturbation to the Kohn-
Sham eigenvalues, these errors tend to cancel with those of the exchange-correlation
potential. As long as semicore states are absent, or treated as valence states, these
cancellation results in a small increase of the band gap correction, which cannot
explain solely the discrepancies between pseudopoteintial and all-electron results.

Pseudoization, presumed innocent, is in fact also responsible for the systematic
overestimation of the fundamental band-gaps of these materials. Being it intrinsic
to the pseudopotential method, it poses a lower limit to the precision of PP-G0W0

results.
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Figure 7.8: Matrix elements of the self-energy [in eV] (correlation term: Σc, ex-
change term: Σx) and exchange-correlation potential V xc for the conduction band
minimum state at Γ point (Γc) in NaCl in our all-electron, AE-Valence, and PP-
G0W0 calculations.

Table 7.10: Matrix elements of the self-energy [in eV] (correlation term: Σc, ex-
change term: Σx) and exchange-correlation potential V xc (correlation term: V c,
exchange term: V x) for CaSe in our all-electron, AE-Valence, and PP-G0W0 calcu-
lations.

εLDA Σc Σx V c V x V xc Σx − V xc εG0W0

All-electron G0W0:
Γv 0.00 1.91 -17.59 -1.61 -13.64 -15.25 -2.34 0.00
Xc 1.86 -4.03 -5.69 -1.39 -9.40 -10.79 5.10 3.36

Xc − Γv 1.86 -5.94 11.90 0.22 4.24 4.46 7.44 3.36
AE-Valence G0W0 (Ca: 3s, 3p); Se: 4s, 4p :

Γv 0.00 1.79 -14.47 -1.52 -10.54 -12.06 -2.41 0.00
Xc 1.86 -3.79 -2.57 -1.19 -5.83 -7.02 4.45 3.14

Xc − Γv 1.86 -5.58 11.90 0.33 4.71 5.04 6.86 3.14
PP-G0W0 (Ca: 3s, 3p; Se: 4s, 4p):

Γv 0.00 1.56 -14.50 -11.92 -2.58 0.00
Xc 1.84 -3.68 -2.78 -6.90 4.12 3.30

Xc − Γv 1.84 -5.24 11.72 5.02 6.70 3.30
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Figure 7.9: Differences between the matrix elements of the self-energy [in eV] (cor-
relation term: ∆Σc, exchange term: ∆Σx) and exchange-correlation potential ∆V xc

over the conduction band minimum and valence band maximum states at the Γ point
(Γc and Γv) in NaCl in our all-electron, AE-Valence, and PP-G0W0 calculations.
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Figure 7.10: The G0W0 correction (in eV) to the fundamental band gap in NaCl
obtained from the PP, AE-Valence, and AE-G0W0 calculations.
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Figure 7.11: Band diagram of GaAs (in eV, referenced to the Fermi level) obtained
from all-electron LDA and G0W0 calculations. Experimental results (blue circles)
taken from Ref. [128, 130, 131]
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Figure 7.12: Matrix elements of the self-energy [in eV] (correlation term: Σc, ex-
change term: Σx) and exchange-correlation potential V xc for the valence band max-
imum state at Γ point (Γv) in GaAs in our all-electron, AE-Valence, and PP-G0W0

calculations.
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Figure 7.13: Matrix elements of the self-energy [in eV] (correlation term: Σc, ex-
change term: Σx) and exchange-correlation potential V xc for the conduction band
minimum state at Γ point (Γc) in GaAs in our all-electron, AE-Valence, and PP-
G0W0 calculations.
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Figure 7.14: Differences between the matrix elements of the self-energy [in eV]
(correlation term: ∆Σc, exchange term: ∆Σx) and exchange-correlation potential
∆V xc over the conduction band minimum and valence band maximum states at
the Γ point (Γc and Γv) in GaAs in our all-electron, AE-Valence, and PP-G0W0

calculations.
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Figure 7.15: The G0W0 correction (in eV) to the fundamental band gap in GaAs
obtained from the PP, AE-Valence, and AE-G0W0 calculations.

Table 7.11: Matrix elements of the self-energy [in eV] (correlation term: Σc, ex-
change term: Σx) and exchange-correlation potential V xc (correlation term: V c,
exchange term: V x) for GaAs in our all-electron, AE-Valence, and PP-G0W0 calcu-
lations.

εLDA Σc Σx V c V x V xc Σx − V xc εG0W0

All-electron G0W0:
Γv 0.00 1.28 -16.85 -1.62 -14.02 -15.64 -1.21 0.00
Γc 0.25 -3.34 -12.22 -1.63 -15.04 -16.67 4.45 1.29

Γc − Γv 0.25 -4.62 4.63 -0.01 -1.02 -1.03 5.66 1.29
AE-Valence G0W0 (3s, 3p):

Γv 0.00 1.00 -12.39 -1.50 -9.88 -11.38 -1.01 0.00
Γc 0.25 -3.17 -6.88 -1.44 -9.19 -10.63 3.75 0.84

Γc − Γv 0.25 -4.17 5.51 0.06 0.69 0.75 4.76 0.84
PP-G0W0 (3s, 3p):

Γv 0.00 0.82 -12.65 -11.24 -1.41 0.00
Γc 0.35 -3.29 -7.01 -10.33 3.32 0.97

Γc − Γv 0.35 -4.11 5.64 0.91 4.73 0.97
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Figure 7.16: Matrix elements of the self-energy [in eV] (correlation term: Σc, ex-
change term: Σx) and exchange-correlation potential V xc for the valence band maxi-
mum state at Γ point (Γv) in GaAs in our AE-Valence, AE-Valence2, and AE-G0W0

calculations.
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Figure 7.17: Matrix elements of the self-energy [in eV] (correlation term: Σc, ex-
change term: Σx) and exchange-correlation potential V xc for the conduction band
minimum state at Γ point (Γc) in GaAs in our AE-Valence, AE-Valence2, and AE-
G0W0 calculations.
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Figure 7.18: Differences between the matrix elements of the self-energy [in eV] (cor-
relation term: ∆Σc, exchange term: ∆Σx) and exchange-correlation potential ∆V xc

over the conduction band minimum and valence band maximum states at Γ point
(Γc and Γv) in GaAs in our AE-Valence, AE-Valence2, and AE-G0W0 calculations.
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Figure 7.19: The G0W0 band gap correction (in eV) in GaAs obtained from the PP
(Ref. [109]), AE-Valence2, and AE-G0W0 calculations.
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Chapter 8

IIb-VI Semiconductors and Group
III Nitrides Revisited

Due to their wide band gaps, IIb-VI semiconductors and group III nitrides are
technologically important materials in optical applications. Thin films electrolu-
minescent cells for flat displays, interference coatings for optical components, solar
cells, and laser diodes constitute an unfairly short list among the already established
and potential applications [133, 134].

It has long been known that the semicore d states from the cation play a crucial
role in the chemical bonding of these materials. The presence of these semicore
states is, in fact, what distinguishes the IIb-VI from the IIa-VI semiconductors.
While the latter form ionic rocksalt structures, the former show a covalent bonding
in tetrahedrally coordinated crystal structures (wurtzite or zinc-blende). Already in
the late 1980’s, all-electron calculations by Wei and Zunger [135] showed that the
inclusion of the semicore d states in the valence region is necessary to obtain a correct
description of the ground state properties of IIb-VI semiconductors, later confirmed
by pseudopotential calculations including those states in the valence region [136].
The same conclusions were obtained for GaN [137]. To illustrate the situation, in
Fig. 8.1, we show the LDA eigenvalues at the Γ point for the 3s, 3p core states of
Ga, and the valence states in bulk GaN. The labels correspond to the main orbital
component of each wave-function. The 3s, 3p states of Ga are very low in energy.
The the 3d states of Ga are higher in energy than the 2s state of N. Thus, treating
the semicore d states of Ga as core states is obviously inappropriate.

Despite these considerations, Zakharov et al. [95] performed the first quasiparti-
cle band structure calculations for these kind of materials based the pseudopotential
method treating the d electrons as core states 1. Later on, Rohlfing, Krüger, and

1Non-linear core corrections were applied in the LDA calculations. The plasmon-pole approxi-
mation was used to obtain the dielectric function and eigenvalue selfconsistency was performed on
the Green’s function
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Figure 8.1: The LDA eigenvalues for the 3s, 3p core states of Ga, and the valence
states in bulk GaN at the Γ point. The 3s, 3p states of Ga are very low in energy.
The 3d states of Ga are higher in energy than the 2s state of N. Treating the semicore
d states of Ga as core states is inappropriate.

Pollmann [132] showed that the reasonable agreement with experiments obtained in
Ref. [95] was, in fact, spurious. Furthermore, they pointed out that the inclusion
of the d states in the valence region worsened the results, and an explicit treatment
of the whole shell of the semicore states2 (e. g., the 3d, 3p, and 3s states of Ga
in GaN) is necessary to obtain reliable results both for the band gap and the d
band position and width. This trend has been confirmed by further calculations
[138, 139, 140]. Recently, Rinke et al. [141] obtained an excellent agreement with
experiments within the PP-G0W0 method including only the d states in the valence
region, taking the exact exchange optimized effective potential (OEPx) as the start-
ing point, which allows some discussion about the description of the core-valence
interaction and the starting point dependence in the G0W0 method.

On the other hand, although all-electron G0W0 calculations have been carried
out for a list of materials including some of the IIb-VI semiconductors and group III
nitrides [13, 114], to the best of our knowledge, a systematic study of the electronic
structure of these materials and the role of the semicore shell and deep core states
within the all-electron G0W0 method has not been reported yet. Besides, discrepan-
cies up to 0.3 eV for the band gaps and 0.7 eV for the d band positions still remain
between the all-electron and PP-G0W0

3 methods.

2In later discussions, we call this shell the semicore shell. Since the s, p states in this shell are
clearly core states, as shown in Fig. 8.1 for GaN. To avoid confusions, we call the states belonging
to deeper shells deep core states.

3Including the outermost two shells of the cation atoms, and LDA-pseudopotentials
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In this chapter, we study the electronic structure of GaN, ZnS, ZnSe, ZnTe, CdS,
CdSe, and CdTe within the all-electron G0W0 method. The results are compared
with the already reported pseudopotential and all-electron G0W0 results, as well as
with experiments (Sec. 8.2). Afterwards, taking GaN and ZnS as examples, we
carry out the same kind of AE-Valence calculations as in the previous chapter, for
different valence configurations, to analyze the influence of the semicore shell and
the deep core states on the G0W0 results (Sec. 8.3).

8.1 Numerical Details

Throughout this chapter we restrict ourselves to the metastable zinc-blende struc-
ture, experimental lattice constants (Table 8.1) and the LDA for the exchange-
correlation potential. We have tested the convergence of the fundamental bandgaps
and d-band positions with respect to the different dimensioning parameters as in
Chapter 6. For all these materials, we have taken lmax = 3, λmin = 10−4, Q = 1.0 for
the mixed basis, ω0 = 10.88 eV and Nω = 36 for the frequency integration, and a
(4× 4× 4) mesh for the Brillouin-zone integration, RKmax = 8 for the (L)APW+lo
basis set and ∼ 150 unoccupied bands for the calculation of the self-energy. This
ensures the G0W0 corrections are converged within 0.02 eV (0.05 eV) for the funda-
mental band gaps (d band positions).

In the all-electron valence-only calculations of GaN and ZnS, we take two distinct
configurations for the valence states. The first one includes the 3d, 4s, and 4p
electrons of the cation and the outermost shell of the anion (denoted as AE-VAL1
in the following). The second one (AE-VAL2) includes the whole semicore shell
of the cation. The comparison between these two calculations allows the study of
the interaction between the electrons within the semicore shell of the cation. The
difference between AE-VAL2 and all-electron calculations reveals the influence of
the deep core electrons on the G0W0 results.

8.2 All-Electron Results

In Figure 8.2 to 8.8, we show the LDA and G0W0 band diagrams of these materials
obtained from our all-electron calculations. The effects of G0W0 correction can be
mainly summarized in: i) the upwards energy shift of the unoccupied bands, and
ii) the downwards energy shift of the semicore d states. In other words, an increase
of both, the fundamental band gap and the d states binding energy. In both cases
the significant discrepancies between the LDA and experimental results is reduced.
In GaN, the semicore d states of the cation overlap with the 2s states of the anion
on the energy axis (shown in Fig. 8.9). The highest of these states at the Γ point
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Figure 8.2: Band Diagram of zinc-blende GaN (in eV, taking the Fermi energy as
zero) from all-electron LDA and G0W0 calculations.

shows a large Ga-d component, while the lowest one shows a large N-s component.
Since the G0W0 correction to each state is sensitive to the character of its wave
function, the splitting of these bands at the Γ point experiences a noticeable change
from LDA to G0W0. In IIb-VI semiconductors, this is not observed because the
d bands of cation are separated on the energy axis from the s band of anion. In
the following, we will focus on the G0W0 corrections to the fundamental band gaps
and d band binding energies when discussing the effects of G0W0 correction on the
electronic structure of these materials.

Our all-electron fundamental band gaps, together with other theoretical and
the experimental results are shown in Table 8.1. To compare these results, one
should add ∆0/3 to the experimental values to account for the effect of spin-orbit
coupling. The comparison confirms the general trend observed in Chapter 7, the
G0W0 corrections to LDA systematically underestimate the band gaps. Our results
are in excellent agreement with the values reported by Kotani, van Schilfgaarde,
and Faleev 4 [13, 114]. The discrepancies observed for GaN and CdS (∼0.2 eV
smaller) are due to the different crystaline structures, since they have reported on
the wurtzite structure of these materials.

The PP-G0W0 calculations in Ref. [138] and [142], both treating the outermost
two shells as valence states, obtained systematically larger band gaps, consistent
with the conclusion we have drawn for GaAs in Chapter 7. Since in Ref. [138],

4Based on the full-potential (FP) linear muffin-tin orbital(LMTO) method
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Figure 8.3: Band Diagram of zinc-blende ZnS (in eV, taking the Fermi energy as
zero) from all-electron LDA and G0W0 calculations.
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Figure 8.4: Band Diagram of zinc-blende ZnSe (in eV, taking the Fermi energy as
zero) from all-electron LDA and G0W0 calculations.
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Figure 8.5: Band Diagram of zinc-blende ZnTe (in eV, taking the Fermi energy as
zero) from all-electron LDA and G0W0 calculations.
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Figure 8.6: Band Diagram of zinc-blende CdS (in eV, taking the Fermi energy as
zero) from all-electron LDA and G0W0 calculations.
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Figure 8.7: Band Diagram of zinc-blende CdSe (in eV, taking the Fermi energy as
zero) from all-electron LDA and G0W0 calculations.
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Figure 8.8: Band Diagram of zinc-blende CdTe (in eV, taking the Fermi energy as
zero) from all-electron LDA and G0W0 calculations.
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Figure 8.9: Band character plot of GaN (in eV, taking the Fermi energy as zero)
in the LDA. Left panel: d component of Ga. Right panel: s component of N. The
amount of each character is represented by the radius of the circles.

the plasmon-pole model was used to describe the frequency-dependence of dielectric
function, to analyze the discrepancies between all-electron and PP-G0W0 calcula-
tions, we will compare our results to those of Ref. [142], where the explicit ω
dependence of the screened Coulomb interaction is calculated.

Even though only the d semicore states are included in the valence region, the PP-
G0W0 results from Ref. [141], which start from the OEPx based DFT calculations,
give the best agreement with experiments. Since the all-electron G0W0 results do
not improve over those LDA based PP-G0W0 results, the improved agreement with
experiments in Ref. [141] is not only due to a better description of the core-valence
interactions, but rather, the starting point is the decisive issue.

Concerning the binding energy of the semicore d states, in Table 8.2 we show our
results, together with other theoretical and the experimental values. To compare
with experiments, one should add ∆0/3 (in Table 8.1) to these theoretical results
to account for the spin-orbital coupling effect. Our results agree within 0.25 eV
with the LDA based PP-G0W0 results (Ref. [142] and [138]). These consistent
results differ considerably from the all-electron results reported in Ref. [13]. Thus,
our results reduce the formerly reported discrepancies between the LDA based all-
electron and PP-G0W0 results from up to 0.7 eV to less than 0.3 eV. The G0W0

results systematically improve over the LDA values. However, discrepancies with
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experiments scattering from ∼1.3 eV (CdSe) to ∼2.3 eV (ZnTe) still remain.

The OEPx based PP-G0W0 results from Ref. [141] again show better agreement
with experiments, except in CdS, where their starting point at the Kohn-Sham level
is comparable to our LDA result. Therefore, we conclude that the better agreement
with experiments in other materials is due to the better starting point at the Kohn-
Sham level, indicating the importance of this issue in the G0W0 scheme.

8.3 The role of Core States

8.3.1 Postions of the Semicore d Bands

To analyze the role of the semicore states in the G0W0 calculation, we compare the
band diagrams of GaN and ZnS obtained from the AE, AE-VAL1 and AE-VAL2
G0W0 calculations in Fig. 8.10 and 8.11.

Including only the outermost shell and the d states in the G0W0 correction (AE-
VAL1) moves the latter up in energy by several eV’s. In GaN, the semicore d states
of Ga are taken away from the s states of N (Fig. 8.10). In ZnS, they even go
into the regime of the valence p band of the S atom, as can be seen in Fig. 8.11.
When the interaction between the 3d and 3s, 3p states (the semicore shell) in the
cation is included on the G0W0 level (AE-VAL2), these bands shift back in the right
direction toward the experimental results, showing that the inconsistent treatment
of the interactions of the semicore d states with the sp valence states of the anion
and the sp states of the cation in the semicore shell is responsible for the unphysical
reduction of the binding energy of the 3d states. Nevertheless, discrepancies in
order of 1 eV with respect to the AE-G0W0 results remain. A clear indication that
also the many-body interaction with the deep core states is necessary for a correct
description of the semicore states.

To analyze the origin of these differences, we follow a procedure analogous to
that employed in the previous chapter for the band gaps. In Table 8.3 we show
the matrix elements of the self-energy and the exchange-correlation potential at the
valence band maximum (VBM) and the highest d state at the Γ point (Γd) for GaN,
as well as the difference between them (∆F = F (ΓVBM) − F (Γd) where F = Σx,
Σc, V xc). The correlation term of the self-energy on the valence band maximum
state, mainly a 2p state of N, shows very small differences between the AE-VAL1,
AE-VAL2, and AE-G0W0 calculations (< 0.1 eV), indicating that the correlation
interaction between this state and the 3s, 3p states of the cation as well as the
deep core states is negligible. However, looking at this term on the highest d band,
we observe that its correlation interaction with the 3s, 3p states of the cation is
very strong, producing a decrease of the binding energy of the order of 2 eV when
going from the AE-VAL1 to the AE-VAL2 G0W0 calculations. This is due to the
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Figure 8.10: Band diagrams of zinc-blende GaN (in eV, taking the Fermi energy
as the zero point) obtained from the AE-LDA, AE-G0W0, AE-VAL1-G0W0, and
AE-VAL2- G0W0 calculations.
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Figure 8.11: Band diagram of zinc-blende ZnS (in eV, taking the Fermi energy as the
zero point) obtained from the AE-LDA, AE-G0W0, AE-VAL1-G0W0, and AE-VAL2-
G0W0 calculations.
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strong overlap between wave functions in the same shell. Explicitly including their
interaction at the G0W0 level is obviously necessary. Inclusion of the deep core states
further increases the correlation term of self-energy by 0.32 eV, much smaller but
still noticeable. According to these considerations, the good agreement of the PP-
G0W0 results for the d states binding energies obtained by Rinke et al. are mainly
due to the exclusion of the correlation contribution of the core-states.

Table 8.3: Matrix elements of the self-energy [in eV] (correlation term: Σc, exchange
term: Σx) and exchange-correlation potential V xc for the highest d state (Γd) and
the valence band maximum (ΓVBM) in GaN.

εLDA Σc Σx Σc + Σx V xc εG0W0

AE-VAL1 (Ga: 3d, 4s, and 4p):
ΓVBM 0.00 3.36 -21.76 -18.40 -18.66 0.00

Γd -13.23 8.63 -38.26 -29.63 -33.30 -9.82
ΓVBM − Γd (∆) 13.23 -5.27 16.50 11.23 14.64 9.82
AE-VAL2 (Ga: 3s, 3p, 3d, 4s, 4p):

ΓVBM 0.00 3.43 -22.78 -19.35 -19.22 0.00
Γd -13.23 10.51 -51.88 -41.37 -40.13 -14.34

ΓVBM − Γd (∆) 13.23 -7.08 29.10 22.02 20.91 14.34
AE:

ΓVBM 0.00 3.40 -24.04 -20.64 -20.49 0.00
Γd -13.23 10.83 -56.80 -45.97 -43.78 -15.27

ΓVBM − Γd (∆) 13.23 -7.43 32.76 25.33 23.29 15.27

The matrix elements for the exchange term of the self-energy (forth column
in Table 8.3) on the VBM increase by almost 1 eV by including the 3s and 3p
states (from AE-VAL1 to AE-VAL2) and another 1.3 eV by including the deep core
states (from AE-VAL2 to AE). On the other hand, the same matrix elements for
the d-state show huge changes (∼13 eV when including the 3s and 3p states of
Ga and further 5 eV from the deep core electrons of both Ga and N), which are
carried along to the binding energy of the 3d state. Summing up the many-body
contributions to the binding energy (∆Σ = ∆Σc + ∆Σx -fifth column in Table 8.3),
we obtain a contribution of ∼10 eV due to the 3s and 3p states and ∼3 eV coming
from the deep core electrons. The corresponding contributions from the exchange-
correlation potential are ∼6 eV and ∼2 eV respectively. The correction to the
binding energy results from the cancellation of contributions from the self energy
and exchange-correlation potential. Thus, the corresponding G0W0 correction to
the d band position from AE-VAL1 to AE-VAL2, and from AE-VAL2 to AE-G0W0,
are smaller in absolute values by 4.52 eV and 0.93 eV respectively (last column of
Table 8.3).
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From this analysis, we conclude that the exchange interaction between the 3s, 3p
and the 3d states of Ga is the main reason for including all these states in the G0W0

calculations in order to obtain reliable values for the binding energy of the semicore
d states, in agreement with what was found in Ref. [132]. However the correlation
interaction between these states produces large corrections ∼2 eV and can not be
neglected. The deep core states contribute to the d-state binding energies through
both exchange and correlation interaction with them. The much larger exchange
interaction tends to increase this binding energy, while the correlation interaction
tends to reduce it. The overall contribution from the deep core states tends to
increase the d-state binding energy. Thus, an all-electron treatment is required for
a good description of the semicore d states in these materials.

Table 8.4: Matrix elements of the self-energy [in eV] (correlation term: Σc, exchange
term: Σx) and exchange-correlation potential V xc for the highest d band (Γd) and the
valence band maximum (ΓVBM) in ZnS in our AE-VAL1, AE-VAL2, and AE-G0W0

calculations.
εLDA Σc Σx Σc + Σx V xc εG0W0

AE-VAL1 (Zn: 3d, 4s):
ΓVBM 0.00 2.60 -18.57 -15.97 -16.35 0.00

Γd -6.09 8.07 -34.20 -26.13 -30.04 -2.56
ΓVBM − Γd (∆) 6.09 -5.47 15.63 10.16 13.69 2.56
AE-VAL2 (Zn: 3s, 3p, 3d, 4s):

ΓVBM 0.00 2.74 -20.46 -17.72 -17.36 0.00
Γd -6.09 9.97 -46.59 -36.62 -36.40 -5.95

ΓVBM − Γd (∆) 6.09 -7.23 26.13 18.90 19.04 5.95
AE:

ΓVBM 0.00 2.78 -23.18 20.40 -19.91 0.00
Γd -6.09 10.29 -50.86 -40.57 -39.65 -6.52

ΓVBM − Γd (∆) -6.09 -7.51 27.68 20.17 19.74 6.52

In Table 8.4 we show the same matrix elements as in Table 8.3 for ZnS. The
situation is similar except that the hybridization between the 3d states of Zn and
the valence band maximum state, which mainly originated from the 3p states of S,
is stronger compared with GaN. In Fig. 8.12, we show the band character plot of
ZnS for the d component of Zn from the LDA calculation. Compared with that for
GaN in Fig. 8.9, we see a much stronger d character for the valence band maximum
state. Accordingly, the wave function of this valence band maximum state has a
larger overlap with those of the 3s, 3p states in Zn compared with GaN, leading to
stronger interactions between the 3s, 3p states of Zn and the valence band maximum.
As a result, the changes in the matrix elements of the valence band maximum, when
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going from the AE-VAL1 to the AE-VAL2 configurations (Table 8.4) are larger than
for GaN (Table 8.3). Except for this differences, the conclusions for the interaction
between electrons in the semicore shell and the deep core states contribution to the
G0W0 results are same as in GaN: i) there exist strong exchange and correlation
interactions between the 3d state and the 3s, 3p states of Zn; ii) the deep core
states have a non-negligible contribution to the electronic structure of this material,
especially for the semicore d states, again confirming the necessity for an all-electron
treatment in the G0W0 calculations.

Figure 8.12: Band character plot of ZnS (in eV, taking the Fermi energy as the
zero point) for the d component of Zn from the all-electron LDA calculation. The
amount of Zn d character is represented by the radius of the circles.

8.3.2 Band Gaps

In the previous chapter we have shown, through GaAs, that including only the
outermost shell in the many body correction leads to large core-valence partitioning
errors in the G0W0 band gaps of materials with semicore states. In GaN and ZnS,
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Table 8.5: Matrix elements of the self-energy [in eV] (correlation term: Σc, exchange
term: Σx) and exchange-correlation potential V xc for GaN in our AE-VAL1, AE-
VAL2, and AE-G0W0 calculations.

εLDA Σc Σx V xc Σx − V xc εG0W0

AE-VAL1 (Ga: 3d, 4s, 4p):
Γv 0.00 3.36 -21.76 -18.66 -3.10 0.00
Γc 1.76 -4.06 -9.07 -14.47 5.40 2.84

Γc − Γv 1.76 -7.42 12.69 4.19 8.50 2.84
AE-VAL2 (Ga: 3s, 3p, 3d, 4s, 4p):

Γv 0.00 3.43 -22.78 -19.22 -3.56 0.00
Γc 1.76 -4.05 -9.68 -14.81 5.13 2.97

Γc − Γv 1.76 -7.48 13.10 4.41 8.69 2.97
AE:

Γv 0.00 3.40 -24.04 -20.49 -3.55 0.00
Γc 1.76 -4.01 -11.25 -16.13 4.88 2.78

Γc − Γv 1.76 -7.41 12.79 4.36 8.43 2.78

the semicore 3d states of the cation atom hybridize with the s valence states of N and
the p valence states of S respectively (Fig. 8.9 and Fig. 8.12). This hybridization
obviously makes the treatment of the d orbital as core states inappropriate. Still,
whether the inclusion of the 3s, 3p states of the cation explicitly in the many body
corrections is required to obtain reliable band gaps, as it is for the d band position,
remains an open question. Thus, we use the same calculation schemes of the previous
subsection to investigate the influence of the 3s, 3p states of the cation as well as
deep core electrons on the G0W0 band gaps.

In Table 8.5, we show the matrix elements of the self-energy and exchange-
correlation potential for the conduction band maximum (denoted as Γc in the table)
and valence band maximum states (Γv) as well as their difference in GaN. The core-
valence partitioned treatment using either the AE-VAL1 or the AE-VAL2 schemes
has little influence on the correlation term of the self-energy. Its influence on the
matrix elements of the exchange term of the self-energy and the exchange-correlation
potential is of the order of eV. These errors, as usual, tend to cancel each other so
that its influence on both the G0W0 correction to the Kohn-Sham energies and the
band gaps is reduced to values in the order of 0.1 eV.

The same matrix elements are shown in Table 8.6 for ZnS. Comparing the AE-
VAL2 with the AE-VAL1 calculations, we observe that including the 3s, 3p states of
Zn in the G0W0 correction already has a noticeable effect on the correlation term of
the self-energy, in the order of 0.2 eV for its contribution to the band-gap, which was
not observed in GaN. This is due to the hybridization between the 3d states of Zn and
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valence band maximum state, which strengthens the interaction between the latter
and the 3s, 3p states of Zn. Accordingly, a core-valence partitioning which treats the
3s, 3p states of Zn as core, as in the AE-VAL1 calculation, is inappropriate. When
the G0W0 band gap correction is calculated, the large changes of the exchange term
of the self-energy and the exchange-correlation potential due to the core-valence
partitioning do not cancel each other as much as in GaN. This behavior is similar
to that observed in the previous chapter for materials with semicore states excluded
from the many-body treatment, which also confirms the conclusion in Ref. [132]
that splitting the shell in the PP-G0W0 calculations can lead to errors due to the
different treatment of the interaction of the 3d states of the cation with the sp
states of the same shell and the sp valence states from the anion. Thus, for the
LDA based G0W0 method to address these band gaps on relatively safe grounds, an
explicit treatment of the whole semicore shell is required. This problem seems to
be circumvented using OEPx based pseudopotentials for the DFT calculations, Ref.
[141], due to the better description of the exact exchange interaction implied in the
pseudopotential. Already their DFT band gaps show much better agreement with
experiments than the LDA results, and their G0W0 results obviously benefit from
the better starting point.

Table 8.6: Matrix elements of the self-energy [in eV] (correlation term: Σc, exchange
term: Σx) and exchange-correlation potential V xc for ZnS in our AE-VAL1, AE-
VAL2, and AE-G0W0 calculations.

εLDA Σc Σx V xc Σx − V xc εG0W0

AE-VAL1 (Zn: 3d, 4s):
Γv 0.00 2.60 -18.57 -16.35 -2.22 0.00
Γc 1.85 -4.07 -6.40 -11.78 5.38 2.78

Γc − Γv 1.85 -6.67 12.17 4.57 7.60 2.78
AE-VAL2 (Zn: 3s, 3p, 3d, 4s):

Γv 0.00 2.74 -20.46 -17.36 -3.10 0.00
Γc 1.85 -4.10 -7.12 -12.18 5.06 3.17

Γc − Γv 1.85 -6.84 13.34 5.18 8.16 3.17
AE:

Γv 0.00 2.78 -23.18 -19.91 -3.27 0.00
Γc 1.85 -4.09 -9.13 -14.04 4.91 3.16

Γc − Γv 1.85 -6.87 14.05 5.87 8.18 3.16
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8.4 Conclusion

In conclusion, the LDA based G0W0 method systematically underestimates the semi-
core d-state binding energies and the fundamental band gaps in the IIb-VI semicon-
ductors and group III nitrides.

The semicore d states interact with the sp states in the same shell through both
exchange and correlation, with the former increasing the binding energy and the lat-
ter decreasing it. Whilst the contribution from the exchange term of the self-energy
is dominant, the correlation term contributes noticeably and can not be neglected.
Ignoring these interactions in the G0W0 calculations is physically incorrect, result-
ing a strong underestimation of the d state binding energies. The interaction of the
deep core states with the semicore d states is weaker but with similar properties.
Including these interactions further increases the d state binding energies, indicating
the importance of the all-electron feature in the G0W0 calculations.

The effect of the deep core states on the G0W0 band-gaps is small (in the order
of 0.2 eV). While in GaN, omitting the 3s and 3p states of Ga still gives a good
approximation to the fundamental band gap, in ZnS, the interaction between the
valance band maximum and the 3s, 3p states of Zn has to be included in the many-
body corrections. Otherwise, an error of 0.4 eV due to core-valence partitioning
is to be expected. This is due to the hybridization of the 3d semicore state with
the p states of the anion, which constitute the highest occupied band. The same
behavior can be expected for other IIb-VI semiconductors. Thus, at least the whole
semicore shell has to be included in order to obtain reliable G0W0 fundamental band
gaps. To improve agreement with experiments, efforts beyond the LDA based G0W0

framework are still required, e. g. including self-consistency or choosing a better
starting point.

Concerning the starting point issue, our results confirm the conclusions of Rinke
et al. [141] about the improvement of the band gaps by starting from OEPx based
DFT calculations, mainly due to the better KS starting points. Regarding the
binding energy of the semicore d states, since their PP-G0W0 calculations treat only
the outermost shell and the semicore d states of the cation as valence, the correlation
contribution from the core states is absent. We have shown that neglecting these
interactions leads to an artificial increase of the d state binding energies. This makes
their conclusion for the binding energy of semicore d states disputable.
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Conclusions and Outlook

In this thesis, we have presented the implementation of a new all-electron G0W0 code
based on the FP-(L)APW+lo method. Using this code, we have 1) investigated the
origin of the well-known discrepancy between all-electron and pseudopotential based
G0W0 band gaps; 2) systematically studied the role of semicore and core states
in the quasiparticle description of IIb-VI semiconductors and group III nitrides.
Hereinafter, we summarize our results.

9.1 Implementation

Part of the difficulties for the implementation of this code is due to the complicated
form of the (L)APW+lo basis functions. Expansion of the non-local operators, like
P , W , and Σ, requires a set of functions reliable and efficient in reproducing the
product of any pair of Kohn-Sham wave functions. For our code, we have chosen the
mixed basis set, which follows the same space partition as the APW-based methods.
We have shown that, with a careful choice of the parameters defining the basis set
in both the muffin-tin and the interstitial regions, an excellent compromise between
efficiency and accuracy can be obtained.

The calculation of the polarizability requires a precise q-dependent integration
in the Brillouin-zone, in which all possible transitions from occupied states to unoc-
cupied states and back conserving the wavenumber are included. Based on the early
work of Rath and Freeman [103] we have extended the linear tetrahedron method
to the q-dependent case, including also the frequency-dependency of the integrand
and the variation of the matrix elements in Eq. 5.22 inside each tetrahedron. The
former enables the application of this method beyond the static limit, while the
latter improves the efficiency by reducing the number of k-points required for a
given precision. The method is specially efficient for the treatment of metals, as was
shown in our tests for the free electron gas.
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The inclusion of the Γ-point in the q mesh posses a major challenge, due to the
divergence of the Coulomb matrix (Sec. 5.5). It is well known from the plane-wave
expansion, that reformulating the correlation interaction in terms of the symmetrized
dielectric matrix, the divergence of the Coulomb matrix is canceled by the zero of the
polarization matrix. The analytical expression for this limit within the mixed basis
expansion has been obtained, to our knowledge, for the first time (Appendix F). The
still remaining singularity in v and W c can be integrated to obtain the self-energy,
but makes it numerically unstable. By adding and subtracting an analytic (and
analytically integrable) function with the same singularity at the Γ point (Appendix
C and G, and Sec. 5.5). we have achieved an efficient and numerically stable
calculation of the self-energy.

The correlation term of the self-energy requires the numerical calculation of the
convolution of G and W c in frequency. This in turn requires a large number of sam-
ple points (usually hundreds) due to the rapidly varying shape of both functions.
Applying analytical continuation, we can express all the frequency-dependent quan-
tities on the imaginary frequency axis, where both G and W c are smooth functions.
Consequently, an accurate determination of the self-energy for imaginary frequencies
requires only a small number of sample points (usually around twenty). These re-
sults are then fitted by a function and analytically continued onto the real frequency
axis.

We believe that these features make our code the most accurate implementation
of the G0W0 approximation at present, at the same time applicable to a wide range
of materials.

9.2 All-electron vs. Pseudopotential Based G0W0

Band Gaps

Comparing all-electron and pseudopotential G0W0 calculations with all-electron
based calculations where the exchange-correlation potential and self-energy are cal-
culated only from the valence states we have been able to disentangle the role of
core-valence partitioning and pseudoization in pseudopotential G0W0 calculations
for a set of distinct materials (C, Si, BN, AlP, LiF, NaCl, GaAs, and CaSe).

Our results show that both approximations contribute noticeably to the dis-
crepancy between all-electron and pseudopotential based G0W0 band gaps. While
core-valence partitioning produces errors of several eV’s in the matrix elements of
Σx and V xc. These errors tend to cancel each other when calculating the G0W0

correction to the Kohn-Sham eigenvalues. In materials without semicore states (C,
Si, BN, AlP, and LiF) this cancellation results in a small increase, in the order of
0.1 eV, of the band gaps corrections. On the other hand, in the presence of semicore
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states (CaSe, NaCl, and GaAs), the incomplete cancellation between the effects of
core-valence partitioning on Σx and V xc produces a decrease of the band gap cor-
rection, even after adding the contribution from Σc. In particular for GaAs, where
very shallow 3d states appear, this effect can be as large as -0.45 eV. Treating the
third shell of Ga explicitly in the many-body correction the same picture as for the
materials without semicore states is recovered.

The influence of pseudoization on all the matrix elements ( Σc, Σx and V xc) is
always in the order of 0.1 eV and produce an increase the G0W0 band gap correction
of the same order of magnitude.

Based on these results, we conclude that in order to evaluate the G0W0 approx-
imation, the full-potential all-electron treatment should be taken as benchmark.

9.3 IIb-VI semiconductors and Group III Nitrides

Taking GaN, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe as examples, we have analyzed:
1) the quality of the LDA based all-electron G0W0 results, 2) the interaction between
electrons in the semicore shell of the cations, and 3) the influence of the deep core
states on the G0W0 results, in IIb-VI semiconductors and group III nitrides.

We have shown that both exchange and correlation interaction between electrons
in the semicore shell of the cation is of crucial importance in the G0W0 calculations
for a reasonable description of the d-band positions, exchange being the largest.
The d-band binding energies are mainly determined by the balance between the
interaction of the semicore d states with the sp valence states of the anion and with
the sp states of the cation in the same shell. Treating the former at the G0W0 level,
while keeping the latter in the LDA breaks this balance resulting in an unphysically
high position of the semicore d-band. In ZnS, they are even driven into the region of
the valence sp bands. Comparing our results to those of Ref. [141], we can confirm
that the OEPx functional sets up a better starting point for the calculation of the
G0W0 correction to the band gap of these materials. On the other hand, the better
agreement obtained for the d band positions is due to the neglect of the correlation
interaction between states in the semicore shell.

We have also shown that the deep core states have a significant influence on
G0W0 results. Their inclusion in the G0W0 calculation systematically improves the
positions of the d bands (up to 1 eV) due to the strong exchange interaction between
them and the semicore d states. This further emphasizes the need of an all-electron
treatment in the G0W0 calculation of these materials. Nevertheless, our results
confirm that LDA basedG0W0 results systematically underestimate the fundamental
band gaps and d-state binding energies of these materials, a clear indication that
efforts beyond the LDA+G0W0 treatment are required.
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9.4 Outlook

The systematic underestimation of the fundamental band gaps in all the semicon-
ductors studied and the d state binding energies in IIb-VI semiconductors and group
III nitrides shows that efforts beyond the LDA+G0W0 treatment are still required.
In the near future, we plan to extend our studies by using different starting points,
e.g. LDA+U, self-interaction corrected (SIC), or OEPx based DFT calculations.
The LDA+U based G0W0 method has been implemented and our preliminary re-
sults for f systems are promising. In addition, the effect of self-consistency in the
GW calculations is also of great importance. As a first step, the GW0 method,
which updates the quasiparticle energies in G self-consistently while keeping W0

unchanged when calculating the self-energy, has been implemented.
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Appendix A

Integration of Plane Waves in the
Interstital region

The overlap matrix is:

Oq
G,G′ =

∫
V

[P q
G(r)]

∗
P q

G′(r)dr, (A.1)

using the definition of the interstitial plane wave, it can be written as:

Oq
G,G′ =

1

V

∫
I

e−i(q+G)·rei(q+G′)·rdr

=
1

V

∫
I

e−i(G−G′)·rdr =
1

Ω

∫
IΩ

e−i(G−G′)·rdr.
(A.2)

Thus, we can write Oq
G,G′ ≡ OG,G′ since it has no q dependence. The advantage is

that it only needs to be calculated once. The integral over the interstitial region is
carried out by integrating over the whole unit cell and subtracting the contribution
from the atomic spheres. That is:

IG ≡
∫
IΩ

eiG·rdr =

∫
Ω

eiG·rdr−
∑

α

∫
MTα

eiG·rdr. (A.3)

The integral over the unit cell is:∫
Ω

eiG·rdr = ΩδG,0, (A.4)

while the integral over the MT sphere is equal to the volume of the muffin-tin sphere
(V α

MT) if G = 0. For the case G 6= 0 the integral can be done using the Rayleigh-
expansion for a plane wave in terms of spherical harmonics:

eiG·r = 4πeiG·rα
∑
λµ

iλjλ(r
αG)Y ∗

λ,µ(Ĝ)Yλ,µ(r̂α), (A.5)
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which when substituted in the last term of Eq. A.3 gives:∫
MTα

eiG·rdr =4πeiG·rα
∑
λ,µ

Y ∗
λ,µ(Ĝ)iλ

∫
MTα

jλ(r
αG)Yλ,µ(r̂α)dra

=4πeiG·rα
∑
λ,µ

Y ∗
λ,µ(Ĝ)iλ

Rα
MT∫

0

jλ(r
αG) (rα)2 drα

∫
Yλ,µ(r̂α)dr̂α

=4πeiG·rα
∑
λ,µ

Y ∗
λ,µ(Ĝ)iλ

Rα
MT∫

0

jλ(r
αG) (rα)2 drα

√
4πδλ,0δµ,0

=4πeiG·rα

Rα
MT∫

0

j0(r
αG) (rα)2 drα

=4πeiG·rα

[
sin(GRα

MT)− (GRα
MT) cos(GRα

MT)

G3

]
=3V α

MTe
iG·ra

[
sin(GRα

MT)− (GRα
MT) cos(GRα

MT)

(GRα
MT)3

]
.

(A.6)

Thus we have:

IG =


Ω−

∑
α

V α
MT G = 0

−3
∑
α

V α
MTe

iG·rα

[
sin(GRα

MT)−(GRα
MT) cos(GRα

MT)

(GRα
MT)3

]
G 6= 0.

(A.7)

Using this result (Eq. A.7), the overlap matrix can be writen as:

OG,G′ =
1

Ω
IG′−G (A.8)

138



Appendix B

The Overlap Matrix between a
Plane Wave and a Mixed Basis
Function in the Muffin-Tin Region

In this section we calculate the overlap matrix elements between the mixed basis
function and the plane wave:

W i
G(q) = 〈χq

i |q + G〉 =
1√
V

∫
V

[χq
i (r)]

∗
ei(q+G)·rd3r. (B.1)

Inside the MT-sphere, we have:

WL
G(q) =

1√
V

∫
V

[
γq

α,N,L,M(r)
]∗
ei(q+G)·rd3r

=
1√
NcV

∑
R

e−iq·(R+rα)ei(q+G)·(R+rα)

∫
MT

γ∗α,N,L,M(rα)ei(q+G)·rα

d3rα

=
1√
NcV

∑
R

eiG·(R+rα)

∫
MT

υN,L(rα)Y ∗
L,M(T−1r̂α)ei(q+G)·rα

d3rα.

(B.2)
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Using G ·R = 2nπ and the Rayleigh expansion (Eq. J.8) we obtain:

WL
G(q) =4π

√
Nc

V
eiG·ra

∑
λ,µ

iλY ∗
λ,µ(T−1q̂ + G)

∫
MT

υN,L(ra)Y ∗
L,M(T−1r̂a)×

jλ(|q + G|ra)Yλ,µ(T−1r̂a)d3ra

=
4π√
Ω
eiG·ra

∑
λ,µ

iλY ∗
λ,µ(T−1q̂ + G)

Ra
MT∫

0

υN,L(r)jλ(|q + G|r)r2drδλ,Lδµ,M

=
4π√
Ω
eiG·raiLY ∗

L,M(T−1q̂ + G)

Ra
MT∫

0

υN,L(r)jL(|q + G|r)r2dr.

(B.3)
Thus, according to Eq. C.31 we end up with:

WL
G(q) =

4π√
Ω
eiG·raiLY ∗

L,M(T−1q̂ + G)
〈
j
|G+q|
λ

〉
a,N,L

. (B.4)

In the interstitial region, using Eq. 5.14, we have:

WL
G(q) =

1

V

∑
G′

S̃∗G′,i

∫
I

e−i(q+G′)·rei(q+G)·rd3r

=
1

Ω

∑
G′

S̃∗G′,i

WZ∫
I

ei(G−G′)·rd3r,

(B.5)

which according to equation A.3 is:

WL
G(q) =

1

Ω

∑
G′

S̃∗G′,iIG−G′ . (B.6)
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The Coulomb Matrix

The coulomb matrix vi,j(q) is given by:

vi,j(q) =

∫
V

∫
V

(χq
i (r1))

∗v(r1, r2)χ
q
j (r2)dr2dr1, (C.1)

which, making use of Eq. I.6, can be writen as:

vi,j(q) = Nc

∫
Ω

∫
Ω

(χq
i (r1))

∗
∑
R

v(r1, r2 −R)e−iq·Rχq
j (r2)dr2dr1. (C.2)

According to the region to which r1 and r2 belong, we can distinguish three
different cases. We analyze them separately in the following sections.

C.1 Case A: Both r1 and r2 belong to a MT-sphere

Region

C.1.1 r1 and r2 belong to MT-spheres Surrounding Different
Atoms

In this case Eq. C.2 can be writen as:

vL,L′(q) = Nc

∫
V α
MT

∫
V α′
MT

(γq
α,N,L,M(r1))

∗
∑
R

v(r1, r2 −R)e−iq·Rγq
α′,N ′,L′,M ′(r2)dr2dr1,

(C.3)
where we have shortened the notation by using a unique index L ≡ {α,N, L,M}.
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Inserting the specific form of the Coulomb potential and the basis functions (Eq.
5.15), Eq. C.3 can be rewritten as:

vL,L′(q) =
Nce

iq·(rα′−rα)√
N2

c

∫∫
V α

MT

υα,N,L(rα)Y ∗
L,M(r̂α)

∑
R

e−iq·R

|rα
1 − rα′

2 + Rα,α′|
υα′,N ′,L′(rα′

2 )

YL′,M ′(r̂α′

2 )dr2dr1,
(C.4)

where Rα,α′ = R + rα − rα′ and rα
1 ≡ r1 − rα = Tαr

α
1 .

Making use of the Laplace expansion for the Coulomb potential in terms of
spherical harmonics,

1

|r1 − r2|
=

∞∑
l=0

l∑
m=−l

4π

2l + 1

rl
<

rl+1
>

Y ∗
l,m(r̂<)Yl,m(r̂>)

=
∞∑
l=0

l∑
m=−l

4π

2l + 1

rl
<

rl+1
>

Yl,m(r̂<)Y ∗
l,m(r̂>),

(C.5)

where r< = min(r1, r2) and r> = max(r1, r2),
1 and taking into account that muffin-

tin spheres do not overlap (if α 6= α′ we have r< = |rα
2 − rα

1 | and r> = |Rα,α′|), the
interaction factor in Eq. C.4 becomes:

1

|rα
1 − rα′

2 + Rα,α′|
=
∑
l,m

4π

2l + 1

|rα
2 − rα

1 |
l

Rl+1
α,α′

Y ∗
l,m( ̂rα

2 − rα
1 )Yl,m(R̂α,α′). (C.6)

Using the Addition Theorem for Solid Harmonics of Ref. [148] we can rewrite
Eq. C.6 as:

1

|rα
1 − rα′

2 + Rα,α′|
=

(4π)
3
2

∑
l,m

∑
l′,m′

g̃l,m;l′,m′
(rα

1 )l (rα
2 )l′

Rl+l′+1
α,α′

Y ∗
l,m(r̂α

1 )Y ∗
l′,m′(r̂

α
2 )Y(l+l′),(m+m′)(R̂α,α′),

(C.7)

1The equivalence of the two expressions can be proved as follows: Under complex conjugation,
the spherical harmonics satisfy: Y ∗

l,m(r̂) = (−1)mYl,−m(r̂), thus, the sum over m in Eq. C.5 can
be writen as

∑l
m=−l (−1)mYl,−m(r̂1)(−1)mY ∗

l,−m(r̂2) =
∑l

m=−l (−1)2mYl,−m(r̂1)Y ∗
l,−m(r̂2). If we

change m by −m, and since the sum runs from −l to l it can be written as
∑l

m=−l Yl,m(r̂1)Y ∗
l,m(r̂2).

142



Chapter C C.1. A: Both MT-sphere

where, according to Ref. [83],

g̃l,m;l′,m′ =
(−1)l

√
[2(l + l′)]!(l,m; l′,m′|l + l′,m+m′)√
(2l′ + 1)!(2l + 1)!(2l + 2l′ + 1)!

=(−1)l

√
(l + l′ +m+m′)!(l + l′ −m−m′)!

(2l + 1)(2l′ + 1)[2(l + l′) + 1](l +m)!(l −m)!(l′ +m′)!(l′ −m′)!

(C.8)
and (l,m; l′,m′|l + l′,m +m′) is the corresponding Clebsch-Gordan coefficient. In-
cluding Eq. C.7 into Eq. C.4, and using the definition of Ra,a′ = R + rα − rα′ , we
have:

vL,L′(q) =
∞∑

λ=0

λ∑
µ=−λ

∞∑
λ1=0

λ1∑
µ1=−λ1

(4π)
3
2 g̃λ,µ;λ1,µ1

∑
R

e−iq·Rα,α′

Rλ+λ1+1
α,α′

Y(λ+λ1),(µ+µ1)(R̂α,α′)×∫
V α
MT

υα,N,L(rα
1 )Y ∗

L,M(r̂α
1 ) (rα

1 )λ Y ∗
λ,µ(r̂α

1 )dr1×∫
V α′
MT

(rα
2 )λ1 Y ∗

λ1,µ1
(r̂α

2 )υα′,N ′,L′(rα′

2 )YL′,M ′(r̂α′

2 )dr2.

(C.9)
Defining the structure constants

Sα,α′

l′,m′;l,m(q) = (4π)
3
2 g̃l′,m′;l,mΣα,α′

l′+l,m′+m(-q) , (C.10)

with

Σα,α′

λ,µ (q) =
∑
R

eiq·Rα,α′

R
(λ+1)
α,α′

Yλ,µ

(
R̂α,α′

)
, (C.11)

and separating the integrals over the muffin-tin sphere into the radial and the angular
parts, we have:

vL,L′(q) =
∑
λ,µ

∑
λ1,µ1

Sα,α′

λ,µ;λ1,µ1
(q)

(∫ Rα
MT

0

(rα
1 )λ υα,N,L(rα

1 ) (rα
1 )2 drα

1

)
×(∫

Y ∗
L,M(r̂α

1 )Y ∗
λ,µ(r̂α

1 )dr̂α
1

)
×(∫ Rα′

MT

0

(
rα′

2

)λ1

υα′,N ′,L′(rα′

2 )
(
rα′

2

)2

drα′

2

)(∫
Y ∗

λ1,µ1
(r̂α′

2 )YL′,M ′(r̂α′

2 )dr̂α′

2

)
.

(C.12)

For the calculation of Σα,α′

λ,µ (q), we follow the method in Ref. [149].
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C.1. A: Both MT-sphere Chapter C

To solve the angular integrals, we make a coordinate transition from the coordi-
nate of the unit cell to the internal coordinate of this atom. The rotation matrix is
Tα. We have:

YL,M(r̂α) = YL,M(T−1
α r̂α) = TαYL,M(r̂α). (C.13)

Now using Eq. 4.8 in Ref. [83], we have:

TαYL,M(r̂α) =
L∑

M1=−L

Dα,L
M1,MYL,M1(r̂

α), (C.14)

where Dα,L
M1M is the rotation matrix for the spherical harmonics. How to calculate it

is illustrated in the same reference.
We define:

〈rλ〉α,N,L ≡
∫ Rα

MT

0

(rα)λ+2 υα,N,L(rα)drα. (C.15)

Using the orthoganality of Yl,m, the relation Y ∗
l,m = (−1)mYl,−m and Eq. C.14, Eq.

C.9 becomes:

vL,L′(q) =
∑
µ,µ1

Sα,α′

L,µ;L′,µ1
(q)〈rL〉α,N,L(−1)µ〈rL′〉α,N ′,L′Dα,L∗

−µ,MD
α′,L′

µ1,M ′ (C.16)

C.1.2 r1 and r2 belong to MT-spheres Surrounding Same
Atoms

In this case, Rα,α′ = R and the same equations are obtained with the restriction
that R 6= 0. When R = 0 and α = α′, the application of Eq. C.5 into Eq. C.4 leads
to:

vL,L′(q) =
∑

λ

4π

2λ+ 1

(∫∫ Rα
MT

0

υα,N,L,M(rα
1 )

rλ
<

r
(λ+1)
>

υα,N ′,L′,M ′(rα
2 ) (rα

1 )2 drα
1 (rα

2 )2 drα
2

)

×
∑

µ

(∫
Yλ,µ(r̂α

1 )Y ∗
L,M(r̂α

1 )dr̂α
1

)(∫
Y ∗

λ,µ(r̂α
2 )YL′,M ′(r̂α

2 )dr̂α
2

)
.

(C.17)
The double radial integrals in this case can not be separated. If we define:〈

rλ
<

rλ+1
>

〉
α,N,L,N ′,L′

=

∫∫ Rα
MT

0

υα,N,L(rα
1 )

rλ
<

r
(λ+1)
>

υα,N ′,L′(rα
2 ) (rα

1 )2 drα
1 (rα

2 )2 drα
2 ,

(C.18)
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using again Eqs. C.13 and C.14, C.17 becomes:

vL,L′(q) =
4π

2L+ 1

〈
rL
<

rL+1
>

〉
α,N,L,N ′,L

∑
M1,M2

Dα,L∗
M1,MD

α,L′

M2,M ′δL,L′δM1,M2 . (C.19)

The sum in the second term of Eq. C.19 can be transformed to∑
M1,M2

Dα,L∗
M1,MD

α,L′

M2,M ′δL,L′δM1,M2 =
∑
M1

Dα,L
M1,MD

α,L
M1,M ′ = δM,M ′ , (C.20)

where the last equality holds from the orthogonality of the rotation matrices (see
Ref. [83]). Then, for α = α′ we have

vL,L′(q) =
∑

M1,M2

Sα,α
L,M1;L′,M2

(q)〈rL〉α,N,L(−1)M1〈rL′〉α,N ′,L′Dα,L∗
−M1,MD

α,L′

M2,M ′

+
4π

2L+ 1

〈
rL
<

rL+1
>

〉
α,N,L,N ′,L

δL,L′δM,M ′

, (C.21)

where Sα,α
l′,m′;l,m(q) is the same as Eq. C.10 with:

Σα,α
λ,µ(q) =

∑
R 6=0

eiq·R

R(λ+1)
Yλ,µ

(
R̂
)
. (C.22)

C.2 Case B: Both r1 and r2 belong to the Inter-

stitial Region

In this case, it is better to use expression C.1, which can be written as:

vi,j(q) =

∫
V

∫
V

[
P̃ q

i (r1)
]∗ 1

|r1 − r2|
P̃ q

j (r2)dr2dr1. (C.23)

Taking the Fourier expansion of the Coulomb interaction:

1

|r1 − r2|
=

1

V

∑
qG

ei(q+G)r1
4π

|q + G|2
e−i(q+G)r2 , (C.24)

we can rewrite Eq. C.23 as:

vi,j(q) =
∑
G

(
1√
V

∫
V

[
P̃ q

i (r1)
]∗
ei(q+G)r1dr1

)
4π

|q + G|2
×(

1√
V

∫
V

e−i(q+G)r2P̃ q
j (r2)dr2

)
.

(C.25)
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The factors in brackets are the matrix elements W i
G(q) defined in Eq. B.6, we

end up with:

vi,j(q) =
∑
G

W i
G(q)

4π

|q + G|2
W∗j

G (q) . (C.26)

C.3 Case C: Either r1 or r2 belong to the Inter-

stitial Region, the Other to a MT-sphere

Starting again from Eq. C.2, if we suppose that r1 is in the interstitial region, and
r2 belongs to the α-atom MT-sphere we can write:

vi,L(q) = Nc

∫
Ω

∫
Ω

[
P̃ q

i (r1)
]∗∑

R

e−iq·R

|r1 − r2 + R|
γq

α,N,L,M(r2)dr2dr1. (C.27)

Making use of Eq. C.24, this equation can be written as:

vi,L(q) =
Nc

V

∫
Ω

∫
Ω

[
P̃ q

i (r1)
]∗∑

q′

∑
G′

∑
R

4πei(q′+G′)·(r1−r2+R)

|q′ + G′|2
e−iq·R×

γq
α,N,L,M(r2)dr2dr1.

(C.28)

The integrations in the variables r1 and r2 can be separated, giving:

vi,L(q) =
1

Ω

∑
q′

∑
G′

4π

|q′ + G′|2
∑
R

e−i(q−q′)·RW∗i
G′WL

G, (C.29)

where we made use of the condition e−iG′·R = 1. Through a series of deduction
procedure, this equation can be simplified into:

vi,L(q) =
(4π)2

√
Ω

∑
G′

1

|q + G′|2
S∗G′,ii

LYL,M(T−1
α (Ĝ′ + q))

〈
j
|G′+q|
L

〉
α,L,M

, (C.30)

where 〈
j
|G+q|
λ

〉
α,N,L

≡
∫ Rα

MT

0

jλ (|G + q| rα) υα,N,L(rα) (rα)2 drα, (C.31)

and S̃G,i is defined in Eq. 5.14.
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C.4 The Singularity at the Γ Point

The divergence of the Coulomb matrix vi,j (q) as q → 0 can be easily seen by taking
a plane wave expansion:

vG,G′ (q) =
4π

|q + G|2
δG,G′ . (C.32)

Evidently, v0,0 →∞ as q → 0 since the limit corresponds to the potential generated
by a constant, finite charge density, infinitely extended in space.

The advantage of the plane wave expansion is that one can clearly separate the
divergent terms by writing:

vG,G′(q → 0) = lim
q→0

(
1

|q|2

)
vs
G,G′ + ṽG,G′ , (C.33)

with
vs
G,G′ =4πδG,G′δG,0

ṽG,G′ =
4π

|G|2
δG,G′(1− δG,0).

(C.34)

The same separation can be done when expanding the Coulomb matrix in the
mixed basis, and write:

vi,j(q → 0) = lim
q→0

(
1

|q|2

)
vs

i,j + ṽi,j, (C.35)

the singular term can easily be obtained from Eq. C.34 transforming to the mixed
basis using Eq. B.1

vs
i,j = 4πW i

0(0)
[
Wj

0(0)
]∗
. (C.36)

We still need to calculate ṽi,j. In case B (C.2) and C (C.3), this is trivial. we
just need to remove the contribution from G = 0 in the Fourier transformation of
the Coulomb interaction from real space to reciprocal space. In Case A (C.1), the
divergent component from q = 0 only contributes when L = L′ = 0. Thus, we make
plane wave expansion for these terms and take out the contribution from G = 0.
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Appendix D

The Matrix Element M i
n,m (k,q)

The matrix elements are defined by:

M i
n,m(k,q) ≡

∫
Ω

[χ̃q
i (r)ϕm,k−q(r)]

∗
ϕn,k(r)dr. (D.1)

Taking into account the expression for the eigenvectors ϕn,k(r), that is:

ϕn,k(r) =
∑
G

Zn
k+Gφ

k
G(r), (D.2)

Eq. D.1 is converted to:

M i
n,m(k,q) ≡

∑
G,G′

Zn
k+G

[
Zm

k−q+G′
]∗ ∫

Ω

[
χ̃q

i (r)φk−q
G′ (r)

]∗
φk

G(r)dr. (D.3)

To shorten the notation we will use:〈
χ̃q

i φ
(k−q)

K′ |φk
G

〉
≡
∫

Ω

[
χ̃q

i (r)φk−q
G′ (r)

]∗
φk

G(r)dr. (D.4)

Since our basis functions describe separately the two regions of space, the calculation
of the brackets depends on whether i corresponds to a function in the muffin-tin
sphere or an Interstitial Plane Wave.

D.1 χ̃q
i (r) Belongs to the Muffin-Tin Region

In the muffin-tin sphere, the expansion of the wave function in the (L)APW+lo
basis can be reformulated as:

ϕn,k(r) =
1√
Nc

∑
l,m

[Aα
n,l,m(k)uα,l(r

α, El) + Bα
n,l,m(k)u̇α,l(r

α, El)

+ Cα
n,l,m(k)uα,l(r

α, El2)]Yl,m(r̂α),

(D.5)
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i (r) Belongs to the Interstitial Region Chapter D

where,

Aα
n,l,m(k) ≡

∑
G

Zn
k+GA

α
l,m(k + G) (D.6a)

Bα
n,l,m(k) ≡

∑
G

Zn
k+GB

α
l,m(k + G) (D.6b)

Cα
n,l,m(k) ≡

∑
G

Zn
k+GC

α
l,m(k + G). (D.6c)

Inserting Eqs. D.5, and J.7 into D.1 we get:

M i
n,m(k,q) =

e−iq·rα√
N3

c

∑
λ,µ;λ′,µ′

[
Gλ′,µ′

L,λ;M,µ

]∗[
Aα∗

m,λ,µ(k− q)Aα
n,λ′,µ′(k)〈NLλ|λ′〉α+

Bα∗
m,λ,µ(k− q)Aα

n,λ′,µ′(k)〈NLλ̇|λ′〉α+

Aα∗
m,λ,µ(k− q)Bα

n,λ′,µ′(k)〈NLλ|λ̇′〉α+

Bα∗
m,λ,µ(k− q)Aα

n,λ′,µ′(k)〈NLλ̇|λ̇′〉α + ...
]
.

(D.7)

D.2 χ̃q
i (r) Belongs to the Interstitial Region

In this case, using the definition within one unit cell:

χ̃q
i (r) ≡

∑
i′

χq
i′(r)S

−1
i′,i =

∑
G

P q
G(r)S−1

G,i, (D.8)

and

φk
G(r) ≡ P k

G(r) ≡ 1√
Ω
ei(k+G)·r, (D.9)

inserting Eqs. D.8 and D.9 into Eq. D.4 we have:〈
χ̃q

i φ
(k−q)

K′ |φk
K

〉
=

1

Ω
3
2

∑
G1

[
S−1

G1,i

]∗ ∫
IΩ

e−i(q+G1)·re−i(k−q+K′)·rei(k+K)·rdr

=
1

Ω
3
2

∑
G1

[
S−1

G1,i

]∗ ∫
IΩ

ei(K−G1−K′)·rdr.

(D.10)

Making use of Eq. A.7, we get:〈
χ̃q

i φ
(k−q)

K′ |φk
K

〉
=

1

Ω
3
2

∑
G1

IK−G1−K′
[
S−1

G1,i

]∗
. (D.11)
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Appendix E

The Brillouin-Zone Integration

In Sec. 5.4, we introduced the ideas of the q-dependent linear tetrahedron method
we developed for calculating the polarization matrix. Compared with the one intro-
duced by Rath and Freeman in Ref. [103], we included the frequency dependence
and the variation of the operator to be integrated within each tetrahedron. To re-
strict the size of that chapter, we skipped the implementation details. These details
will be the content of this appendix. For a clear illustration, we begin with the
formula of the traditional linear tetrahedron method and the idea of isoparametric
transformation. Then we extend these ideas to the q-dependent case and illus-
trate the different configurations of the possible integration region. The frequency
dependence is discussed in the end.

E.1 The Linear Tetrahedron Method

The task of this Brillouin-zone integration is to calculate the average expectation
value of an operator satisfying the form:

〈X〉 =
1

VG

∑
n

∫
VG

Xn(k)f(εn(k))dk, (E.1)

where
Xn(k) = 〈ϕn(k)|X|ϕn(k)〉. (E.2)

This Xn(k) is the expectation value of this operator on the state (n,k). VG is the
volume of the reciprocal unit cell. f(ε) is the Fermi function. An exact evaluation
of Eq. E.1 requires calculating the expectation value of this operator over all its
occupied states, including infinite number of k points in the Brillouin-zone. In
practice, this average expectation value is determined from a set of sample points in
the Brillouin-zone, each has a certain weight addressing the integration of Eq. E.1
over the region around it.
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E.1. The Linear Tetrahedron Method Chapter E

In the tetrahedron method, this is obtained by dividing the Brillouin-zone into
a set of tetrahedra using a grid (as shown in Fig. E.1 for the two-dimensional case).
The values of Xn(k) are calculated on the discrete set of vectors ki at the vertices of
all these tetrahedra, namely the grid points. A function X̄n(k) obtained by linearly
interpolating the function Xn(k) within the tetrahedra using its expectation values
on the vertices can be written as a superposition of functions wi(k), such that

X̄n(k) =
∑

i

Xn(ki)wi(k), (E.3)

where wi(kj) = δij and it is linear within the corresponding tetrahedron and zoro
outside of it. Now replacing Xn(k) in Eq. E.1 by it’s linear approximation, one has:

〈X〉 ∼=
1

VG

∑
n

∫
VG

X̄n(k)f(εn(k))dk

=
1

VG

∑
n

∫
VG

∑
i

Xn(ki)wi(k)f(εn(k))dk

=
∑

n

∑
i

Xn(ki)
1

VG

∫
VG

wi(k)f(εn(k))dk.

Defining:

wn,i =
1

VG

∫
VG

wi(k)f(εn(k))dk, (E.4)

one can write the average expectation value of X in Eq. E.1 as a weighted sum over
the discrete set of k points:

〈X〉 =
∑
i,n

Xn(ki)wn,i. (E.5)

Since wi(k) is zero for all {kj} except ki, we can rewrite the weights as:

wn,i =
1

VG

∑
Ti

∫∫∫
VT

wi(k)f(εn(k))d3k =
∑
Ti

w1T
n,i, (E.6)

where Ti means that the sum runs only over those tetrahedra containing ki as one
of its vertices. And one has defined w1T

n,i = 1
VG

∫∫∫
VT
wi(k)f(εn(k))d3k.

With this, it is clear that the integration in Eq. E.1 can be approximated by a
sum of the form in Eq. E.5 where wn,i can be calculated by summing its contribution
from each tetrahedron containing this ki as a vertex. The next job is to define the
function wi(k) in order to calculate these wn,i, for this, one needs the isoparametric
transformation to be introduced in the next chapter.
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E.1.1 The Isoparametric Transfromation

In Eq. E.3, the function behaviour is approximated inside each tetrahedron by a
linear interpolation between the function values at the vertices. Let F be such a
function, and x, y and z be the coordinates, then:

F = A · x+B · y + C · z +D, (E.7)

where the constants A, B, C and D are to be determined. Substituting x = xi,
y = yi and z = zi where i = 0, 1, 2, 3 label the vertices, the values of Fi at the
vertices (which are known) can be written as:

Fi = A · xi +B · yi + C · zi +D. (E.8)

Clearly, Eq. E.8 for i = 0 can be used to eliminate the constant D. Then we
have

F − F0 = A · (x− x0) +B · (y − y0) + C · (z − z0). (E.9)

The constants A, B and C are determined by solving the system of equations:

F1 −F0 =A · (x1 − x0) +B · (y1 − y0) + C · (z1 − z0)

F2 −F0 =A · (x2 − x0) +B · (y2 − y0) + C · (z2 − z0)

F3 −F0 =A · (x3 − x0) +B · (y3 − y0) + C · (z3 − z0),

(E.10)

with solution: AB
C

 =

x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0

−1F1 −F0

F2 −F0

F3 −F0

 . (E.11)

If one defines a coordinate (ξ, η, ζ) inside this tetrahedron, with each vertex 0,
1, 2, 3 having coordinates (0,0,0), (1,0,0), (0,1,0), (0,0,1) respectively, the function
F can be linearly interpolated as:

F − F0 =ξ(F1 −F0) + η(F2 −F0) + ζ(F3 −F0). (E.12)

Putting Eq. E.10 into the above equation, we have:

F − F0 =
(
ξ η ζ

)F1 −F0

F2 −F0

F3 −F0


=
(
ξ η ζ

)x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0

AB
C

 .

(E.13)
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On the other hand, Eq. E.9 can be written as:

F − F0 =
(
x− x0 y − y0 z − z0

)AB
C

 . (E.14)

Comparing Eq. E.14 with Eq. E.13, we have:

x− x0 =ξ(x1 − x0) + η(x2 − x0) + ζ(x3 − x0)

y − y0 =ξ(y1 − y0) + η(y2 − y0) + ζ(y3 − y0)

z − z0 =ξ(z1 − z0) + η(z2 − z0) + ζ(z3 − z0)

. (E.15)

Combining Eq. E.15 with Eq. E.12, we see that the same expression holds for
the function F as well as for the coordinates x, y, and z. This coordinate transition
from outside the tetrahedron to inside the tetrahedron is called as an isoparametric
transformation. The functions wi(k) used in Eq. E.3 can be simply written as:

w0(ξ, η, ζ) = 1− ξ − η − ζ

w1(ξ, η, ζ) = ξ

w2(ξ, η, ζ) = η

w3(ξ, η, ζ) = ζ,

(E.16)

in terms of this internal coordinates. The energy eigenvalue of the state (n,k) with
the coordinate (ξ, η, ζ) inside this tetrahedron is linearly interpolated as:

εn(ξ, η, ζ) = (εn,1 − εn,0)ξ + (εn,2 − εn,0)η + (εn,2 − εn,0)ζ + εn,0, (E.17)

where εn,i is the energy eigenvalue on the vertex i.

E.1.2 Integrals in One Tetrahedron

The integral of any function F inside one tetrahedron, after applying the isopara-
metric transformation, is given by:

∫∫∫
VT

F(x, y, z)f(εn(x, y, z))dxdydz =

1∫
0

1−ζ∫
0

1−ζ−η∫
0

[
ξ(F1 −F0) + η(F2 −F0)+

ζ(F3 −F0) + F0

] ∣∣∣∣∂(xyz)

∂(ξηζ)

∣∣∣∣ f(εn(ξ, η, ζ))dξdηdζ,

(E.18)
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where VT is the volume of the tetrahedron and |∂(xyz)
∂(ξηζ)

| is the Jacobian determinant
given by: ∣∣∣∣∂(xyz)

∂(ξηζ)

∣∣∣∣ =

∣∣∣∣∣∣∣
∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0

∣∣∣∣∣∣ . (E.19)

This is just the volume of a parallelepiped whose sides are given by those of the
tetrahedron, clearly: ∣∣∣∣∂(xyz)

∂(ξηζ)

∣∣∣∣ = 6VT . (E.20)

Then Eq. E.18 is just:∫∫∫
VT

F(x, y, z)dxdydz

=6VT

1∫
0

1−ζ∫
0

1−ζ−η∫
0

[
ξ(F1 −F0) + η(F2 −F0) + ζ(F3 −F0) + F0

]
f(εn(ξ, η, ζ))dξdηdζ.

(E.21)

E.1.3 The Integration Weights

Let’s take one of the tetrahedra, its four vertices are denoted as 0, 1, 2, and 3.
Using the wi(k) and εn(k) defined in Eq. E.16 and Eq. E.17, one can calculate
the integration weights on these vertices. If the four energies are below the Fermi
energy, the occupation is identically one and we have:

w1T
n,i =

6VT

VG

1∫
0

1−ζ∫
0

1−ζ−η∫
0

ζdξdηdζ =
6VT

VG

1∫
0

1−ζ∫
0

ζ(1− ζ − η)dηdζ

=
6VT

VG

1∫
0

1

2
ζ(1− ζ)2dζ =

3VT

VG

(
1

2
− 2

3
+ 1

4
) =

VT

4VG

.

(E.22)

Let’s now take the case where only εn,0 < εF and, for the sake of simplicity
εn,3 > εn,2 > εn,1 > εn,0, then the integration limits are changed, and one gets:

w1T
n,3 =

6VT

VG

εF−εn,0
εn,3−εn,0∫

0

εF−εn,0−ζ(εn,3−εn,0)

εn,2−εn,0∫
0

εF−εn,0−ζ(εn,3−εn,0)−η(εn,2−εn,0)

εn,1−εn,0∫
0

ζdξdηdζ

=
VT

4VG

(εF − εn,0)
4

(εn,1 − εn,0)(εn,2 − εn,0)(εn,3 − εn,0)2
.

(E.23)
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A similar calculation for the rest of the vertices leads to:

w1T
n,2 =

VT

4VG

(εF − εn,0)
4

(εn,1 − εn,0)(εn,2 − εn,0)2(εn,3 − εn,0)

w1T
n,1 =

VT

4VG

(εF − εn,0)
4

(εn,1 − εn,0)2(εn,2 − εn,0)(εn,3 − εn,0)

w1T
n,0 =

VT

VG

(εF − εn,0)
3

(εn,1 − εn,0)(εn,2 − εn,0)(εn,3 − εn,0)
− w1T

n,1 − w1T
n,2 − w1T

n,3.

(E.24)

The last line in Eq. E.24 can be calculated using w0(k) = 1 − ξ − η − ζ =
wt−w1(k)−w2(k)−w3(k), where wt means the total weight over this tetrahedron.
Expressions for the remaining cases can be found in Ref. [104]. Since these vertices
are also sample points in the grid mesh, the integration weight on each grid points
can be calculated from Eq. E.6.

E.2 Tetrahedron Method for q-dependent Brillouin-

zone Integration

If one wants to calculate the mean value of a q-dependent operator, the situation
becomes more complicated. In this section, we discuss the case when the expectation
value of this operator satisfies:

〈X(q)〉 =
1

VG

∑
n,n′

∫
VG

Xnn′(k,q)f [εn(k)] (1− f [εn′(k− q)]) d3k, (E.25)

where
Xn,n′(k,q) = 〈ϕn(k)|X(q)|ϕn′(k− q)〉. (E.26)

To evaluate this operator, one needs to know Xnn′(k,q) on each k point in the
Brillouin-zone in principle. In practice, again, this is obtained by calculating the
expectation value of this operator on a set of sample points weighted by a certain
factor. In addition to εn(ki) and ϕn(ki) on the set of sample points {ki}, one also
needs to know εn′(ki−q) and ϕn′(ki−q) on another set of sample points {ki−q}.

In our implementation, we make an even division of the Brillouin-zone along each
axis. Then, we take the q vector from this mesh. With this treatment, the meshes
of ki and ki − q overlap totally with each other. We just need to know the eigen
wave functions and the energy eigenvalues in one mesh. A two-dimensional sketch
for the k-mesh is shown in Fig. E.1.

Using this grid, the Brillouin-zone is divided into a set of tetrahedra. The ex-
pectation values of the function Xn,n′(k,q) are calculated on the vertices of these
tetrahedra, namely, the grid points, giving Xn,n′(ki,q).
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Figure E.1: The two-dimensional sketch of the BZ in the tetrahedron method, in
this case, the space is divided into a list of triangles. One triangle is related to
another by a vector q.

Following the same procedure as the above section, we interpolate the function
Xn,n′(k,q) linearly within each tetrahedron using:

X̄n,n′(k,q) =
∑

i

Xn,n′(ki,q)wi(k,q), (E.27)

where wi(kj,q) = δi,j and it is a linear function. Since the integration is over the
vector k and this wi(kj,q) is only a function of the coordinates of k for a fixed q,
it is easy to see that we can get rid of the q dependence. Eq. E.27 becomes:

X̄n,n′(k,q) =
∑

i

Xn,n′(ki,q)wi(k). (E.28)

For the expectation value, we get:

〈X(q)〉 =
∑
i,n,n′

Xn,n′(ki,q)wn,n′,i(q), (E.29)

with

wn,n′,i(q) =
1

VG

∫
VG

wi(k)f [εn(k)] (1− f [εn′(k− q)]) d3k. (E.30)

To calculate the weights, following the steps as in the previous section, we obtain:

wn,n′,i(q) =
∑
Ti

w1T
n,n′,i(q), (E.31)
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where

w1T
n,n′,i(q) =

1

VG

∫∫∫
VT

wi(k)f [εn(k)] (1− f [εn′(k− q)]) d3k. (E.32)

Ti runs over all the tetrahedra in which the sample point ki serves as a vertex.

E.2.1 Isoparametric Transformation

Now, we perform the isoparametic transformation to calculate the integration of Eq.
E.32 in one tetrahedron. If we denote the vertices of this tetrahedron as 0, 1, 2, 3
respectively, we have:

w0(k) =w0(ξ, η, ζ) = 1− ξ − η − ζ

w1(k) =w1(ξ, η, ζ) = ξ

w2(k) =w2(ξ, η, ζ) = η

w3(k) =w3(ξ, η, ζ) = ζ

εn(k) =εn(ξ, η, ζ) = ξ(εn,1 − εn,0) + η(εn,2 − εn,0) + ζ(εn,3 − εn,0) + εn,0

εn′(k− q) =εn′(ξ, η, ζ) = ξ(εn′,1 − εn′,0) + η(εn′,2 − εn′,0) + ζ(εn′,3 − εn′,0) + εn′,0,
(E.33)

where we have used the shorthand notation εn,i and εn′,i to represent the energy
eigenvalues of the state (n,k) and (n′,k− q) on the vertices of this tetrahedron.

Then, the general formula for the contribution of one tetrahedron to the weight
is:

w1T
n,n′,i(q) =

6VT

VG

1∫
0

1−ζ∫
0

1−ζ−η∫
0

wi(ξ, η, ζ)Θ[εF − ξ(εn,1 − εn,0)− η(εn,2 − εn,0)− ζ(εn,3 − εn,0)− εn,0]

×Θ[ξ(εn′,1 − εn′,0) + η(εn′,2 − εn′,0) + ζ(εn′,3 − εn′,0) + εn′,0 − εF ]dξdηdζ,
(E.34)

where Θ is the step function to address the Fermi function in Eq. E.32.

E.2.2 The Integration Region

From Eq. E.34, we see that the Θ functions determine the integration region within
this tetrahedron. For insulators and semiconductors, this region is either the full
tetrahedron or zero. For metals, the situation becomes more complicated. If not all
the εn,is are smaller or bigger than εF , the Fermi surface represented by the first Θ
function in Eq. E.34 will intersect with this tetrahedron, leading to only part of it
satisfying the condition the first Θ function equals one. If not all the εn′,i are smaller
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or bigger than εF , the Fermi surface represented by the second Θ function in Eq.
E.34 will intersect with this tetrahedron, leading to only part of it satisfying the
condition the second Θ function equals one. If neither of these cases happen, the
integration region is either the full tetrahedron or zero. Otherwise, the integration
region is determined by the intersection of these Fermi surfaces with this tetrahedron
(Fig. 5.6 shows one example when both of them intersect with this tetrahedron).

Figure E.2: The configurations for the region to be integrated. How these regions
are decomposed into the principle units of the small tetrahedra is shown by the red
lines in the graph.

There are in total 9 different configurations for this region. They are shown in
Fig. E.2 except the simplest case of a tetrahedron. All of them can be subdivided
into samller tetrahedron. Then, we perform one further isoparametric transforma-
tion inside each of these small tetrahedron. The wieght on each of its vertices is:

w0 =
6VT

VG

VST

VT

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

(1− x− y − z)dxdydz =
VST

4VG

w1 = w2 = w3 = w0,

(E.35)

where VST is the volume of the small tetrahedron, and wi(i = 0, 3) represents the
weight on each vertex. We further distribute these weights linearly into the ver-
tices of the big tetrahedron. Assuming the coordinates of one vertex of this small

159



E.2. Tetrahedron Method for q-dependent Brillouin-zone Integration Chapter E

tetrahedron is (ξ1, η1, ζ1) in the big tetrahedron before the second parametric trans-
formation, the integration weight on this point will be distributed with the ration
1− ξ1 − η1 − ζ1, ξ1, η1, and ζ1 to the vertices 0, 1, 2, 3 of the big tetrahedron.

E.2.3 Polarizability

As already mentioned in Sec. 5.4, for the polarizability we can not assume both
the energies and the integrand to be simultaneously linear in the coordinates of the
tetrahedron. In this case, we have to include the energy-dependent factor of Eq.
5.22 into the analytical integration. In Sec. 5.6, we have discussed the frequency
integrations in the GW calculations, where we pointed out that we calculate all the
frequency dependent properties on the imaginary frequency axis. The polarizability
is such a property. In this section, we will discuss the integration weight of the
polarizability on both the real and imaginary frequency axis. The latter is the one
used in the GW calculation. The former can be used to calculate the macroscopic
dielectric constant.

E.2.3.1 Polarisability on the Real Frequency Axis

On the real frequency axis, the polarization matrix is:

Pi,j(q, ω) =
Nc

~

BZ∑
k

occ∑
n

unocc∑
n′

M i
n,n′(k,q)[M i

n,n′(k,q)]∗

{ 1

ω − εn′,k−q + εn,k + iη
− 1

ω − εn,k + εn′,k−q − iη
}. (E.36)

We define the weight as:

wn,n′,i(q, ω) =
∑
Ti

w1T
n,n′,i(q, ω), (E.37)

where

w1T
n,n′,i(q, ω) =

1

VG

∫ ∫ ∫
VT

wi(k)f [εn(k)](1− f [εn′(k− q)])×

{ 1

ω − εn′(k− q) + εn(k) + iη
− 1

ω − εn(k) + εn′(k− q)− iη
}d3k. (E.38)

Following the procedures in Sec. E.2.2, the weight on each vertex of the small
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tetrahedron is calculated by:

w0 =
6VST

VG

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

2(1− x− y − z)

ω2 − (x∆1,0 + y∆2,0 + z∆3,0 + ∆0)2
dxdydz

w1 =
6VST

VG

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

2x

ω2 − (x∆1,0 + y∆2,0 + z∆3,0 + ∆0)2
dxdydz

w2 =
6VST

VG

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

2y

ω2 − (x∆1,0 + y∆2,0 + z∆3,0 + ∆0)2
dxdydz

w3 =
6VST

VG

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

2z

ω2 − (x∆1,0 + y∆2,0 + z∆3,0 + ∆0)2
dxdydz.

(E.39)

Here, ∆i = εn′,i − εn,i and ∆i,j = ∆i −∆j.
The first equation in Eqs. E.39 is more complicated to be solved analytically

compared with the other three due to the presence of three variables in the numera-
tor. So, we solve the other three respectively and then calculate the total integration
weight over this tetrahedron with:

wt =
6VST

VG

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

2

ω2 − (x∆1,0 + y∆2,0 + z∆3,0 + ∆0)2
dxdydz. (E.40)

The correponding w0 is then calculated from w0 = wt − w1 − w2 − w3.
Even with this treatment, these analytical integration is very complicated to be

solved. We use Mathematica to treat it. There exists a general solution. To restict
the size of this appendix, we just list that of wt here which is the simplest case due
to the absence of variables in the numerator in Eq. E.39:

f(ω) = (ω −∆3)
3∆2

1,0∆2,0∆
2
2,1ln[|ω −∆3|]− (ω −∆2)

3∆2
1,0∆3,0∆

2
3,1ln[|ω −∆2|]

f(ω) = f(ω) + [∆1,0∆2,1(ω −∆3)− (ω −∆0)∆2,1∆3,1 + (ω −∆2)∆1,0∆3,1]×
∆2,0∆3,0∆3,2(ω −∆1)

2ln[|ω −∆1|]
f(ω) = f(ω) + (ω −∆0)

3∆2
2,1∆3,2∆

2
3,1ln[|ω −∆0|]− (ω −∆1)

2∆1,0∆2,0×
∆2,1∆3,0∆3,1∆3,2

f(ω) =
f(ω)

6∆2
1,0∆2,0∆2

2,1∆3,0∆2
3,1∆3,2

wt =
6VST

VG

[f(ω) + f(−ω)]

(E.41)
(this equations is written following the programming rules cause it is too long). In
this equation, it is required that ω 6= ∆i and ∆i,j 6= 0. ∆i,j 6= 0 is required because
of this analytical solution. ω 6= ∆i is required because the denominators in Eq.
E.39 and Eq. E.40 can not be zero. When these conditions are not fulfilled, we use
Mathematica to get the analytical solution of that specific case respectively.
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E.2.3.2 Polarisability on the Imaginary Frequency Axis

The polarization matrix of our calculation on the imaginary frequency axis is:

Pi,j(q, ω) =
Nc

~

BZ∑
k

occ∑
n

unocc∑
n′

M i
n,n′(k,q)[M i

n,n′(k,q)]∗
−2(εn′,k−q − εn,k)

ω2 + (εn′,k−q + εn,k)2
. (E.42)

In this case, the procedure is essentially the same as above, except for the fact
that the weight on the vertices of each small tetrahedron is calculated with:

w0 =
6VST

VG

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

2(1− x− y − z)

ω2 + (x∆1,0 + y∆2,0 + z∆3,0 + ∆0)2
dxdydz

w1 =
6VST

VG

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

2x

ω2 + (x∆1,0 + y∆2,0 + z∆3,0 + ∆0)2
dxdydz

w2 =
6VST

VG

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

2y

ω2 + (x∆1,0 + y∆2,0 + z∆3,0 + ∆0)2
dxdydz

w3 =
6VST

VG

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

2z

ω2 + (x∆1,0 + y∆2,0 + z∆3,0 + ∆0)2
dxdydz.

(E.43)

Again, we introduce wt as:

wt =
6VST

VG

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

2

ω2 + (x∆1,0 + y∆2,0 + z∆3,0 + ∆0)2
dxdydz, (E.44)
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to avoid solving the first equation of Eqs. E.43 directly. Its general solution is:

f(ω) = 2(ω −∆2
0)∆0,1∆0,2∆0,3∆1,2∆1,3∆2,3

f(ω) = f(ω) + 2ω[3∆4
0 − ω2(∆1∆2 + ∆2∆3 + ∆3∆1)

− 3∆2
0(ω

2 + ∆2∆3 + ∆1∆2 + ∆1∆3)

+ 2∆0(ω
2∆2 + ω2∆3 + ∆1ω

2 + 3∆1∆2∆3)]∆1,2∆1,3∆2,3ArcTan[∆0/ω]

f(ω) = f(ω) + 2ω(ω2 − 3∆2
1)∆

2
0,2∆

2
0,3∆2,3ArcTan[∆1/ω]

f(ω) = f(ω)− 2ω(ω2 − 3∆2
2)∆

2
0,1∆

2
0,3∆1,3ArcTan[∆2/ω]

f(ω) = f(ω) + 2ω(ω2 − 3∆2
3)∆

2
0,1∆

2
0,2∆1,2ArcTan[∆3/ω]

f(ω) = f(ω) + [∆4
0(∆1 + ∆2 + ∆3)− 3ω2∆1∆2∆3

− 2∆3
0(3ω

2 + ∆2∆3 + ∆1∆2 + ∆1∆3)

+ 3∆2
0(ω

2∆1 + ω2∆2 + ω2∆3 + ∆1∆2∆3)]∆1,2∆1,3∆2,3ln[ω2 + ∆2
0]

f(ω) = f(ω) + ∆1(3ω
2 −∆2

1)∆
2
0,2∆

2
0,3∆2,3ln[ω2 + ∆2

1]

f(ω) = f(ω) + ∆2(∆
2
2 − 3ω2)∆2

0,1∆
2
0,3∆1,3ln[ω2 + ∆2

2]

f(ω) = f(ω)−∆3(∆
2
3 − 3ω2)∆2

0,1∆
2
0,2∆1,2ln[ω2 + ∆2

3]

wt =
6VST

VG

f(ω)

6∆2
0,1∆

2
0,2∆

2
0,3∆1,2∆1,3∆2,3

.

(E.45)
Again, in this equation, it is required that ∆i,j 6= 0. When this condition is not
fulfilled, same as the above section, we use Mathematica to get the analytical solution
of that case again specifically.
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Appendix F

The Dielectric Matrix at the Γ
Point

On the frequency axis, the dielectric matrix ε(q, ω) can be calculated via:

ε(q, ω) = 1− v(q)P(q, ω) . (F.1)

It is well-known that it diverges for q = 0. To solve this problem one can make use
of the symmertized dielectric matrix.

F.1 The Symmetrized Dielectric Matrix

The symmetrized dielectric matrix is defined as:

ε̃i,j(q, ω) =
∑
l,m

v
− 1

2
i,l (q)εl,m(q, ω)v

1
2
m,j(q). (F.2)

It has no divergences, and is hermitian. It has also been shown that ε̃(q, ω) and
ε(q, ω) have the same eigenvalues (See Ref. [150]). It can be easily shown, from Eq.
F.2 that:

ε̃−1
i,j (q, ω) =

∑
l,m

v
− 1

2
i,l (q)ε−1

l,m(q, ω)v
1
2
m,j(q). (F.3)

Inserting Eq. F.1 into F.2 we have:

ε̃i,j(q, ω) = 1−
∑
l,m

v
1
2
i,l(q)Pl,m(q, ω)v

1
2
m,j(q) . (F.4)

In the next section we calculate the symmetrized dielectric matrix at the Γ point,
and show that it does not diverge.
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F.2 Plane wave expansion of the symmetrized di-

electric matrix at the Γ point

The advantage of the plane wave expansion is that the bare Coulomb potential is
diagonal, simplifying the algebra. Expanded in plane waves, the expression for the
matrix elements of the symmetrized dielectric function is:

ε̃G,G′(q, ω) = δG,G′ − 4π

|q + G||q + G′|
PG,G′(q, ω), (F.5)

where PG,G′(q, ω) is given by:

PG,G′(q, ω) =Nc

BZ∑
k

∑
n,n′

MG
n,n′(k,q)

[
MG′

n,n′(k,q)
]∗
f0(εn,k)(1− f0(εn′,k−q))×{

1

ω − εn′,k−q + εn,k + iη
− 1

ω − εn,k + εn′,k−q − iη

}
,

(F.6)

and
MG

n,n′(k,q) =
〈
ϕn′,k−q|e−i(q+G)·r|ϕn,k

〉
. (F.7)

We can see that the possible divergences are located in ε̃0,0, usually called the head,
and ε̃0,G′ and ε̃G,0, usually called the wing.

Expressions for the limit |q| → 0 can be obtained by using the k ·p perturbation
theory. Taking into account the Bloch character of the eigenfunctions and according
to the results of the k · p perturbation theory [151] one can write:

ϕn,k+q(r) =ϕn,k(r) +
∑
n′ 6=n

pn′,n,k · q
εn,k − εn′,k

ϕn′,k(r) (F.8a)

εn,k+q =εn,k + pn,n,k · q. (F.8b)

The matrix elements MG
n,n′(k,q) for G = 0 can be writen as:

M0
n,n′(k,q) =

1

Ω

∫
Ω

ϕ∗n′,k−q(r)ϕn,k(r)d
3r. (F.9)

Applying Eq. F.8a we have:

M0
n,n′(k,q) =

1

Ω

∫
Ω

ϕ∗n′,k(r)ϕn,k(r)d
3r −

∑
n′′ 6=n′

pn′′,n′,k · q
εn′,k − ε′n′,k

1

Ω

∫
Ω

ϕ∗n′′,k(r)ϕn,k(r)d
3r,

(F.10)
taking into account the orthogonality of the eigenfunctions:

M0
n,n′(k,q → 0) = δn,n′ − (1− δn,n′)

pn,n′,k · q
εn′,k − εn,k

. (F.11)
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F.2.1 The Head

Inserting Eq. F.11 into F.6 we have:

P0,0(q → 0, ω) = lim
q→0

Nc

BZ∑
k

∑
n,n′

δn,n′ + (1− δn,n′)

(
pn,n′,k · q
εn′,k − ε′n′,k

)2
×

f0(εn,k)(1− f0(εn′,k−q))×{
1

ω − εn′,k−q + εn,k + iη
− 1

ω − εn,k + εn′,k−q − iη

}
.

(F.12)

Seperating the intraband and interband contributions, we get:

P0,0(q → 0, ω) = lim
q→0

Nc

BZ∑
k

∑
n

f0(εn,k)(1− f0(εn,k−q))×{
1

ω − εn,k−q + εn,k + iη
− 1

ω − εn,k + εn,k−q − iη

}
+

∑
n′ 6=n

(
pn,n′,k · q
εn′,k − εn,k

)2

f0(εn,k)(1− f0(εn′,k−q))×{
1

ω − εn′,k−q + εn,k + iη
− 1

ω − εn,k + εn′,k−q − iη

}
.

(F.13)

The interband part, second term, is proportional to q2. For the intraband term
we can replace εn,k−q using Eq. F.8b and take the Taylor series up to second order
in ∆ = pn,n,k · q:

f(εn,k)(1− f(εn,k + ∆))

ω −∆ + iη
−f(εn,k)(1− f(εn,k + ∆))

ω + ∆− iη
=

f(εn,k)

[(
1

ω − iη
− 1

ω + iη

)(
∂f(ε)

∂ε

)
εn,k

∆

+

(
1

(ω − iη)2
+

1

(ω + iη)2

)(
∂f(ε)

∂ε

)
εn,k

∆2

+
1

2

(
1

ω − iη
− 1

ω + iη

)(
∂2f(ε)

∂ε2

)
εn,k

∆2

]
.

(F.14)
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Since η is arbitrarily small we can discard the first and third terms, obtaining:

f(εn,k)(1− f(εn,k + ∆))

ω −∆ + iη
−f(εn,k)(1− f(εn,k + ∆))

ω + ∆− iη
=(

1

(ω − iη)2
+

1

(ω + iη)2

)(
∂f(ε)

∂ε

)
εn,k

∆2.
(F.15)

Inserting the result of Eq. F.15 into F.13we have:

P0,0(q → 0, ω) = lim
q→0

Nc

BZ∑
k

∑
n

(
1

(ω − iη)2
+

1

(ω + iη)2

)(
∂f(ε)

∂ε

)
εn,k

×

(
pn,n,k · q

)2
+
∑
n′ 6=n

(
pn,n′,k · q
εn′,k − εn,k

)2

f0(εn,k)(1− f0(εn′,k−q))×{
1

ω − εn′,k−q + εn,k + iη
− 1

ω − εn,k + εn′,k−q − iη

}
.

(F.16)
Finally, replacing P0,0 in Eq. F.5 by Eq. F.16, we have:

ε0,0(q → 0, ω) =

1− 4πNc

∑
k

[(
1

(ω − iη)2
+

1

(ω + iη)2

)∑
n

(
−∂f
∂ε

)
εn,k

lim
q→0

(
pn,n,k · q
|q|

)2

+

∑
nn′

lim
q→0

(
pn′,n,k·q

|q|

)2

(εn′,k − εn,k)2
f0(εn,k)(1− f0(εn′,k))×{

1

ω − εn′,k + εn,k + iη
− 1

ω − εn,k + εn′,k − iη

}]
.

(F.17)

F.2.2 The Wings

We follow similar steps for the wings, using Eq. F.11, the polarization is:

P0,G′(q → 0, ω) = lim
q→0

Nc

BZ∑
k

∑
n,n′

(
δn,n′ − (1− δn,n′)

pn,n′,k · q
εn′,k − εn,k

)[
MG′

n,n′(k, 0)
]∗
×

f0(εn,k)(1− f0(εn′,k−q))

{
1

ω − εn′,k−q + εn,k + iη
− 1

ω − εn,k + εn′,k−q − iη

}
.

(F.18)
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Again we can separate the intra- and interband terms:

P0,G′(q → 0, ω) = lim
q→0

Nc

BZ∑
k

[∑
n

[
MG′

n,n(k, 0)
]∗
f0(εn,k)(1− f0(εn,k−q))×{

1

ω − εn,k−q + εn,k + iη
− 1

ω − εn,k + εn,k−q − iη

}
−∑

n′ 6=n

pn,n′,k · q
εn′,k − εn,k

[
MG′

n,n′(k,q)
]∗
f0(εn,k)(1− f0(εn′,k−q))×

{
1

ω − εn′,k−q + εn,k + iη
− 1

ω − εn,k + εn′,k−q − iη

}]
.

(F.19)

From Eq. F.15 we know that the intraband term is proportional to q2. Compared
with the interband term, this is one order of magnitude smaller. Thus we discard
it. We have:

P0,G′(q → 0, ω) = − lim
q→0

Nc

BZ∑
k

[∑
n

∑
n′ 6=n

pn,n′,k · q
εn′,k − εn,k

[
MG′

n,n′(k,q)
]∗
f0(εn,k)×

(1− f0(εn′,k−q))

{
1

ω − εn′,k−q + εn,k + iη
− 1

ω − εn,k + εn′,k−q − iη

}]
.

(F.20)

Inserting Eq. F.20 into F.5 we obtain, for the wing:

ε0,G′(q → 0, ω) =
4πNc

|G′|

BZ∑
k

[∑
n

∑
n′ 6=n

lim
q→0

(
pn,n′,k·q

|q|

)
(εn′,k − εn,k)

[
MG′

n,n′(k, 0)
]∗
f0(εn,k)×

(1− f0(εn′,k))

{
1

ω − εn′,k + εn,k + iη
− 1

ω − εn,k + εn′,k − iη

}] .
(F.21)

The matrix elements εG,0(q → 0, ω) are obtained by hermiticity.

F.3 Mixed basis expansion of the symmetrized di-

electric matrix at the Γ point

The use of the symmetrized dielectric matrix expanded in other basis set than plane
waves presents several difficulties:
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• The divergences for |q| → 0 are not located in particular matrix elements
of the bare Coulomb potential, the same is, as a consequence, true for the
dielectric matrix.

• The bare Coulomb potential is no longer diagonal.

From the second item, we can see that already the calculation of the matrix elements

v
1
2
i,j is no longer simple. The simpliest option for the expansion of the symmetrized

dielectric matrix in our mixed basis is to perform the calculation in a plane wave
basis and then make the corresponding matrix multiplications to change the basis.

It is then straightforward to show that:

ε̃i,j(q, ω) =
∑
G,G′

W i
G(q)ε̃G,G′(q, ω)Wj∗

G′(q) (F.22a)

v
1
2
i,j(q) =2

√
π
∑
G

W i
G(q)Wj∗

G (q)

|q + G|
, (F.22b)

where the matrix elements W i
G(q) are defined in Appendix B.1.

The number of PW’s needed for expanding the polarization becomes prohibitively
large due to the fast oscillations of the LAPW eigenvalues in the region close to the
ions. To avoid this, in this section we develop a method to calculate the long range
term of the symmetrized dielectric matrix avoiding the expansion of the polarization
in plane waves.

To begin with, let’s rewrite Eq. F.22a in the following way:

ε̃i,j(q, ω) =
∑
G,G′

W i
G(q)ε̃G,G′(q, ω)Wj∗

G′(q)

=W i
0(q)ε̃0,0(q, ω)Wj∗

0 (q)+∑
G 6=0

{
W i

G(q)ε̃G,0(q, ω)Wj∗
0 (q) +W i

0(q)ε̃0,G(q, ω)Wj∗
G (q)

}
+∑

G,G′ 6=0

W i
G(q)ε̃G,G′(q, ω)Wj∗

G′(q)

=ε̃H
i,j(q, ω) + ε̃W

i,j(q, ω) + ε̃B
i,j(q, ω),

(F.23)

thus defining:

ε̃H
i,j(q, ω) =W i

0(q)ε̃0,0(q, ω)Wj∗
0 (q) (F.24a)

ε̃W
i,j(q, ω) =

∑
G 6=0

{
W i

G(q)ε̃G,0(q, ω)Wj∗
0 (q) +W i

0(q)ε̃0,G(q, ω)Wj∗
G (q)

}
(F.24b)

ε̃B
i,j(q, ω) =

∑
G,G′ 6=0

W i
G(q)ε̃G,G′(q, ω)Wj∗

G′(q). (F.24c)
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The head term (Eq. F.24a) is easy to calculate, since there are no sums on G.
For the second term of the wings (F.24b), using Eq. F.21 we have:∑

G 6=0

W i
0(q)ε̃0,G(q, ω)Wj∗

G (q) =

4πNcW i
0(q)

BZ∑
k

[∑
n

∑
n′ 6=n

lim
q→0

(
pn,n′,k·q

|q|

)
(εn′,k − εn,k)

f0(εn,k)(1− f0(εn′,k))×

{
1

ω − εn′,k + εn,k + iη
− 1

ω − εn,k + εn′,k − iη

}∑
G 6=0

[
MG

n,n′(k, 0)
]∗

|G|
Wj∗

G (q)

]
.

(F.25)
Assuming that the mixed basis is complete and using the orthogonality of the plane
waves we have: ∑

i

W i
GW i∗

G′ = δG−G′ . (F.26)

We can write:∑
G 6=0

[
MG

n,n′(k, 0)
]∗

|G|
Wj∗

G (q) =
∑

G,G′ 6=0

[
MG

n,n′(k, 0)
]∗ δG−G′

|G′|
Wj∗

G′(q)

=
∑

G,G′ 6=0

[
MG

n,n′(k, 0)
]∗∑

p

Wp∗
GW

p
G′

1

|G′|
Wj∗

G′(q)

=
∑

p

∑
G

[
MG

n,n′(k, 0)
]∗Wp∗

G

∑
G′ 6=0

Wp
G′

1

|G′|
Wj∗

G′(q).

(F.27)
Using the completeness of the PW’s and Eq. F.22b we have:∑

G 6=0

[
MG

n,n′(k, 0)
]∗

|G|
Wj∗

G (q) =
1√
4π

∑
p

[
Mp

n,n′(k, 0)
]∗
ṽ

1
2
p,j(q), (F.28)

where ṽ
1
2
p,j(q) is the non-divergent part of v

1
2
p,j(q). Inserting Eq. F.28 into Eq. F.25

we obtain:∑
G 6=0

W i
0(q)ε̃0,G(q, ω)Wj∗

G (q) =

√
4πNcW i

0(q)
∑

p

BZ∑
k

[∑
n

∑
n′ 6=n

lim
q→0

(
pn,n′,k·q

|q|

)
(εn′,k − εn,k)

f0(εn,k)(1− f0(εn′,k))×

{
1

ω − εn′,k + εn,k + iη
− 1

ω − εn,k + εn′,k − iη

}[
Mp

n,n′(k, 0)
]∗]

ṽ
1
2
p,j(0).

(F.29)
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The same procedure can be applied to the first term in Eq. F.24b and to Eq.
F.24c, Eq. F.24 becomes:

ε̃H
i,j(0, ω) =W i

0(0)ε̃0,0(0, ω)Wj∗
0 (q) (F.30a)

ε̃W
i,j(0, ω) =

√
4πNc

∑
p

BZ∑
k

[∑
n

∑
n′ 6=n

lim
q→0

(
pn,n′,k·q

|q|

)
(εn′,k − εn,k)

×

f0(εn,k)(1− f0(εn′,k))× (F.30b){
1

ω − εn′,k + εn,k + iη
− 1

ω − εn,k + εn′,k − iη

}
×

(W i
0(0)

[
Mp

n,n′(k, 0)
]∗
ṽ

1
2
p,j(0)+

ṽ
1
2
i,p(0)Mp

n,n′(k, 0)Wj∗
0 (0))

]

ε̃B
i,j(0, ω) =Nc

∑
pq

ṽ
1
2
i,p(0)

BZ∑
k

[∑
n

∑
n′ 6=n

f0(εn,k)(1− f0(εn′,k))×{
1

ω − εn′,k + εn,k + iη
− 1

ω − εn,k + εn′,k − iη

}
×

Mp
n,n′(k, 0)

[
M q

n,n′(k, 0)
]∗]

ṽ
1
2
q,j(0) (F.30c)

For calculating pn,n′,k · q, we follow Ref. [152].
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Appendix G

The Dynamically Screened
Potential

G.1 General Expression

From the definition given in Eq. 5.4 we have:

W0(r1, r2;ω) =

∫
ε−1(r1, r3;ω)v(r3, r2)dr3. (G.1)

From Eq. I.10 the matrix form can be written as:

Wi,j(q, ω) =
∑

l

ε−1
i,l (q, ω)vl,j(q). (G.2)

Using Eq. F.3 the screened potential is then rewritten as:

Wi,j(q, ω) =
∑
m

ε−1
i,m(q, ω)vm,j(q)

=
∑
lm

v
1
2
i,l(q)ε̃−1

l,m(q, ω)v
1
2
m,j(q).

(G.3)

And we can, as already mentioned in Sec. 5.3, separate it into and exchange and
a correlation term, where:

W x
i,j(q) =vi,j(q)

W c
i,j(q, ω) =Wi,j(q, ω)− vi,j(q) =

∑
l,m

v
1
2
i,l(q)

[
ε̃−1

l,m(q, ω)− δl,m
]
v

1
2
m,j(q). (G.4)

173



G.2. The Singularity of W Chapter G

G.2 The Singularity of the Screened Coulomb Po-

tential

As we have seen in Appendix F.1 the symmetrized dielectric function has no diver-
gencies, but we are still left with the singularity of v, and hence of W , at the Γ
point.

As mentioned in Appendix C.4 (Eqs. C.33 to C.36), for the bare Coulomb matrix
we can write:

v
1
2
i,j(q → 0) =

v
s 1

2
i,j

|q|
+ ṽ

1
2
i,j(q). (G.5)

Inserting it into Eq. G.3 we get:

W c
i,j(q, ω) =

∑
l,m

v
1
2
i,l(q)

[
ε̃−1
l,m(q, ω)− δl,m

]
v

1
2
m,j(q)

=
1

|q|2
∑
l,m

v
s 1

2
i,l (q)

[
ε̃−1
l,m(q, ω)− δl,m

]
v

s 1
2

m,j(q)+

1

|q|

{∑
l,m

v
s 1

2
il (q)

[
ε̃−1
l,m(q, ω)− δl,m

]
ṽ

1
2
m,j(q)+

ṽ
1
2
i,l(q)

[
ε̃−1
l,m(q, ω)− δl,m

]
v

s 1
2

m,j(q)

}
+∑

l,m

ṽ
1
2
i,l(q)

[
ε̃−1
l,m(q, ω)− δl,m

]
ṽ

1
2
m,j(q).

(G.6)

Defining:

W cs2
i,j (q, ω) =

∑
l,m

v
s 1

2
i,l (q)

[
ε̃−1
l,m(q, ω)− δl,m

]
v

s 1
2

m,j(q)

W cs1
i,j (q, ω) =

∑
l,m

v
s 1

2
i,l (q)

[
ε̃−1
l,m(q, ω)− δl,m

]
ṽ

1
2
m,j(q)+

ṽ
1
2
i,l(q)

[
ε̃−1
l,m(q, ω)− δl,m

]
v

s 1
2

m,j(q)

W̃ c
i,j(q, ω) =

∑
l,m

ṽ
1
2
i,l(q)

[
ε̃−1
l,m(q, ω)− δl,m

]
ṽ

1
2
m,j(q)

,

we can write

W c
i,j(q, ω) =

1

|q|2
W cs2

i,j (q, ω) +
1

|q|
W cs1

i,j (q, ω) + W̃ c
i,j(q, ω) . (G.8)
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This screened Coulomb interaction only include the correlation term. It still di-
verges. We need to integrate q over the Brillouin-zone. This integration is discussed
in Sec. 5.5.
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Appendix H

The Frequency Integration

In this section we show how to perform the integration on the frequency axis in Eq.
5.39.

This integration is peaked around ω′ = ω when εnk+q is small. To handle this
problem one can add and subtract the term

1

π

∫ ∞

0

(εn′,k+q − iω)W c
i,j(q, iω)

(iω − εn′,k+q)2 + ω′2
dω′ =

1

2
sgn(εn′,k+q)W

c
i,j(q, iω). (H.1)

Then we have:

I =
1

π

∫ ∞

0

(εn′,k+q − iω)
[
W c

i,j(q, iω
′)−W c

i,j(q, iω)
]

(iω − εn′,k+q)2 + ω′2
dω′ +

1

2
sgn(εn′,k+q)W

c
i,j(q, iω).

(H.2)
The integrand is now smooth and a Gaussian quadrature may be used.
To solve the semiinfinite integral of Eq. H.2 which has the form:

I =

∫ ∞

0

f(ω)dω, (H.3)

we split it into (following Ref. [106])

I =I1 + I2 (H.4a)

I1 =

∫ ω0

0

f(ω)dω (H.4b)

I2 =

∫ ∞

ω0

f(ω)dω. (H.4c)

For I1 we make the change of variables u = 2ω/ω0 − 1 and thus dω = ω0

2
du. Then

we have:

I1 =

∫ ω0

0

f(ω)dω =
ω0

2

∫ 1

−1

f [(u+ 1)ω0/2]du, (H.5)
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which can be solved by standard Gauss-Legendre quadrature. For I2 we make the
change of variables u = 2ω0/ω − 1 and thus dω = − 2ω0

(u+1)2
du. Then we have:

I2 =

∫ ∞

ω0

f(ω)dω = 2ω0

∫ 1

−1

f [
2ω0

u+ 1
](u+ 1)−2du, (H.6)

which can also be solved by standard Gauss-Legendre quadrature.
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Expansion of a Non-local Function

We need to calculate a non-local function f(r1, r2, τ) (τ can be a time as well as a
frequency coordinate)with a lattice translation symmetry R (i. e. v, W , P , ε, etc.):

f(r1 + R, r2 + R, τ) = f(r1, r2, τ). (I.1)

To calculate a function of this type, we use the expansion in a complete set of
Bloch functions {χq

i (r)} in the following way:


f(r1, r2, τ) =

BZ∑
q

BZ∑
q′

∑
i,j

χq
i (r1)fi,j(q,q

′, τ)(χq′

j (r1))
∗

fi,j(q,q
′, τ) =

∫
V

∫
V

(χq
i (r1))

∗f(r1, r2, τ)χ
q′

j (r2)dr2dr1.

(I.2)

Since χq
i (r1) is a Bloch function (χq

i (r − R) = e−iq·Rχq
i (r)) normalized to unity

in the crystal with volume V, the matrix element fi,j(q,q
′, τ) can be evaluated as
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follows:

fi,j(q,q
′, τ) =

∫
V

∫
V

(χq
i (r1))

∗f(r1, r2, τ)χ
q′

j (r2)dr2dr1

=
∑
R,R′

∫
Ω

∫
Ω

(χq
i (r1 −R))∗f(r1 −R, r2 −R−R′, τ)×

χq′

j (r2 −R−R′)dr2dr1

=
∑
R

∫
Ω

∑
R′

∫
Ω

eiq·R(χq
i (r1))

∗f(r1, r2 −R′, τ)e−iq′·Re−iq′·R′×

χq′

j (r2)dr2dr1

=
∑
R

ei(q−q′)·R
∫

Ω

∑
R′

∫
Ω

(χq
i (r1))

∗f(r1, r2 −R′, τ)e−iq′·R′
χq′

j (r2)dr2dr1

=Ncδq,q′

∫
Ω

∫
Ω

(χq
i (r1))

∗
∑
R′

f(r1, r2 −R′, τ)e−iq·R′
χq

j (r2)dr2dr1,

(I.3)
where we have made use of this relation for the Bravais lattice:∑

R

e−i(q−q′)·R = Ncδq,q′ . (I.4)

Nc is the number of cells in the crystal.
With these treatments, the expansion of Eq. I.2 is writen as

f(r1, r2, τ) =
BZ∑
q

∑
i,j

χq
i (r1)fi,j(q, τ)(χ

q
j (r2))

∗

fi,j(q, τ) =

∫
V

∫
V

(χq
i (r1))

∗f(r1, r2, τ)χ
q
j (r2)dr2dr1

, (I.5)

where the integration must be done on the whole volume of the crystal, or:
f(r1, r2, τ) =

BZ∑
q

∑
i,j

χq
i (r1)fi,j(q, τ)(χ

q
j (r2))

∗

fi,j(q, τ) = Nc

∫
Ω

∫
Ω

(χq
i (r1))

∗
∑
R

f(r1, r2 −R, τ)e−iq·Rχq
j (r2)dr2dr1

, (I.6)

where the integration must be performed only on the Wigner-Zeits cell.
If we have a product of operators, say:

h(r1, r2, τ) =

∫
V

f(r1, r3, τ)g(r3, r2, τ)dr3, (I.7)
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then, according to Eq. I.5 the expansion of h in the set of functions {χq
i (r)} is:

hi,j(q, τ) =

∫
V

∫
V

[χq
i (r1)]

∗
h(r1, r2, τ)χ

q
j (r2)dr2dr1

=

∫
V

∫
V

[χq
i (r1)]

∗

∫
V

f(r1, r3, τ)g(r3, r2, τ)dr3

χq
j (r2)dr2dr1

. (I.8)

We can now use the second line of equation I.5 for f and g and the orthogonality
of the basis to get:

hi,j(q, τ) =

∫
V

∫
V

[χq
i (r1)]

∗

∫
V

f(r1, r3, τ)g(r3, r2, τ)dr3

χq
j (r2)dr2dr1

=

∫
V

∫
V

[χq
i (r1)]

∗

(∫
V

BZ∑
q1

∑
l,m

χ
q1
l (r1)fl,m(q1, τ) [χq1

m (r3)]
∗×

BZ∑
q2

∑
n,p

χq2
n (r3)gn,p(q2, τ)

[
χq2

p (r2)
]∗
dr3

)
χq

j (r2)dr2dr1

=
BZ∑
q1

BZ∑
q2

∑
l,m

∑
n,p

∫
V

[χq
i (r1)]

∗
χ

q1
l (r1)dr1

 fl,m(q1, τ)×∫
V

[χq1
m (r3)]

∗ χq2
n (r3)dr3

 gn,p(q2, τ)×∫
V

[
χq2

p (r2)
]∗
χq

j (r2)dr2


=

BZ∑
q1

BZ∑
q2

∑
l,m

∑
n,p

δ(q,q1)δi,lfl,m(q1, τ)δ(q1,q2)δm,ngn,p(q2, τ)δ(q2,q)δpj,

(I.9)
then we arrive at the expected expression:

hi,j(q, τ) =
∑

l

fi,l(q, τ)gl,j(q, τ) . (I.10)
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Useful Mathematical Relations

In this chapter we give a digest of useful mathematical formulae that are used
throughout the text.

J.1 Spherical Harmonics

• Definition: In the Condon Shortley convention the spherical harmonics are
defined as,

Yl,m(θ, φ) ≡ (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ)eimφ, (J.1)

where Pm
l (x) is the corresponding Legendre-polynomial (See Ref. [153]).
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• Recurrence relations:

Y0,0(θ, φ) =

√
1

4π
(J.2a)

Y1,0(θ, φ) =

√
3

4π
cos(θ) (J.2b)

Y1,1(θ, φ) =−
√

3

8π
sin(θ)eiφ (J.2c)

Y1,−1(θ, φ) =− Y1,1(θ, φ) (J.2d)

Yl,l(θ, φ) =−
√

2l + 1

2l
sin(θ)eiφYl−1,l−1 (J.2e)

Yl,m(θ, φ) =

√
(2l − 1)(2l + 1)

(l −m)(l +m)
cos(θ)Yl−1,m(θ, φ)−√

(l − 1 +m)(l − 1−m)(2l + 1)

(2l − 3)(l −m)(l +m)
Yl−2,m(θ, φ) (J.2f)

• Conjugation:

Yl,−m(θ, φ) = (−1)mY ∗
l,m(θ, φ) (J.3)

• Inversion:

Yl,m(r̂) = (−1)lYl,m(−r̂) (J.4)
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• Other relations:

eiφ sin θYl,m(θ, φ) =F (1)Yl+1,m+1(θ, φ) + F (2)Yl−1,m+1(θ, φ)

(J.5a)

e−iφ sin θYl,m(θ, φ) =F (3)Yl+1,m−1(θ, φ) + F (4)Yl−1,m−1(θ, φ)
(J.5b)

cos θYl,m(θ, φ) =F (5)Yl+1,m(θ, φ) + F (6)Yl−1,m(θ, φ)
(J.5c)

eiφ

(
cos θ

∂

∂θ
+

i

sin θ

∂

∂θ

)
Yl,m(θ, φ) =− lF (1)Yl+1,m+1(θ, φ)+

(l + 1)F (2)Yl−1,m+1(θ, φ) (J.5d)

e−iφ

(
cos θ

∂

∂θ
− i

sin θ

∂

∂θ

)
Yl,m(θ, φ) =− lF (3)Yl+1,m−1(θ, φ)+

(l + 1)F (4)Yl−1,m−1(θ, φ) (J.5e)

− sin θ
∂

∂θ
Yl,m(θ, φ) =− lF (5)Yl+1,m(θ, φ)+

(l + 1)F (6)Yl−1,m(θ, φ) (J.5f)

where:

F
(1)
l,m =−

√
(l +m+ 1)(l +m+ 2)

2l + 1)(2l + 3)
(J.6a)

F
(2)
l,m =

√
(l −m)(l −m− 1)

2l − 1)(2l + 1)
(J.6b)

F
(3)
l,m =

√
(l −m+ 1)(l −m+ 2)

2l + 1)(2l + 3)
(J.6c)

F
(4)
l,m =−

√
(l +m)(l +m− 1)

2l − 1)(2l + 1)
(J.6d)

F
(5)
l,m =

√
(l −m+ 1)(l +m+ 1)

2l + 1)(2l + 3)
(J.6e)

F
(6)
l,m =

√
(l −m)(l +m)

2l − 1)(2l + 1)
(J.6f)

• Gaunt coefficients:

GLM
l,l′;m,m′ =

∫
Y ∗

L,M(r̂)Yl,m(r̂)Yl′,m′(r̂)dr̂ (J.7)
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J.2 Plane Waves

• Rayleigh expansion:

eig·r =4π
∞∑

λ=0

+λ∑
µ=−λ

iλjλ(gr)Y
∗
λ,µ(T−1ĝ)Yλ,µ(T−1r̂)

=4π
∞∑

λ=0

+λ∑
µ=−λ

iλjλ(gr)Yλ,µ(T−1ĝ)Y ∗
λ,µ(T−1r̂)

(J.8)

J.3 Fourier Transform

• Definition: We use the following convention for the time-frequency Fourier
Transform:

F (ω) =

∞∫
−∞

F (t)eiωtdt

F (t) =
1

2π

∞∫
−∞

F (ω)e−iωtdω.

(J.9)

• Imaginary axes: The Fourier transform between imaginary axes work like its
counterpart on the real axes, except that additional factors of ±i have to be
included:

F (iω) =− i

∞∫
−∞

F (iτ)e−iωτdτ

F (iτ) =
i

2π

∞∫
−∞

F (iω)eiωτdω.

(J.10)

J.4 Spherical Coordinates

• Derivatives:

∂x± i∂y = sin θe±iφ ∂

∂r
+
e±iφ

r

(
cos θ

∂

∂θ
± i

sin θ

∂

∂φ

)
∂z = cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

(J.11)
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J.5 The Step(Heaviside) Function

Definition:

Θ(r) =

{
1 r ∈ interstitial
0 r /∈ interstitial

(J.12)

Since the step function Θ(r) has the periodicity of the lattice we may expand it
in a Fourier series as:

Θ(r) =
∑
G

Θ̃Ge
iG·r, (J.13)

where Θ̃G can be calculated analytically, giving:

Θ̃G =


1−

∑
a

4πr3
a

3Ω
G = 0

− 4π

ΩG

∑
a

j1 (Gra) r
2
ae

iG·ra G 6= 0
. (J.14)
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