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successes and limitations
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Many observables such as the density, total energy, or electric current, can be
expressed explicitly in terms of the one-body Green’s function, which describes
electron addition or removal to or from a system. An efficient way to determine
such a Green’s function is to introduce a self-energy, which is a nonlocal and
dynamic effective potential that influences the propagation of particles in an
interacting system. The state-of-the art approximation for the self-energy is the
GW approximation, where the system to (or from) which the electron is added
(or removed) is described as a polarizable, screening, medium. This is expressed
by the name of the approximation: ‘GW’ stands for the one-body Green’s func-
tion G and for W, the dynamically screened Coulomb interaction. The GW
approximation is very popular for the calculation of band structures in solids,
and increasingly used also to describe nanostructures, clusters, and molecules.
As compared to static mean-field approximations for the effective potential, the
dynamical screening of the Coulomb interaction in GW leads to a renormaliza-
tion of energies, to broadening and/or to the observation of additional excita-
tions. An analysis of the approximations that lead to the GW self-energy, and of
the underlying picture, explains the successes and the limitations of the
approach. © 2017 Wiley Periodicals, Inc.
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INTRODUCTION

At the quantum level, all properties of materials
can be obtained from expectation values of

operators. At zero temperature, the value O of an
observable is the expectation value of an operator Ô
evaluated with the ground-state wavefunction Ψ of
the Hamiltonian that describes the system:

O= ΨjÔjΨ
D E

ð1Þ

In this review, we concentrate on electronic properties
of atoms, molecules, nanostructures, or extended mate-
rials. We specify the expressions for zero temperature

and a static external potential; however, the discussion
is readily generalized, see e.g.,1 If we neglect the kinetic
energy of the nuclei, which are much heavier than the
electrons, and work with fixed nuclear positions in the
Born–Oppenheimer approximation,2 the nonrelativis-
tic Hamiltonian for the electrons readsa

Ĥ = −
1
2

X
i

r2
i +

1
2

X
i6¼j

1
j ri−rj j −

X
i,I

ZI

j ri−RI j : ð2Þ

it consists of the operators for the kinetic energy of
electrons (indicated by lower case subscripts), their
Coulomb interaction energy, and the electron–nuclei
interaction, where ZI is the atomic number and RI

the position of the nuclei. Other contributions, such
as spin–orbit coupling, are neglected here for simplic-
ity, but can also be included in the framework that
we will discuss in this review article.

If we could neglect the second term, which
contains the two-body Coulomb interaction, the
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wavefunction of the many-electron system would
simply be a Slater determinant, a product wavefunc-
tion that is anti-symmetrized in order to account for
the fermionic nature of the electrons, so electrons
would be uncorrelated. However, the Coulomb inter-
action is in general not negligible with respect to the
kinetic energy. Therefore, the many-body ground-
state wavefunction is a superposition of many Slater
determinants. This expresses the fact that electrons
are correlated. It is hard to calculate the many-body
wavefunction, and therefore to access properties of
systems with more than very few electrons, by evalu-
ating expectation values according to Eq. (1). More-
over, the wavefunction is large, often too large to be
stored,3 and it contains too much information, much
more than what one normally asks for: usually, we
are interested only in a few observables.

Can one calculate expectation values without
knowing the many-body wavefunction? Density func-
tional theory (DFT),3 a today widely used approach
in quantum chemistry, tells us that the answer is yes,
in principle: the Hohenberg–Kohn theorems state
that given the ground-state density, the external
potential, and therefore the many-body Hamiltonian,
is determined up to a constant. This fixes the many-
body ground-state wavefunction, and finally all
ground-state expectation values. In other words, all
observables are functionals of the density. Note that
the spin-resolved density itself is an observable given
by the expectation value

n xð Þ = Ψjψ̂† x, tð Þψ̂ x, tð ÞjΨ� � ð3Þ

Here, ψ̂ are field operators in the Heisenberg picture;
ψ†(x, t) (ψ̂ x, tð Þ) creates (annihilates) an electron at
time t and space-spin-coordinateb x ≡ (r, σ). Because
we deal here with time-independent external poten-
tials, the field operators ψ̂ x, tð Þ in the Heisenberg pic-
ture are linked to the field operators ψ̂ xð Þ in the
Schrödinger picture by.

ψ̂ x, tð Þ= eitĤψ̂ xð Þe− itĤ ð4Þ

and as expected the equilibrium density does not
depend on the time t.

The theorems are not immediately useful in
practice, as the explicit expressions of almost all
observables as functionals of the density are
unknown. One problem is the kinetic energy
Ekin = − 1=2ð ÞPN

i = 1

Ð
dx1… dxNΨ* x1,…,xNð Þ r2

i Ψ x1ð
,…,xNÞ: it is an explicit expression in terms of the
many-body wavefunction, but how could one write
this in terms of the density? It would be much easier

to express Ekin in terms of the (spin-resolved) one-
body density matrix, which reads

ρ x,x0ð Þ �N
ð
dx2…dxNΨ* x,x2,x3,…,xNð Þ

×Ψ x0,x2,x3,…,xNð Þ = Ψjψ̂† x, tð Þψ x0, tð ÞjΨ� �
: ð5Þ

In that case, the kinetic energy is simply
Ekin = − 1=2ð ÞÐ dx r2

r0ρ x,x0ð Þ� �
σ0 = σ,r0!r.

By using the nonlocal density matrix instead of
the density, one also has an explicit expression for
the exact nonlocal exchange potential

Σx x,x0ð Þ= −vc r−r0ð Þρ x,x0ð Þ ð6Þ

which appears, for example, in the Hartree–Fock
(HF) approximation. Here, vc is the Coulomb
interaction

vc r−r0ð Þ� 1
j r−r0 j ð7Þ

For other observables, in particular spectra, explicit
expressions are not known, be it in terms of the den-
sity or the density matrix. Spectra are frequency
resolved observables, which means that time differ-
ences appear. This information is instead encoded in
Green’s functions.

The time-ordered equilibrium one-body Green’s
function at zero temperature is defined as4

G x, t;x0, t0ð Þ= − i ΨjT ψ̂ x, tð Þψ̂†ðx0,t0Þ� �jΨ� � ð8Þ

where T denotes the time-ordering of operators defined
in Eq. (65). The Green’s function is a natural generali-
zation of the density and of the one-body density
matrix: starting from the density in Eq. (3), it adds
space-spin nonlocality (ρ(x, x0) in Eq. (5)) and nonlo-
cality in time (Eq. (8)). It is the probability amplitude
for inserting an electron in (x0, t0) and finding an extra
electron at (x, t). Similarly, it is the probability ampli-
tude to find an extra hole (i.e., a missing electron) at
(x0, t0) when an electron is removed in (x, t). In other
words, it describes the propagation of electrons and
holes. In equilibrium, G depends only on the time dif-
ference (t − t0), and its Fourier transformG(x, x0;ω), on
one frequency. As we will see later, many observables
can be expressed explicitly in terms ofG.

Similarly to DFT, where it is important to deter-
mine the ground-state density with good precision,
the question is now how to obtain the Green’s func-
tion. DFT is often solved in the Kohn–Sham
(KS) approach5: one builds an auxiliary system that is
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noninteracting, but that has an effective potential con-
sisting of the original external potential vext(r), and of
the Hartree contribution vH[n](r) plus a local
exchange–correlation potential vxc[n](r), which are
themselves functional of the density. The self-
consistent solution of this independent-particle prob-
lem yields in principle the exact density, and in prac-
tice good approximations to it if a good
approximation for vxc is used. Similarly, one can say
that the Green’s function is determined by an auxil-
iary system with an effective ‘potential.’ In addition to
vext + vH, it consists of an exchange–correlation term
Σxc(x, t; x0, t0). This exchange–correlation self-energy
is nonlocal in space, spin, and time. It is a functional
of the Green’s function, and it is known as a perturba-
tive expansion in terms of the Coulomb interaction.4

However, there is no closed expression for it.
The lowest order of the perturbation expansion

is the Fock term Σx of Eq. (6); it corresponds to an
instantaneous self-energy, which can also be writ-
ten as

Σx x, t;x0, t0ð Þ = iδ t +− t0ð Þvc r−r0ð ÞG x, t,x0, t0ð Þ ð9Þ

where t0 + � limη!0+ t0 + η as defined in Eq. (59) guar-
antees the fact that t0 tends to t from above. How-
ever, HF eigenvalues correspond to total energy
differences for a system that remains frozen when an
electron is added or removed: these eigenvalues con-
tain no information about the fact that the system
would react to the addition of a charge. One can
express this by saying that the extra charge is not
screened.

Screening is a key concept in condensed matter
physics and chemistry. A summary of important
aspects can be found in Box 1. While screening is
completely neglected in HF, it is instead included in the
GW approximation (Box 2): in simple words, the
GWA is an approximation to the exchange–correlation
self-energy, which contains the bare Fock exchange,
and some correlation in the form of screening. While
HF is the lowest order self-energy in terms of the bare
Coulomb interaction vc, the GW self-energy is the low-
est order in terms of the screened Coulomb interaction
W, which is the reason for its name ‘GW.’

This review article gives an overview of the
essence and effects of screening in electronic spectra,

BOX 1

Screening is one of the key concepts used in
this article. It refers mostly to linear response:
an external perturbation u(r0, t0) in a place r0 at
a time t0 changes the charge density of the

system at time t and position r by an amount
nind, the induced charge

nind r,tð Þ=
ð
dr0dt0χ r,t;r0,t0ð Þu r0,t0ð Þ:

Here, χ is the density–density response func-
tion that does not depend on the external per-
turbation. In equilibrium it depends on the time
difference t0 − t and its Fourier transform, on one
frequency ω. Its poles are the excitation energies
of the system for neutral (i.e. that do not change
particle number N) excitations λ from the ground
state, EN,λ − EN. Such excitations correspond to
the creation of electron–hole pairs. From the
response function, one obtains the inverse test-
charge–test-charge dielectric function

ϵ−1 r,t;r0,t0ð Þ= δ r−r0ð Þδ t−t0ð Þ

+
ð
dr00vc r−r00ð Þχ r,t;r00,t0ð Þ

which gives the relation between an external
perturbation u and the resulting classical (exter-
nal plus induced Hartree) potential ures as

ures r,tð Þ=
ð
dr0dt0ϵ−1 r,t;r0,t0ð Þu r0,t0ð Þ

The inverse dielectric function screens the Cou-
lomb interaction: the frequency Fourier trans-
form of the screened Coulomb interactionW is

W r,r0;ωð Þ=
ð
dr00ϵ−1 r,r00;ωð Þvc r00−r0ð Þ

Because χ(ω) displays the excitations of the sys-
tem, so does W(ω). The spectrum of excitations is
directly seen in its imaginary part. W(ω = 0) is in
general (though not always) weaker than the
bare Coulomb interaction vc. It contains the infor-
mation about the adiabatic relaxation of the sys-
tem that one also finds in Δ-SCF (see Screening
in Finite and Infinite Systems). The frequency
dependence is sometimes highlighted by speak-
ing about dynamical screening.

BOX 2

The acronym ‘GW’ stands for an approximation
to the self-energy, a nonlocal and frequency-
dependent effective potential for the propaga-
tion of electrons in an interacting system. It con-
tains the exact, nonlocal, Fock exchange, and
correlation in the form of dynamical screening.
Koopmans’ theorem tells us that the energy
eigenvalues of the HF Hamiltonian correspond
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how GW can be derived and how it treats this phe-
nomenon, what can be achieved, and what are the
limitations of this approach.

FROM WAVEFUNCTIONS TO GREEN’S
FUNCTIONS

Before delving into the GW approximation for the
self-energy, let us have a closer look to the problem
and the concepts introduced above.

Observables
Our aim is to calculate observables, defined as the
expectation value Eq. (1). This equation shows
that all observables are simple functionals of the
many-body ground-state wavefunction—but our
aim is to avoid calculating this wavefunction,

which is huge, and which contains much more
information than the few observables we are usu-
ally interested in. As outlined in the introduction,
one could in principle calculate observables as
functionals of the density n(r), which is a much
simpler quantity than the many-body wavefunc-
tion. The price to pay is that the expressions for
observables as functional of n are exceedingly
more complicated, they can be nonanalytic, and
they are in general unknown. In order to have a
practical scheme, many electronic structure calcu-
lations for realistic systems work in the framework
of DFT and the KS approach.5 In KS, the density
is derived from a fictitious noninteracting system
with an effective Hartree plus exchange–
correlation potential vH[n](r) + vxc[n](r) that is
itself a functional of the density and that is added
to the external potential vext. Therefore, the effec-
tive KS electrons are governed by the KS equa-
tions, which are single-particle Schrödinger
equations reading

−
r2

2
+ vext rð Þ+ vH rð Þ + vxc rð Þ

� �
φi rð Þ = εiφi rð Þ ð10Þ

where εi and φi(r) are KS eigenvalues and orbitals,
respectively. Usually, one makes two approximations:

1. the exchange–correlation potential vxc[n](r) is
approximated, for example, in the local density
approximation (LDA).5 This yields approxi-
mate independent-particle KS orbitals and ener-
gies, and an approximate density;

2. because we do not know how to express observ-
ables as functionals of the density, they are calcu-
lated using Eq. (1), but the many-body
wavefunction is approximated by the KS ground-
state Slater determinant. In this approximation,
for example, the band structure is simply given
by KS eigenvalues. Depending on the observable
and the system, replacing the unknown func-
tional of the density by an expectation value cal-
culated with KS Slater determinants can be a
very rough approximation, although there are
arguments that suggest physical meaning for the
use of KS eigenvalues (see,. e.g., 6,7).

Both issues impact the result. A typical example is
the band structure of solids: usually the fundamental
band gap (the equivalent of the gap between the
highest occupied molecular orbital [HOMO] and the
lowest unoccupied molecular orbital [LUMO] in
molecules) calculated in KS-DFT–LDA is much too

to electron addition and removal, but with all
other system electrons frozen. Instead, in the
GW approximation the system responds to the
perturbation induced by electron addition or
removal, through electronic excitations. The
name ‘GW’ expresses this physics: ‘G’ is the one-
body Green’s function, which describes the
propagation of a particle in an interacting sys-
tem, and ‘W’ is the linear response dynamically
screened Coulomb interaction. In the GWA, the
self-energy is a product of G and W. This means
that the additional particle (electron or hole)
does not ‘see’ individual system particles, but a
charge density, and only the linear response of
this charge density is considered. It is most often
calculated in the random-phase approximation,
but sometimes other approaches, for example,
time-dependent density functional theory, are
used to determine W.

One may illustrate this situation using the
picture of an object (the electron or hole) mov-
ing on water (the system). In HF, the water is
frozen and simply yields a fixed potential: this
corresponds to a person skating on ice (left
panel). In the GWA, the water reacts by creat-
ing waves (these could, e.g., be plasmon excita-
tions of the system), which in turn act back on
the propagation of the object, e.g., a boat
(right panel). The approximation consists in the
fact that the propagating object does not meet
individual water molecules, but a continuous
fluid. Usually additional approximations are
made concerning the response of the ‘water’
(e.g., the RPA for W).
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small compared to experiment. This is illustrated in
Figure 1 for the case of bulk silicon: the occupied
valence bands are quite well described, but there is
an essentially constant relative shift of the unoccu-
pied bands, such that the band gap is smaller than
the measured one by about 50%. It has been dis-
cussed9 that both the use of an approximation for vxc
and the fact that electron addition or removal ener-
gies are replaced with KS eigenvaluesc contribute to
this discrepancy. In the following, we concentrate on
the second issue.

Why is it so complicated to express observables
in terms of the density, instead of the many-body
wavefunction?

Let us look at spectra. For example in the case
of electron removal, one wishes to calculate the ener-
gies and intensities given by matrix elements of the
spectral function

Aii ωð Þ =
X
λ

mλ
i δ ω−Eλð Þ= 1

2π
j
ð
dxdx0φ*

i xð Þφi x
0ð Þ

Im
ð∞
0
dτeiωτ Ψjψ̂† x,τð Þψ̂ x0,0ð ÞjΨ� � j ð11Þ

This quantity has peaks at the electron removal ener-
gies of the many-body system Eλ = EN − EN − 1,λ,
where EN is the N-electron ground-state energy, and

EN − 1,λ is the energy of the N − 1-electron system in
a state λ. The spectrum is weighted by matrix ele-
ments mλ

i that are electron removal probability
amplitudes projected onto some basis φi.

This exact expression for the spectral function
is given in terms of an expectation value of two field
operators in the Heisenberg picture, which appear at
two different points in space-spin and at two differ-
ent times. However, it is very difficult to link the
events at different places and times by working with
the instantaneous density or density matrix. It is
much simpler to adapt to this situation, and to keep
the nonlocality in space and time explicitly in the for-
mulation. This is achieved by working, instead of the
density, with a nonlocal object: the one-body Green’s
function.

Green’s Functions
The one-body Green’s function G is defined in
Eq. (8). Its time Fourier transform (Eq. (63)) allows
one to express the spectral function (Eq. (11)) as

Aii ωð Þ = 1
2π

j Im
ð
dxdx0φ*

i xð Þφi x
0ð ÞG x,x0;ωð Þ j ð12Þ

Moreover, all expectation values of a one-body oper-
ator are obtained in a simple way:
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FIGURE 1 | Band structure of bulk silicon. Left panel: Courtesy of Mark van Schilfgaarde. Blue dot-dashed lines are local density
approximation results, red dotted lines are results of a GW calculation using the quasi-particle self-consistent GW approximation (see The GW
Approximation in Practice). Circles are a collection of experimental data. Right panel: Hartree–Fock band structure (Reproduced with permission
from Ref 8 Copyright 1985 IOP Publishing).
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ΨjÔjΨ
D E

= − i
ð
dx1dx2O x1,x2ð ÞG x1, t;x2, t +ð Þ ð13Þ

because in the Heisenberg representa-
tion Ô1 tð Þ= Ð dx1dx2O x1,x2ð Þψ̂† x1, tð Þψ̂ x2, tð Þ.

Many important observables are expectation
values of one-body operators and can therefore be
expressed explicitly in terms of the one-body Green’s
function. If one is interested in observables related to
two-body operators, expectation values of four field
operators have to be calculated, and one is back to
the problem. However, the probably most important
two-body expectation value, the two-body interac-
tion energy, can be expressed in terms of G. There-
fore the total energy is given by the Galitskii–Migdal
expression10

E =
1
2

ð
dx lim

t0!t +
lim
x0!x

∂

∂t
− ih rð Þ

� 	
G x, t,x0, t0ð Þ ð14Þ

where h(r) is the noninteracting part of the
Hamiltonian.

In view of this, working with functionals of the
one-body Green’s function is an excellent compro-
mise: the object itself is nonlocal in space-spin and
time and therefore more complicated than the den-
sity, but still much simpler than the 3N–dimensional
many-body wavefunction. At the same time, it allows
us to access directly and in an principle exact way
many more observables than what is possible in prac-
tice with density functionals.

In this review, we will focus on aspects of
Green’s functions and many-body perturbation the-
ory that are inspired by their origin in the electron
gas and extended systems. Green’s functions are
widespread also in quantum chemistry,11,12 for
example, to deal with problems of open shell systems
and strong correlation (see, e.g., Refs 13–16), or to
analyze total energies (see, e.g., Ref 17), but this
would be a topic that is complementary to the pre-
sent discussion (for a recent review, see, e.g., Ref 18).

Spectral Functions
Let us concentrate for a moment on the electron
removal spectral function given by Eq. (11). As
explained above, it exhibits peaks at total energy dif-
ferences, between the system in its N-electron ground
state and in some excited state of the N − 1-electron
system. An analogous expression describes electron
addition, with energies EN + 1,λ − EN. The first
removal peak is therefore at the ionization energy,
and the first addition peak gives the electron affinity.

For more than one electron there are more total
energy differences than independent-particle energies,
because there are more Slater determinants |Sαi than
single-particle orbitals. Matrix elements Sαj ĉijSα0h i of
the electron removal operator ĉi from a single-
particle orbital φi are zero unless j Sα0 i= ĉ†i j Sαi.
Therefore, in a noninteracting system most of the
possible excitations cannot be seen in the spectral
function. In an interacting system, instead, matrix
elements are taken between many-body states that
are superpositions of several Slater determinants. For
this reason, the spectral function of an interacting
system displays more peaks than that of an
independent-particle system with the same number of
electrons; in particular, one can detect multiple
excitations in the interacting spectral function.
More precisely, when the matrix elementsÐ
dxφ*

k xð ÞA x,x0;ωð Þφk xð Þ of the noninteracting spec-
tral function are calculated with the same orbitals φk

that form the Slater determinants, they are diagonal,
and they consist of single peaks given by δ-functions.
In the interacting case, each such matrix element has
several peaks, and the number of peaks increases
with the number of electrons. In extended systems
such as solids the energy spectrum of each matrix ele-
ment becomes continuous. An example for a typical
matrix element of a spectral function in an extended
system is shown in Figure 2.

Usually one can still identify a main peak in
the interacting spectrum that is continuously linked
to an independent-particle peak when the interaction
is turned off: this is called a quasi-particle. It is the
dominant peak in the example of Figure 2. With
respect to the independent-particle peak (vertical line
indicating a sharp δ-function peak) it is usually
shifted and it is broadened, because the quasi-
particle has a finite lifetime and can decay into many
close lying excitations.d The position of the quasi-
particle peaks as a function of the momentum quan-
tum number yields the band structure in solids, like
the one shown in Figure 1. Moreover, the interacting
spectral function can exhibit other structures, called
satellites or side-bands in extended systems. Similar
to the multiple excitations in finite systems, they
highlight the fact that excitations in an interacting
system are coupled. For example, electron removal
in a metal can lead to the excitation of plasmons,
long-range charge oscillations of the electron gas.e

Because these oscillations carry energy, the removal
satellites are typically further away from the Fermi
level than the quasi-particle peaks (and similarly for
the electron addition spectrum, which is found at
positive energies). The spectral function is a reason-
able quantity to describe and interpret an
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experimental photo emission or inverse photo emis-
sion spectrum.

The above discussion tells us how to obtain
observables from the Green’s function, but we do not
know yet how to calculate the Green’s function itself,
unless we go back to its definition, Eq. (8). In the
absence of interaction, when the ground state |Ψi is a
single Slater determinant, Eq. (8) can be evaluated
immediately, yielding simply

G0 x1, t1;x2, t2ð Þ= − i
X
i

φi x1ð Þφ*
i x2ð Þe− iε0i t1 − t2ð Þ

Θ t1− t2ð ÞΘ ε0i −μ

 �

−Θ t2− t1ð ÞΘ μ−ε0i

 �� � ð15Þ

where the single-particle eigenvalues ε0i and eigen-
functions φi(x) appear, and Θ(τ) is the Heaviside step
function, Θ(τ) = 0 for τ < 0 and Θ(τ) = 1 for τ > 0.
There are separate contributions for occupied and
empty states (eigenvalues below and above the chem-
ical potential μ). The frequency Fourier transform
exhibits poles at the single-particle energies:

G0 x1,x2,ωð Þ= lim
η!0+

X
i

φi x1ð Þφ*
i x2ð Þ

ω−ε0i + iηsgn ε0i −μ

 � ð16Þ

where sgn is the sign function. Using Eq. (11) the
noninteracting spectral function in the basis of the
single-particle orbitals becomes

A0
kk ωð Þ= δ ω−ε0k


 �
: ð17Þ

this corresponds to the vertical bar in Figure 2.

At this point, we have motivated the use of Green’s
functions: the one-body Green’s function G gives
direct access to expectation values of one-body oper-
ators, to the total energy and to electron addition
and removal spectra. The spectral function of elec-
tron addition and removal is proportional to the
imaginary part of G(ω). In a noninteracting system
its matrix elements consist of sharp peaks at the
single-particle eigenvalues. In an interacting system,
additional peaks appear that merge to form a contin-
uous spectrum in infinite systems, exhibiting broad-
ened quasi-particle peaks and satellite structures. We
now have to find a way to calculate the Green’s func-
tion for the general case of an interacting system.

The Self-Energy
For the interacting many-body system, we cannot get
the Green’s function from Eq. (8), as we do not know
the many-body state |Ψi. This rises the question ‘how
can we capture in an efficient way the effect of the
Coulomb interaction, which modifies the propaga-
tion of a particle in a material (described by G) with
respect to the propagation of an independent particle
(described by G0)?’ Let us try to cast this effect into
the form of an effective potential. Some contributions
are easy to guess. First, there is the effect of the clas-
sical electrostatic potential due to all electrons: this is
the Hartree potential

vH rð Þ=
ð
dr0

n r0ð Þ
j r−r0 j ð18Þ

Second, because electrons are fermions we must have
an exchange term, the Fock contribution Σx

of Eq. (6).
Let us pause a second at the level of this well-

known HF approximation. Most often one would
evaluate the solution by solving the HF equations, a
set of effective independent-particle Schrödinger
equations. They are similar to the KS Eq. (10). The
Hartree potential appears in the same way in both
HF and KS equations, but HF replaces the multipli-
cative action of the local KS potentialf vxc(x)φi(x) by
the nonlocal

Ð
dx0Σx(x, x0)φi(x0) . As the HF particles

are effective independent particles, one can construct
the Green’s function GHF from the eigenfunctions
and eigenvalues of the HF equations using Eq. (15).
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FIGURE 2 | Typical electron removal spectral function matrix
element in an extended system. The vertical line indicates an
independent-particle result such as HF: it consists of one sharp peak.
The interacting spectral function, given by the fat dots, exhibits a
broad quasi-particle peak and a satellite due to excitations of the
many-body system. Shown are also the imaginary (continuous line)
and shifted real (dotted line) parts of the self-energy. The quasi-
particle peak appears where the shifted real part crosses zero. Relative
shifts would be different if another independent-particle system was
chosen.
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Alternatively, one can directly write the link between
GHF and the noninteracting G0 as

GHF x,x0,ωð Þ=G0 x,x0,ωð Þ+
ð
dx1dx2G0 x,x1,ωð Þ vH½

+Σx� x1,x2ð ÞGHF x2,x0,ωð Þ ð19Þ

This link between an interacting and a noninteracting
Green’s function is a Dyson equation, and the kernel
(which is here vH(r)δ(x1 − x2) + Σx(x1, x2)) that con-
tains all the interaction effects is called self-energy.
Note that also KS-DFT can be expressed as a Dyson
equation

GKS x,x0,ωð Þ =G0 x,x0,ωð Þ +
ð
dx1G0 x,x1,ωð Þ vH x1ð Þ½

+ vxc x1ð Þ�GKS x1,x0,ωð Þ ð20Þ

where GKS is the independent-particle Green’s func-
tion built with KS eigenfunctions and eigenvalues
according to Eq. (15).

The HF approximation is a useful and physi-
cally meaningful starting point, as it contains the
important electrostatic (Hartree) effects, and the
information that electrons are indistinguishable. Note
that today the Hartree potential is commonly defined
as the electrostatic potential due to all electrons,
including the electron itself on which it acts: it carries
a self-interaction problem.19 The Fock term exactly
cancels the self-interaction contribution: contrary to
the ‘Hartree’-approximation as it is defined above,
HF yields the correct total energy for a single elec-
tron. However, it completely neglects correlation
effects,g which implies that in the HF equations the
electrons do not react to the propagation of an elec-
tron or hole that is added to the system: all the other
electrons are frozen. Therefore, HF eigenvalues corre-
spond to too large energy differences for electron
addition or removal. In particular in metals and semi-
conductors, the consequences are striking. The right
panel in Figure 1 shows the band structure of HF
eigenvalues for bulk silicon, taken from Ref 8. In
comparison to the KS-LDA result in the left panel,
the bands are wider and, most importantly, the band
gap is drastically increased. It is much larger than the
measured band gap that is given by the experimental
results in the left panel: the sign of the error has
changed with respect to KS-LDA, but its magnitude
is rather increased.

The reaction of the electrons as a response to a
perturbation—here given by an extra charge—is

summarized in the concept of screening, which is fur-
ther detailed in Box 1. We can say that the fact that
HF misses screening spoils its eigenvalue spectrum,
and it is in particular detrimental for the band struc-
ture of solids.

The Dyson Eq. (19) suggests a direction for fur-
ther improvement: because all interaction effects are
contained in the self-energy, the strategy is to design
a better self-energy, rather than to work on the
Green’s function itself. This is analogous to KS-DFT,
where a major effort goes into the design of
improved exchange–correlation potentials.

In order to illustrate the power of Dyson equa-
tions, let us take Eq. (19) and suppose for simplicity
that the HF and noninteracting Green’s functions are
diagonal in the same basis. This means that HF and
noninteracting orbitals are the same, and that HF
eigenvalues are shifted with respect to noninteracting
ones by the corresponding matrix element of vH + Σx.
A given matrix element of GHF reads

GHF =
1

ω−ε0−vH−Σx
: ð21Þ

the interaction potentials shift the poles of the
Green’s function, with respect to the noninteracting
case. Now imagine to iterate the Dyson equation by
starting from GHF = G0 = 1/(ω − ε0). This corre-
sponds to an expansion of GHF in the interaction,

GH =
1

ω−ε0
+

vH +Σxð Þ
ω−ε0ð Þ2

+
vH +Σxð Þ2
ω−ε0ð Þ3

+… : ð22Þ

All contributions have a pole at the same energy,
although they are of increasing order. In order to
approximate the shift of pole energy that appears in
the exact solution Eq. (21), one needs a huge number
of terms. By solving the Dyson equation one obtains
directly Eq. (21), which is an expression for the
Green’s function that contains contributions of all
orders in the Coulomb interaction. This is true even
when the self-energy itself is of low order, such as in
the case of HF. This shows that in order to obtain
correct addition and removal spectra, perturbation
theory for the self-energy might be much more effi-
cient than perturbation theory for the Green’s func-
tion itself.

As already the simple HF shows, the self-energy
is nonlocal in space. Beyond HF, as discussed earlier
it should also contain the reaction of the system to
the propagation of an extra charge, which is in gen-
eral not instantaneous. Therefore, the self-energy is
also nonlocal in time, or frequency-dependent.
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The main message of this subsection is the idea to
introduce a space-spin and time- nonlocal effective
potential called self-energy. This allows one to
describe interaction effects in the Green’s function by
solving an integral equation called Dyson equation.
This equation creates contributions to the Green’s
function to all orders in the interaction, even when a
low-order approximation for the self-energy is used.
Therefore, we can expect that it will be easier to
approximate the self-energy than to approximate
directly the Green’s function itself.

THE GW APPROXIMATION: THEORY

In order to find a good approximation for the self-
energy, let us start from HF, where Σ = vH + Σx. This
is probably the most well-known approximation for
the self-energy, but as we have seen, it suffers from
the complete neglect of screening. Our aim is now to
go beyond this approximation. There are many ways
to achieve this goal. Often the problem is looked at
in terms of perturbation theory,4 where the noninter-
acting Σ = 0 is the zero-order term, and one expands
the self-energy in orders of the Coulomb interaction.
This leads to many-body perturbation theory and
diagrammatic expansions,20 with established rules
for creating higher order terms, and with a graphical
representation (called diagrams) of the relatively
complex multi-dimensional integrals that have to be
evaluated. For example, the HF self-energy can be
represented as shown in Figure 3, where the continu-
ous line with an arrow represents a Green’s function
and the dashed line the bare Coulomb interaction.

If one continues the expansion in the Coulomb
interaction one finds an increasing number of increas-
ingly complicated diagrams, representing the various
processes that can occur during the propagation of an
electron or hole, for example, electron–electron scat-
tering. Usually one has to make a choice and concen-
trate on certain processes that are supposed to be
dominant. To obtain the GW approximation, one
supposes that the most important contribution
beyond HF is the creation of electron–hole pairs as a

response to the propagation of the extra charge.
These electron–hole pairs are responsible for the
screening, which distinguishes GW from HF. The
explicit link between the creation of electron–hole
pairs and screening is summarized in Box 1.

In order to put the GW approximation in a
more general context, and to have a clearer idea about
what is included and what is neglected, the following
subsection contains a formal derivation based on
functional derivatives. A reader not interested in this
derivation may stick to the insights gained from the
equations, which are highlighted in several places.
The presentation of the derivation is compact, and
some details can be found, for example, in Refs 21,22.

Derivation of the GW Approximation from
the Equation of Motion
We start with the equation of motion for the one-
body Green’s function, which describes the change of
G with respect to one of its time arguments. Using
Eq. (8) one finds

i
∂

∂t1
−h 1ð Þ−vH 1ð Þ

� 	
G 1,10ð Þ− i

ð
dx2vc r1,r2ð Þ

Lð1,2,10,2+ Þjt2 = t +1 = δ 1,10ð Þ ð23Þ

where the compact notation (1) ≡ (x1, t1) ≡ (r1, σ1, t1)
has been adopted. Here, L(1, 2, 10, 20) = −G2(1, 2, 10,
20) + G(1, 10)G(2, 20) is called the two-body correla-
tion function, since it excludes the uncorrelated con-
tribution G(1, 10)G(2, 20) from the time-ordered two-
body Green’s function G2 defined as

G2 1,2,10,20ð Þ � − ið Þ2 ΨjT ψ̂ 1ð Þψ̂ 2ð Þψ̂† 20ð Þψ̂† 10ð Þ� �jΨ� �
ð24Þ

The spin-resolved density-density response functionh

χ is related to the two-body correlation function by

χ 12ð Þ = − iL 12,1+ ;2+ð Þ ð25Þ

and the equilibrium charge–charge response function
in frequency space is obtained as a sum in a spin
basis

χ r,r0;ωð Þ=
X
σ,σ0

ð
dτeiωτχσ,σ0 r,τ;r

0,0ð Þ ð26Þ

One may call L a generalized response function, since
it can be expressed as the variation of the one-body
Green’s function with respect to an external
potential u:

FIGURE 3 | Feynman diagrams for the Hartree–Fock self-energy.
The dashed line represents the bare Coulomb interaction, and the
arrow a one-body Green’s function . The arrow closed as a circle is
the density Eq. (3) (the diagonal of the Green’s function Eq. (8)). The
first contribution is the Hartree potential, and the second contribution
is the exchange self-energy.
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δG 2,10ð Þ
δu 3ð Þ ju =0

=Lð2,3,10,3 + Þ ð27Þ

Since with Eqs (3) and (8) the density for a system
with spin-independent interaction, where G is spin-
diagonal, is

n rð Þ= − i
X
σ

Gσ r, t,r, t +ð Þ ð28Þ

this contains the widely used linear response relation

δn r, tð Þ
δu r0, t0ð Þju = 0

= χ r, t;r0, t0ð Þ ð29Þ

If the interaction is set to zero in Eq. 23, one
finds that

i
∂

∂t1
−h 1ð Þ

� 	
G0 1,10ð Þ= δ 1,10ð Þ : ð30Þ

indeed, the noninteracting Green’s function G0

(Eq. (15)) is solution of this differential equation in
equilibrium, i.e., when h (1) does not depend on
time. More generally, the same form (Eq. (15)) for
the equilibrium solution is obtained when one adds
any instantaneous static potential to h, such as the
Hartree potential, the HF self-energy, or a KS
potential.

Using Eq. (30), one can reformulate Eq. (23) as

G 1,10ð Þ =G0 1,10ð Þ+G0 1,2ÞvH 2ÞG 2,10Þ



+ iG0 1,2Þvc 2,3ÞL 2,3

+
,10,3

+ + Þ


 ð31Þ

where arguments with a bar are integrated,
f 1Þg 1Þ� Ð d1f 1ð Þg 1ð Þ



, and the Coulomb interac-
tion vc carries a δ-function in time, since it is instan-
taneous, vc (1, 2) = δ(t1 − t2)vc(r1 − r2). Therefore,
three equal times appear in L, and the infinitesimal
time differences defined in Notation and Fourier
Transforms are needed to guarantee the correct order
of the field operators.

Equation (31) is the equation of motion for the
one-body Green’s function. It highlights the essential
physics:

The propagation of a particle in an interacting
system (given by G) equals its independent-particle
expression G0 plus a correction due to the Hartree

potential, and a term that involves two-particle correla-
tions and contains all exchange–correlation corrections.

If one neglects the last term in Eq. (31), one
finds automatically the Dyson equation that yields
the Hartree approximation. It is not obvious how to
go beyond, since in order to calculate G2 from
Eq. (24), and therefore L, one would again need the
unknown many-body state |Ψi. To obtain a closed
equation for G, one can use the linear response rela-
tion Eq. (27), and rewrite Eq. (31) as

Gu 1,10ð Þ=G0 1,10ð Þ +G0 1,2

 �

u 2

 �

+ vHu 2

 �� �

Guð2,10Þ+ ivcð2,3Þ
δGu 2,10


 �
δu 3

+
 � )(
ð32Þ

Here, we suppose that the actual external potential of
the system is already contained in G0, and u merely
represents an additional potential that is added for the
sake of the derivation, and that is set to zero at the end
of the calculation: in that case, the solution Gu ! 0

should be the physical equilibrium Green’s function of
the material. Before this last step, all quantities depend
on u, which is highlighted here by the subscript u.i

On the upside, we have now a closed differential
equation for G. If we were able to solve it, we would
have solved the many-body problem: Knowing Gu as
a functional of u would mean that we could take all
derivatives with respect to u, and in this way obtain
all correlation functions; Eq. (27) is an example for
the first, linear, order. This, in turn, would allow us to
calculate all possible expectation values.

On the downside, we do not know how to
solve this nonlinear (note that the Hartree potential
depends on G itself through the density!), multi-
dimensional, functional integro-differential equation.
Even worse, such an equation can have many solu-
tions, and it is not obvious how to select the physical
one (for a discussion, see, e.g, Ref 23).

To make the problem tractable, let us concen-
trate on the term δGu/δu in Eq. (32). We do not know
in general how Gu depends on u. In order to trans-
form the equation to a more useful form, we first
insert a chain rule, δGu 2,1ð Þ=δu 3ð Þ= δG 2,1ð Þ=½
δutot 5,6Þ
 �

δutot 5,6Þ=
�
δu 3ð Þ� with respect to some still

to be defined, possibly nonlocal, potential utot, and
then use the fact that δG 2,1ð Þ=δutot 5,6ð Þ=
−G 2,4ÞδG−1



4,8Þ=δutot 5,6ð Þ

G 8,1Þ


. In this way,
the equation of motion becomes a Dyson equation
G = G0 + G0ΣG with the self-energy given by
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Σ 2,8ð Þ = δ 2,8ð ÞvH 2ð Þ+ ivc 2,3

 �

G 2,4

 �

δG−1 4,8

 �

δutot 5,6

 � δutot 5,6


 �
δu 3

 � ð33Þ

If we chose utot to be the total potential

utot 5,6ð Þ� δ 5,6ð Þu 5ð Þ +Σ 5,6ð Þ ð34Þ

this equation simplifies to

Σ 2,8ð Þ= δ 2,8ð ÞvH 2ð Þ+ iG 2,4ÞW tot 2+ ,4,8Þ

 ð35Þ

with

W tot
u 2,4,8ð Þ� vc 2,3


 �δutot 4,8ð Þ
δu 3Þ
 ð36Þ

Once the self-energy is determined, the Dyson equa-
tion can be solved in the limit u ! 0 to obtain equi-
librium properties.

Let us compare the exact expression (35) to the
HF approximation Eq. (9). The difference lies in the
interaction: instead of the bare interaction vc, the
exchange–correlation contribution Σxc to the exact
self-energy contains the effective interaction Wtot: this
interaction is modified with respect to the bare one
by the response of the Hartree- and exchange–
correlation potentials. The variation of the system-
internal potentials due to a perturbation is the screen-
ing that is missing in HF. To summarize,

The exact exchange-correlation self-energy Σxc (1, 2)
can be expressed as the integral of an interacting
Green’s function G 1,4Þ


and an effective interaction

W tot 1,4,2Þ

. If the effective interaction is replaced by

the bare Coulomb interaction vc 12ð Þδ 2,4Þ

the

HF approximation is obtained. Beyond HF, the vari-
ation of the system-internal potentials modifies the
effective interaction: it is screened.

Of course, we do not know the effective inter-
action Wtot, since its calculation would require the
knowledge of the self-energy contained in utot
according to Eq. (34), so we are creeping around the
problem. However, at least some parts of the self-
energy are already known, so one can hope to treat
the problem iteratively.

Let us start with the simplest approximation,
where the self-energy has no exchange–correlation
contribution, namely the Hartree approximation

Σu (2,3) ≈ δ(2,3)vHu(2). Then, Eqs (35) and (36) yield
the approximate self-energy

Σ 1,2ð Þ≈δ 1,2ð ÞvH 1ð Þ +Σxc 1,2ð Þ= δ 1,2ð ÞvH 1ð Þ

+ iG 1,2ð ÞW 1+ ,2ð Þ ð37Þ

with the effective Coulomb interaction

W 1,2ð Þ= ϵ−1 1,3Þvc 3,2Þ

 ð38Þ

which is screened by the inverse dielectric function
defined as (see also Box 1)

ϵ−1 1,2ð Þ� δ u 1ð Þ+ vH 1ð Þð Þ
δu 2ð Þ = δ 1,2ð Þ + vc 1,3Þχ 3,2Þ



ð39Þ

This is the exact so-called test charge–test charge
inverse dielectric function, which is a measurable
quantity: for example, inelastic X-ray scattering or
electron energy loss spectroscopy experiments give
access to the imaginary part of ϵ−1, and, via the
Kramers–Kronig relations, also to its real part.j The
effective interaction W is called the screened Cou-
lomb interaction, and the resulting approximate self-
energy24 is Hedin’s GW approximation (GWA).25

With respect to HF, the GWA exchange-correlation
contribution to the self-energy replaces the bare
interaction vc(1,2) by a screened interaction W(1,2).
This is not the full effective interaction Wtot, but the
bare Coulomb interaction screened by the classical
charge response of the interacting quantum system to
a classical perturbation.

Note that the Hartree potential remains
unscreened. Figure 4 shows the diagrammatic repre-
sentation of the exchange-correlation contribution to
the GW self-energy.

Physics of the GW Approximation
Let us now analyze the GWA self-energy. Used in the
Dyson equation, it allows one to access the interacting
Green’s function G, which directly yields electron
addition and removal spectra. Even though GW is an
approximation, this is a major difference to any KS
result. Another difference to KS is the appearance of
the nonlocal Fock exchange in the self-energy. It
implies that the self-interaction contained in the Har-
tree potential is canceled, contrary to most approxi-
mate exchange–correlation functionals in the DFT
framework.k
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Most importantly, Eq. (38) expresses the fact
that with respect to the HF self-energy the GWA one
contains screening. The bare Coulomb interaction
does not depend on spin; therefore, the screened Cou-
lomb interaction W does not depend on spin either,
and the screening stems from the spin-averaged
response function χ(r, r0;ω) defined in Eq. (26).

Let us for the moment neglect the time depen-
dence of the functions. If W were instantaneous,
W(r, r0)δ(t+ − t0), the exchange–correlation contribu-
tion to the GW self-energy would read

Σxc x,x0ð Þ= −ρ x,x0ð ÞW r,r0ð Þ ð40Þ

This expression is nothing else but the statically
screened Fock operator (Eq. (6)). Even in this simple
approximation,26,27 the effect of screening is dra-
matic, especially in extended systems. This becomes
clear in the homogeneous electron gas, where in the
case of a spin-diagonal density matrix Eq. (40) reads
in reciprocal space:

Σxcσ kð Þ= −
1

2πð Þ3
ð
dq ρσ qð ÞW k−qð Þ ð41Þ

In HF, W(k − q) ! vc(k − q) = 4π/|k − q|2. As vc is
long-range, it diverges for q ’ k, and the Fock self-
energy displays a singular variation when k passes
through the Fermi surface, which leads to a patho-
logical density of states.28 A screened interaction,
instead, has the form W(k − q;ω = 0) = 4π/(|k − q|2 +
λ2), where λ is an inverse screening length. There is
no divergence, and one obtains a well-behaved self-
energy.25,29,30 Hybrid functionals, which are widely
used in chemistry and physics, are generalized KS
exchange–correlation potentials26 that contain a frac-
tion of exact nonlocal Fock exchange. They can be
regarded as approximations to the screened exchange
approximation contained in the GWA.31 In extended
systems range separation32 can be used to suppress
the long-range (small-k − q) Fock contribution; this
is a way to simulate the effect of screening and obtain
well-behaved results; see, e.g. Refs 33–37.

The density–density response function, which is
responsible for the screening through Eq. (39), links
the external potential and the induced density at differ-
ent times: χ depends on two times or, in equilibrium,
on one time difference. Therefore the Fourier trans-
form ofW, and by consequence the self-energy, are fre-
quency dependent. The screened Coulomb interaction
can be written in a spectral representation:

W r,r0;ωð Þ= vc r,r0ð Þ +
X
λ 6¼0

2ωλW
p
λ r,r0ð Þ

ω2−ω2
λ

ð42Þ

where λ 6¼ 0 labels excited states of the many-body
system with energies ωλ, and where Wp

λ are the
amplitudes of Wp ≡ vc χvc, the polarization part of
W = vc + vc χvc (Eqs (39) and (38)). According to the
system, the excitations can be discrete and/or form a
continuum.l The corresponding energy difference is
ωλ = EN, λ − EN, the energy of a neutral excitation.

In practice, the GW self-energy is often evalu-
ated by replacing G with an independent-particle
Green’s function. Then Eqs (37) and (42) lead tom

Σxc x,x0;ωð Þ=Σx x,x0ð Þ +
X
i,λ6¼0

φi xð Þφ*
i x0ð ÞWp

λ r,r0ð Þ
ω+ωλ sgn μ−ε0i


 �
−ε0i

ð43Þ

By neglecting the difference ω−ε0i

 �

, the ‘COulomb
Hole plus Screened EXchange (COHSEX),’ COH-
SEX approximation is obtained.29 The COHSEX
self-energy reads

Σxc x,x0ð Þ = −ρ x,x0ð ÞW r0,r;ω = 0ð Þ

+
1
2
δ x−x0ð ÞWp r0,r;ω =0ð Þ ð44Þ

Like Eq. (40), it contains a statically screened
exchange contribution. Moreover, there is a static
‘Coulomb hole,’ which is the local potential that is
created by the adiabatically induced charge density
around an external point charge.24,25

The COHSEX self-energy is a static approxima-
tion and gives therefore rise to a spectral function of
independent-particle form. The frequency dependence
that is displayed by the full GW self-energy (Eq (43))
is responsible for the dynamical effects. It distin-
guishes the GW approximation from any static mean-
field theory: in a system with a discrete spectrum, the
GW spectral function shows a number of excitations
that is larger than in the independent-particle case. In
the case of a continuous spectrum, it yields broaden-
ing and satellites, such as in the picture of Figure 2.

FIGURE 4 | Exchange–correlation self-energy in the GWA. The
test-charge–test-charge screened interaction is given by a wiggly line.
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Alternatively to the Galitskii–Migdal expres-
sion10 Eq. (14), one can express the total energy as a
variational functional of the interacting Green’s
function.38–41 In the GWA, this functional has inter-
esting properties; in particular, through the appear-
ance of W it introduces long-range polarization
effects that give rise to the van der Waals dispersion
interaction, a phenomenon that is difficult to capture
with simple density functionals. When the random-
phase approximation (RPA) (see the following sec-
tion) is used to calculate W, and when the total energy
functional is evaluated with an independent-particle
KS–Green’s function instead of the self-consistent
GW one, the GW total energy becomes39,42

EGW GKS½ � =EHF φKS� �
+
1
2
Tr vcGKSGKS½

+ ln 1−vcGKSGKSð Þ� ð45Þ

where Tr stands for a trace over space, spin, and fre-
quencies. The first term is the HF energy calculated
with KS orbitals; the remainder is the correlation cor-
rection. This expression for the total energy is called
RPA in the framework of DFT.43–45 It reflects good
features of the full GWA functional, in particular it
also describes the van der Waals dispersion. More
discussion about GWA and RPA total energies can
be found, e.g., in Refs 46–50.

Screening in Finite and Infinite Systems
Before moving on to more practical details, it is
important to clarify one point that might give rise to
confusion. In finite systems, often the so-called Δ
self-consistent field (Δ-SCF) approach is used to cal-
culate addition or removal energies. In this approach,
the total energy of a system with an additional elec-
tron or hole is calculated in some mean-field approxi-
mation by populating or depopulating a localized
orbital, and the system is allowed to relax adiabati-
cally. This mean-field approximation could be, for
example, HF.n The linear response contribution of
the relaxation of the Hartree potential simulates the
physics of the GWA and indeed, results in finite sys-
tems are often similar.51–53 Does not this contradict
our initial statement where it was said that HF does
not contain screening?

Indeed, we have to define carefully what is
meant here. First, for example, in the comparison of
band structures in Figure 1, HF eigenvalues were
used. They correspond to electron addition or
removal total energy differences via Koopmans’ theo-
rem only if the system is not allowed to relax. In a

finite system this makes a difference, because an addi-
tional charge is a strong perturbation that induces
significant relaxation in a self-consistent total energy
calculation, such as in the Δ-SCF approach. How-
ever, we always refer to eigenvalues in our discus-
sion, and this is the sense in which ‘HF contains no
screening.’

Second, in an infinite periodic system the situa-
tion changes. Indeed, if we insert one additional
charge in a Bloch state, it is completely smeared out
and induces only an infinitesimal relaxation of the
system. The relaxation energy is quadratic in the
extra charge density, and therefore vanishingly small.
Hence Koopmans’ theorem is valid, and we cannot
get away with Δ-SCF.

The merit of the GWA, or already its static
COHSEX approximation, is to overcome this prob-
lem. The screening that is introduced by the GWA
corresponds implicitly to a different interpretation
of what it means to add a charge: it is not to create
a delocalized extra charge density whose distribu-
tion is given by an eigenstate of the periodic system,
but to put an extra localized charge to some place
with some probability. The eigenfunction tells us
the probability amplitude for the charge to go to a
given place; in particular, in a periodic system the
Bloch function carries the information that the
probability is the same in all periodically repeated
units. The addition of a localized charge leads to a
significant relaxation energy also in an infinite sys-
tem, reflected in the screened eigenvalues of the
GWA. Therefore in the presence of extended states,
where Δ-SCF or similar approaches using simple
functionals would have problems, the GWA makes
a qualitative difference.

THE GW APPROXIMATION IN
PRACTICE

What does it mean to do a GW calculation? The aim
of this section is to become more concrete on this
question.

The Random-Phase Approximation
To start with, none of the above expressions can be
calculated in practice, as we do not know the exact
dielectric function: for this, we would have to evalu-
ate Eq. (29), which means that we would have to
know how the exact charge density depends on a
general time-dependent external potential. To over-
come the problem, let us start from χ from Eqs
(25) and (27). By expanding the derivative using the
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chain rule with the total potential defined in Eq. (34),
χ can be written as

χ 1,2ð Þ = − iG 1,2ð ÞG 2,1+ð Þ− iG 1,3

 �

G 4,1+
 �
δ 3,4

 �

vcð3,5Þ+
δΣxc 3,4


 �
δn 5

 � !

χ 5,2

 � ð46Þ

This is a Dyson equation for χ. However, the
exchange–correlation contribution δΣxc/δn is
unknown. The simplest approximation is the RPA,
where it is completely neglected.o Neglecting the vari-
ation of the exchange–correlation contribution is per-
fectly within the spirit of the GW approximation: we
have already done this to move from Eq. (35) to
Eq. (37). More pragmatically, this approximation
makes the calculation of W feasible for realistic sys-
tems. For both reasons, the GW approximation usu-
ally also implies the RPA for the calculation of W.

The RPA has been introduced by Bohm and
Pines54 for the homogeneous electron gas. It is equiva-
lent to the time-dependent Hartree approximation,55

when Hartree Green’s functions instead of G are used
to evaluate Eq. (46), with δΣxc/δn ! 0. In real calcula-
tions one usually finds the use of KS Green’s functions,
or sometimes a self-consistently calculated G, for
example, from GW. In any case:

In the RPA the density–density response function χ
consists of noninteracting electron–hole pairs (given
by a product of two Green’s functions) that are con-
nected by the bare Coulomb interaction. This cou-
pling is due to the self-consistent variation of the
Hartree potential in the response. The variation of
exchange–correlation contributions is neglected.

The resulting Dyson equation (Eq. (46) with
δΣxc/δn ! 0) is depicted in Figure 5.

Things to be Calculated
To make a GW calculation, one needs an input
independent-particle electronic structure with which
to construct a starting G and W. Preferably, it should
already be close to the final result. In extended sys-
tems one, uses typically KS eigenfunctions and eigen-
values; hybrid functionals are often a good choice in
semiconductors and insulators.

At the heart of a GW calculation lies the
determination of screening. It starts with the calcula-
tion of the independent-particle response function
χ0 (1, 2) ≡ − iG(1,2)G(2,1+), using the input electronic
structure to build G. Subsequently one solves the
screening Dyson equation depicted in Figure 5, which
allows one to obtain the inverse dielectric function
Eq. (39) and finally, the screened Coulomb interaction
W from Eq. (38). Now the self-energy can be set up
along the lines of Eq. (43). In extended systems, the
sum over excitation energies is an integral over fre-
quencies. Several approaches exist to deal with this
numerical problem, e.g. Refs 56–64.

Once the self-energy is obtained, quasi-particle
energies and/or a new Green’s function can be calcu-
lated on various levels of approximation. Often cal-
culations are limited to an approximate calculation
of quasi-particle energies εi from first-order perturba-
tion theory with respect to KS,

εi = εKSi + Σxc εið Þ−vxc½ �ii≈εKSi +Zii Σxc εKSi


 �
−vxc

� �
ii

ð47Þ

where

Zii � 1−
∂ Σxc ωð Þ½ �ii

∂ω jω = εKSi

� −1

: ð48Þ

here Σxc − vxc is treated as a small perturbation with
respect to KS, so quasi-particle and KS orbitals φi are
equal. Moreover, Σ(ω) is considered to be approxi-
mately linear in frequency around the quasi-particle
energy.60p A calculation where G and W are built
with a starting independent-particle electronic struc-
ture is called ‘G0W0.’ This and the further approxi-
mations in Eq. (47) can be dropped, and one can go
up to a fully self-consistent solution of the Dyson
equation, which requires to re-calculate G several
times. An intermediate, today often adopted, level of
self-consistency is given by the quasi-particle self-
consistent GW approximation (QSGW), where the
fully frequency-dependent GW self-energy is replaced
by an optimized static nonlocal operator in the self-
consistency cycle.65–67 This approach is easier to use,
and it avoids the drawbacks of a fully dynamical
self-consistent calculation, in particular the violation
of the f-sum rule that one finds if W is calculated in
the RPA with fully interacting Green’s functions.68

As an output of a GW calculation one obtains
quasi-particle energies, spectral functions and/or total
energies, and when one goes beyond the first-order per-
turbation theory approach, also updated charge densities
(see, e.g., Refs 69–73), and density matrices. Of course,

FIGURE 5 | Dyson equation for the polarizability χ in the
random-phase approximation (RPA).
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dealing with nonlocal objects has a computational price:
the number of atoms N per unit cell that can be treated
in typical ground-state DFT calculations today can be of
an order of magnitude of 104, whereas GW calculations
usually deal at best with some 103 atoms. This goes
hand-in-hand with the scaling properties: the tendency in
DFT codes is to have a dominant scaling of N2, whereas
most GW codes scale as N3 or N4. Still, with these
orders of magnitude, many interesting applications are
within the reach of GW calculations.

Applications

GW Calculations for Extended and Finite
Systems
The first and probably most well-known success of
the GWA was to overcome the band gap underesti-
mate of KS eigenvalue differences in simple
semiconductors.60,74–76 The example of silicon is
shown in Figure 1: the GWA gap is about twice as
large as the eigenvalue difference calculated in KS-
LDA. On the other hand, the GWA gap is signifi-
cantly smaller than the HF eigenvalue gap, and over-
all the GWA band structure is in good agreement
with experiment. The band structure or single aspects
such as effective masses, band offsets, or band widths
have been calculated successfully for many other sim-
ple semiconductors and insulators.22,77,78 Even the
band structure of materials containing strongly local-
ized electrons such as d- or f- electrons in transition
metal oxides can oftenq be well described; in these
cases, it is necessary to carefully chose the starting
point of a G0W0 calculation, or to be at least par-
tially self-consistent, in order to have a good descrip-
tion of the charge density65–80 (see also The Starting
Point). Furthermore, the GWA is used to calculate
finite lifetimes due to impact ionization.81 It also
yields satellite structure, but in many cases the agree-
ment with experiment is poor. It can, however, be
improved by using the GW self-energy in a cumulant
expansion (see What Is Wrong With the GW
Approximation?).

The fact that the GWA contains screening is
also important in the calculation of total energies.
For example, the GWA can treat van der Waals dis-
persion, a major challenge for DFT functionals.
Screening, moreover, is important to describe image
states outside a surface or a cluster; the GWA can
therefore do this successfully.82 For an overview and
more references concerning applications, see. Ref 22.

When the dimension and size of a system is
reduced, states evolve from delocalized Bloch states
in a crystal to more localized states, and there is less

screening. Therefore, the screened exchange contribu-
tion increases, toward the Fock exchange. However,
even for quite small systems, down to an atom or a
few atoms, one cannot in general neglect screening
completely, and the GWA is clearly superior to HF
for the calculation of ionization energies and electron
affinities. At the same time, it also corrects KS results,
where the smallest ionization energy is in principle
correct, but results are spoiled by the use of approxi-
mate functionals. Therefore, the GWA meets an
increasing interest in the chemistry community (see,
e.g., calculations of energy levels in molecules
described in Ref 83, and references therein).

Of course, a method that is born in the homoge-
neous electron gas has to be thoroughly re-examined,
and eventually re-optimized, when it is to be used for
small finite systems. Therefore a major part of the
ongoing effort is devoted to benchmarking the GWA in
systems relevant for chemistry, to find the most efficient
implementations, and the most reliable level of approxi-
mation. Many issues have still to be settled. The rest of
this section is not meant to contain an exhaustive litera-
ture review, but to highlight and illustrate questions
and directions of research that are specific for quantum
chemistry applications, with the help of a few
examples.

Quantum Chemistry Implementations
Technical choices are not necessarily the same for
extended and finite systems. One can easily understand
that in periodic systems basis sets such as plane waves
are often a good choice, whereas in small systems a
localized basis may be more suitable. Various imple-
mentations have been proposed and described in detail
(see, e.g., Refs 64 and 84–88), which are often adapted
to standard quantum chemistry packages. These imple-
mentations have been used for extensive benchmark-
ing. For example, in Ref 64, a test set of 27 molecules
(called GW27) ranging from H2 to naphthacene has
been considered. The work of Ref 84 focused on a test
set of 29 molecules ranging from H2 to tetrathiafulva-
lene. The systems examined in Ref 85 include the ben-
zene and other molecules, water clusters containing up
to 480 atoms, small CdSe nanoparticles, and linear
acenes, whereas the work of Ref 86 concentrates on
relativistic effects, which are studied in molecules,
solids, and nanocrystals. A large set of benchmark mol-
ecules proposed to benchmark GWA calculations is
the GW100 set of Ref 89.

The Starting Point
To build the GW self-energy Eq. (37), one would in
principle need G and W, but the Green’s function is a
result of the calculation. Many calculations use a ‘best
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guess’ for G and W to determine the self-energy, for
example, a KS Green’s function and an RPA
W calculated from KS energies and orbitals. As
explained in Things to be calculated, this is called a
G0W0 calculation. Of course, results depend on this
starting point, and the choice of an optimal starting
point is crucial. In Ref 90, GW calculations were per-
formed for acenes for various lengths of the chains,
ranging from benzene to hexacene. Different hybrid
functionals were used as starting points, and eigen-
values (not eigenfunctions) were calculated self-consis-
tently. Ionization potentials were well described, but
electron affinities were not satisfactory for the larger
acenes, pointing to the need for a more complete self-
consistency scheme, for a still improved starting point,
or for corrections terms beyond the GWA. In Ref 91, a
wide range of starting points for G0W0 was examined,
including HF, LDA, PBE, PBE0, B3LYP, HSE06,
BHplusHLYP, CAM-B3LYP, and tuned CAM-
B3LYP. For the ionization energy, the hybrid func-
tionals, and in particular those with a high proportion
of exact-exchange, yielded the best results. Other
important classes of systems are molecules containing
transition metal atoms, and molecules for photovoltaic
applications. For these, the effect of the starting point
and partial self-consistency in the GWA calculations
has been explored.83 It was suggested that G0W0 on
top of PBE0 emerges as a method that is reliable and
efficient enough to treat systems of technological inter-
est within this class of materials.

An illustration for a comparison of starting
points for a pyridazine molecule is given in Figure 6,
taken from Ref 92.

Concerning the question of the starting point,
there can be no miracle solution. Because G0W0 is a
severe approximation, the choice of the starting point
is necessarily system dependent. As a guideline, one
should make sure that the charge density is well
described by the chosen starting functional, in order
to capture the important electrostatic effects.

Self-Consistency
In order to improve the results and make calculations
more starting point independent, the calculations can be
partially or fully iterated. An important step is the update
of eigenvalues. For example, eigenvalue self-consistency
has been shown to be beneficial for the case of water in
Ref 93. Also the quasi-particle wavefunctions may
change significantly when the calculations are iterated
toward self-consistency. Imagine, for example, a mole-
cule with its first unoccupied level resulting below the
vacuum level in a KS calculation. If the GWA increases
its energy, it may move above the vacuum level and delo-
calize. This, in turn, can yield a very different one-body

Green’s function and, in the next step of a self-consistent
GW calculation, a big change in the self-energy. Full self-
consistency is more than just an update of quasi-particle
eigenvalues and wavefunctions: it requires the solution
of the Dyson equation. As the GW self-energy is fre-
quency dependent, after the first self-consistency step the
Green’s function has no longer an independent-particle
form Eq. (16).

There are different arguments, sometimes con-
trasting, for or against full or partial self-consistency.
This is natural, because the GWA is an approxima-
tion, and according to the system and the quantity
that is studied, contributions from self-consistency
and terms that are neglected in the GWA may have a
tendency to cancel. Therefore, it is very important to
gain insight and experience using different test sets,
in order to propose the most reliable versions of GW
calculations for certain classes of applications.

Various levels of self-consistency, up to fully
self-consistent GW, were examined in Ref 92. Their
performance was assessed for electron removal
quasi-particle spectra of benzene, pyridine, and the
diazines. It was found that fully self-consistent GW
does not yield the best results, whereas nonself-
consistent or partially self-consistent calculations
may be better, if the starting point is carefully cho-
sen. In particular, when the ground-state charge den-
sity has a dramatic influence on spectra, it may be
wise to use GW with a level of self-consistency which
updates wavefunctions. This is the case for the
HOMO–LUMO alignment in donor–acceptor sys-
tems studied in Ref 94. It has been shown that for
these systems it is not enough to chose one of the
widely used starting points, such as PBE0, but that in
these donor–acceptor compounds, and more gener-
ally in systems where the description of ground-state
properties depends on the relative alignment of the
frontier orbitals of different components (such as,
e.g., molecules absorbed on surfaces), partially
self-consistent GW significantly changes the density
and brings spectral results in better agreement with
photo emission experiments and accurate quantum
chemistry calculations. The importance of partial
(quasi-particle - or eigenvalue-) self-consistency has
also been stressed in Ref 84, where GWA results for
the dipole moments of five molecules relevant for
organic photovoltaics have been benchmarked
against experimental results. The effect of an update
of the quasi-particle wavefunctions is illustrated in
Figure 7. One might argue that a suitably chosen
starting point could circumvent the need for self-con-
sistency. This is true; for example, in the charge
transfer example of Ref 94 discussed above, hybrids
with large fraction of exact exchange lead to
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satisfactory results. On the other hand, the strategy
of partial self-consistency is certainly more transfer-
able than a case-to-case search for an optimal start-
ing point.

Overall, it emerges that in general QSGW, or at
least an update of eigenvalues combined with a good
starting density, should be preferred with respect to
full self-consistency.

Total Energies
Also GWA total energy calculations for molecules are
a topic of current exploration. The textbook example
of the H2 molecule is examined in Refs 95 and 96. In
the dissociation limit, GWA results are worse than
DFT–RPA ones, although they correspond to similar
diagrams (see Physics of the GW Approximation).
More work is needed to make GWA total energy cal-
culations operative and competitive with respect to
DFT ones, especially as GWA calculations are signifi-
cantly more computationally demanding. It should be
noted that GWA total energies can in principle also
be computed using variational functionals. In that
case, even a nonself-consistent Green’s function
should yield results close to fully self-consistent one,
which avoids the need of a self-consistency cycle and

leads to a significant reduction of computer time.
Work is ongoing in this direction; see,
e.g. Refs 38–41.

Overall, and in view of the fact that with
today’s implementations of the GWA systems of hun-
dreds or a few thousands of electrons can be studied
(see, e.g., Ref 86), it seems worthwhile to further
investigate the potential of GWA calculations in a
context of quantum chemistry.

WHAT IS WRONG WITH THE GW
APPROXIMATION?

The GWA is today part of the standard toolbox in
condensed matter physics, and it is also increasingly
used in chemistry, with applications to molecules and
clusters. As we have discussed above, it contains sev-
eral pieces of important physics. However, it is an
approximation, and as such bound to fail sooner or
later. The present review would be misleading with-
out mentioning some of the main problems.

Examples of Failures
To start with a toy system, let us look at a Hubbard
dimer with one electron in its ground state. This sys-
tem consists of two equivalent sites, each with one
orbital. The Hamiltonian reads

H = − t
X
σ

c†1σc2σ + c
†
2σc1σ

� �
+U

X
i =1,2

ni#ni" : ð49Þ
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FIGURE 6 | Electron removal spectrum of pyridazine, comparison of
theory and experimental photo emission done in the gas phase, from Ref
92. Calculated results include Hartree–Fock and two density functional
theory functionals, as well as G0W0 using the DFT calculations as starting
points. A broadening of 0.3 eV was used. At the bottom the density of
the frontier orbitals is shown (Adapted with permission from Ref. 92.
Copyrighted by the American Physical Society).
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FIGURE 7 | Effect of the update of quasi-particle wavefunctions
in a GWA calculation for hydrogen fluoride: shown is the difference
between the densities calculated in density functional theory (DFT)-
PBE and quasi-particle self-consistent GW approximation, respectively.
The result is normalized with respect to the DFT density. The fluoride
atom is indicated by a green cross and the hydrogen atom by a gray
cross (Reproduced with permission Ref 84. Copyright 2016 American
Chemical Society).
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it contains a kinetic term proportional to the hopping
parameter t, and an interaction contribution that is
proportional to the onsite interaction U. This is proba-
bly the simplest model for the H+

2 molecule. For elec-
tron removal, the exact solution is trivially
noninteracting, but for electron addition this is an
interacting problem that can be solved exactly (see,
e.g., Refs 97 and 98). The ratio U/t is a measure of
the effective interaction strength. The larger U/t, the
more perturbation theory using the interaction as
expansion parameter has problems. Indeed, in the
atomic limit (t ! 0) this is a textbook example of
strong correlation.

Two typical spectral functions are shown in
Figure 8. They have been calculated for the case where
the ground state consists of one spin-up electron. In
the left panel, the spin-up spectral function is shown
for moderate interaction strength (U = 5, t = 1). The
exact spectral function is noninteracting, also for elec-
tron addition, because the second spin-up electron
must go on the empty site, and the interaction is short
ranged. Therefore, the spectral function shows two
peaks separated by a gap of 2t, the bonding–
antibonding separation. The GWA slightly overesti-
mates this gap. Moreover, it creates spurious satellites.
In particular, the GWA transforms a noninteracting
problem (the removal of a single electron) into an erro-
neously interacting one; this is due to the fact that the
electron screens itself, since it enters the calculation of
W. It is a clear illustration of the self-screening (also
called self-correlation) problem of the GWA. In the
right panel, the spin-down spectral function in the
atomic limit is shown. The exact result has two peaks,
as an additional electron can meet an empty or an
occupied site. The GWA places only one peak, in an
average position, because it ‘sees’ half an electron on
each site; this corresponds to an interpretation of the
system density as a classical charge distribution.r

Also in the case of two electrons in the ground
state of the Hubbard dimer, the GWA fails to repro-
duce the exact spectral functions of electron addition
or removal when the interaction is much larger than
the hopping parameter. The problems are reflected in
the total energy of a H2 molecule95: in particular,
GW is not size extensive, which means that one does
not obtain the sum of the energies of two isolated
atoms in the dissociation limit.

Even in extended systems the GWA can some-
times have severe problems. Similarly to the atomic
limit of the Hubbard dimer, unless there is symmetry
breaking the GWA cannot describe the gap of a Mott
insulator, which is by definition purely due to correla-
tion. For example, paramagnetic NiO is an insulator,

but the GWA yields a metal. In the low-temperature
antiferromagnetic phase where the spins are fixed and
therefore the translational symmetry is broken, GW
band structure results are instead very good.80

It is also difficult for the GWA to describe satel-
lites. This may be astonishing, because, as one can
see, for example, from Eq. (43), the appearance of a
frequency-dependent W leads to the coupling of the
propagating fermion to neutral excitations of the sys-
tem.s However, there are several problems:

1. The RPA for W. This may exclude important
exchange–correlation effects, including some
multiplets, which should be seen in the
satellites.

2. The appearance of W itself, even if one could
calculate it exactly, is an approximation: the
derivation in From Wavefunctions to Green’s
Functions shows that the correct effective inter-
action to be used is Wtot from Eq. (36), not the
measurable test-charge–test-charge W. Using
W instead of Wtot has several important conse-
quences: the first is the self-screening problem,
which has been illustrated for the Hubbard
dimer above. More generally, the full Wtot in
the exact self-energy Eq. (35) contains the cou-
pling to excitations that are not contained in
W and therefore in the GWA, such as spin-flip,
or hole–hole excitations.

The second issue is responsible for many of the
observed GWA failures, for example, the absence of a
satellite at 6 eV binding energy in the photoemission
spectrum of bulk nickel, which is believed to be due to
hole–hole excitations.99 The GWA also finds it diffi-
cult to describe multiple satellites, at least in the (non-
self-consistent) G0W0 approximation. For example,
the photoemission spectrum of bulk silicon displays a
series of satellites that follows the quasi-particle
valence band region between 0 and −12 eV. This satel-
lite series is due to the presence of one, two, and more
plasmon excitations. G0W0, instead, produces only
one satellite, further away from the quasi-particle than
the first satellite in the experimental spectrum. This is
illustrated in Figure 9 taken from Ref 100.

Why is this so? In principle it would be possible
to express Wtot, and hence the self-energy, exactly in
terms of W. The GW approximation limits the self-
energy to the first-order term, where Wtot ≈ W, and
higher order terms are neglected. The correction to
this problem can be expressed in two ways, which
we will briefly discuss in the following section.
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BEYOND THE GWA

Often the GWA is introduced as an approximation to
a set of equations formalized by Hedin.25 This in prin-
ciple exact set of equations consists of the Dyson
equation and a rewriting of Eqs (36) and (35), namely

Σxc 1,2ð Þ = iG 1,4ÞW 1+ ,3ÞeΓ 4,2;3Þ


 ð50Þ

W 1,2ð Þ= vc 1,2ð Þ + vc 1,3ÞP 3,4ÞW 4,2Þ


 ð51Þ

P 1,2ð Þ = − iG 1,3ÞG 4,1ÞeΓ 3,4;2Þ


 ð52Þ
eΓ 1,2;3ð Þ= δ 1,2ð Þδ 1,3ð Þ + δΣxc 1,2ð Þ

δG 4,5

 �

×G 4,6ÞG 7,5ÞeΓ 6,7;3Þ


 ð53Þ

G 12ð Þ = G0 12ð Þ+G0 1,3ÞΣ 3,4ÞG 4,2Þ


 ð54Þ

This way of formulating the equations highlights
some important ingredients:

1. the irreducible polarizability P in Eq. (52) is the
response of the system to the total classical per-
turbation. It consists of pairs of particles (elec-
trons or holes) that are interacting through the
irreducible vertex function eΓ.

2. The effective classical interaction W in
Eq. (51) is the test-charge–test-charge screened
interaction in Eq. (38).

3. The difference between Wtot and W is

expressed by eΓ in Eq. (50). It stems from

variations of Σxc (see Eq. (53)). In other words,
Hedin’s equations highlight the GWA idea, and
the vertex function eΓ that contains possible
corrections to the GWA.

Many attempts have been made to find approxima-
tions for eΓ, but deriving a reliable and still feasible
expression has turned out to be exceedingly difficult.
Note that Hedin’s equations express a point of view:
they focus on W (and therefore indirectly on the
density-density response function χ), and the rest is
presented as a correction. There are other ways to for-
mulate the self-consistent set of relations, highlighting
correlation functions other than χ, for example, hole–
hole correlation. This leads in lowest order to the T-
matrix approximation, rather than the GWA.41

In spite of all the good arguments for the use of
Dyson equations, one may also have a doubt about
the limits of usefulness of the self-energy concept
itself. Let us first take the simple case where a matrix
element of the Green’s function has only one pole ε
corresponding to a quasi-particle, and let us suppose
that this pole is shifted with respect to the
independent-particle result ε0, similar to Eqs (21) and
(22). In this case, the self-energy is

Σ ωð Þ =G−1
0 ωð Þ−G−1 ωð Þ= ε−ε0 ð55Þ

a simple constant.
Let us now suppose that we have also a satellite

due to the coupling to an excitation with energy ωp.
In order to conserve the total weight of the spectrum,
in this case the Green’s function reads
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G ωð Þ= a
ω−ε

+
1−a

ω−ε +ωp
ð56Þ

and the self-energy becomes

Σ ωð Þ=G−1
0 ωð Þ−G−1 ωð Þ = ε−ε0− 1−að Þωp +

a 1−að Þω2
p

ω−ε + aωp

ð57Þ

Now the ω-independent contribution to the self-
energy is renormalized by the coupling to the excita-
tion. Moreover, the self-energy is frequency-depen-
dent, with a pole at ω = ε − aωp. The GW self-
energy Eq. (43) has a similar structure, but there is a
major difference: in the GWA, the pole of Σxc is at
ω = ε − ωp instead of ε − aωp. For this reason, and
because 0 < a < 1, satellites tend to be too far from
the quasi-particle peak, even when ωp is calculated
beyond the RPA. It is difficult to find the necessary
correction to the self-energy from physical intuition
alone, and the task becomes increasingly difficult
for multiple satellites.

One way to overcome this problem is to aban-
don the use of a self-energy, and move to another
framework, such as that of cumulant expansions
(see, e.g., Ref 29). One may roughly understand the
cumulant idea by rewriting Eq. (32) as

Gu 1,10ð Þ =GHu 1,10ð Þ+ iGHu 1,2

 �

×Wu 2,3

 �δGu 2,10


 �
δucl 3

+
 � ð58Þ

where Wu is the screened Coulomb interaction W as
a functional of u (or equivalently, ucl). Here ucl =
uext + u + vHu is the total classical potential including
the original and the additional external potentials,
uext and u, and GHu = G0 + G0uclGHu is the
Hartree Green’s function in presence of u. The
Eq. (58) is exact. To obtain the GWA, one would
approximate (δGu/δucl) ≈ GG and then set u ! 0
(this is an alternative way to derive the GWA). A
different family of approximations is obtained by
neglecting in Eq. (58), the dependence of Wu on
the external perturbing potential, which means, by
making the approximation of linear response.
Then the differential equation can be solved
approximately (see, e.g., Ref 101). The result is a
Green’s function of the form Gii τð Þ =GH, ii τð ÞeCi τð Þ,
where τ = t1 − t2. The function C in the exponent is
called cumulant. In this approximation it depends
linearly on the GW self-energy (and hence on W),
and the expansion of the exponential yields single,
double, and multiple excitations from a single

excitation in W (see, e.g., Ref 102). In this respect,
the approach bares a strong similarity to the coupled
cluster method.103 When the excitations that are con-
tained in W, for example plasmons, are responsible
for the observed satellites, the cumulant approxima-
tion leads to strong improvement of satellite spectra
with respect to the GWA. This can be seen at the
example of bulk silicon in Figure 1. Instead, in this
simple form it still cannot, as a matter of principle,
solve the problem of satellites due to other excita-
tions, such as magnons, which are not contained
in W.

CONCLUSIONS

In first principles calculations, electron addition and
removal energies for finite and extended systems are
often determined in the framework of density func-
tional theory, by calculating KS eigenvalues. How-
ever, such an approach has two problems: first, these
eigenvalues are not meant to be electron addition or
removal energies. Second, one has to approximate
the in general unknown exchange–correlation poten-
tial of the KS Hamiltonian. Altogether, this often
introduces significant errors in ionization energies
and electron affinities, and it leads to an underesti-
mate of band gaps in solids which is often called the
‘band gap problem.’

To overcome these issues, today the state-of-
the-art for calculations of the band structure of
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FIGURE 9 | Photo emission spectrum of bulk silicon, from Ref 100.
Crosses are experimental results, the dashed line is from a G0W0

calculation. The thick continuous line is the intrinsic spectral function
from a cumulant expansion calculation. The dot-dashed line includes
moreover extrinsic losses of the outgoing photoelectron and interference
effects. Cross sections and a secondary electrons background have been
added to all calculated spectral functions (Reproduced with permission
from Ref 100. Copyright 2011 American Physical Society).
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extended systems is the use of Green’s functions and
many-body perturbation theory. With respect to KS,
the exchange–correlation potential is replaced by a
nonlocal and frequency-dependent self-energy. The
Hartree plus exchange potentials of HF constitute
the first-order, frequency-independent, approxima-
tion to the self-energy. To go beyond, the most
widely used approximation in extended systems is
the GW approximation; with respect to HF, the bare
Coulomb interaction in the exchange term is replaced
by a dynamically screened interaction. This reduces
the way too large HF eigenvalue gap in solids and
brings it in general close to experiment.

The GWA is used to calculate band structures,
lifetime broadening, spectral functions, or total ener-
gies, for a wide range of extended systems. More
recently, it has also been used in finite systems, and
one can find an increasing number of implementations
and benchmarks. Results are quite promising,
although more experience is needed to elucidate ques-
tions such as the optimal level of self-consistency that
is needed to obtain the most reliable results.

Successes and limitations of the GWA can be
understood from a picture where an electron that
propagates in a system is represented by an object
traveling on water (see Figure 10): in HF, the water
is frozen and the electron is an ice-skater: there is no
relaxation, which explains the too high energies. In
the GWA, the electron acts like a boat on water, cre-
ating waves (as it couples to other excitations in the
system) that act back on its propagation. It should be
noted, however, that the response of the ‘water’ is a
mean-field response: in the GWA, the additional par-
ticle does not see the individual water molecules, in
other words, it does not correlate with the individual

system particles. In situations of low density such as
in the dissociation limit of certain molecules, includ-
ing H2 and H+

2 , this becomes important and is a limi-
tation of the GWA.

Overall, the GWA constitutes a good compro-
mise between precision, range of validity and compu-
tational efficiency. Moreover, it yields a convenient
starting point for advanced calculations of response
functions, for example, for the determination of exci-
tonic effects in optical spectra. It is therefore increas-
ingly used for applications that may be interesting in
physics, chemistry, or even biology, such as the cal-
culation of energy levels of molecules in water, or
spectra of nanostructured materials for photovol-
taics. In cases where processes are important that are
not described by the GWA, it can still be used as a
valuable ingredient for methods that go beyond,
thanks to its clearly defined content in terms of
exchange and dynamical screening.

NOTATION AND FOURIER
TRANSFORMS

In order to ease the reading of this article, in the fol-
lowing we summarize the most important notations
and the convention for Fourier transforms:

t + � limη!0+ t + η ð59Þ

t + + � limη!0+ t + 2η ð60Þ

: 1ð Þ� x1, t1ð Þ� r1,σ1, t1ð Þ ð61Þ

f 1Þg 1Þ� Ð d1f 1ð Þg 1ð Þ

 ð62Þ

FIGURE 10 | Pictorial representation of the Hartree–Fock (left panel) and GW (right panel) approximations. Hartree–Fock eigenvalues reflects
electron addition or removal with respect to a rigid system, in the GW approximation the system responds dynamically. (Credits to Andrea
Cucca, 2017).
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G ωð Þ= Ð + ∞
−∞ dτeiωτG τð Þ ð63Þ

G τð Þ = 1
2π

ð + ∞

−∞
dτe− iωτG ωð Þ ð64Þ

The time ordering of operators is defined as

T Â t1ð ÞB̂ t2ð Þ
h i

� Â t1ð ÞB̂ t2ð Þ,
B̂ t2ð ÞÂ t1ð Þ,

�
t1 > t2
t1 < t2

ð65Þ

NOTES
a Note that throughout this article we will use atomic units,
where ℏ = me = e = 4π/ϵ0 = 1.
b In the following, we will sometimes refer to spin-
unpolarized systems with spin-independent interactions. In
that case spin appears only as a prefactor, for example the
density is n rð Þ = 2 Ψjψ̂† r, tð Þψ̂ r, tð ÞjΨ� �

.
c Note that the eigenvalue of the highest occupied molecu-
lar orbital is in principle a removal energy, but not the
other KS eigenvalues.
d In a finite systems, this can also happen when there is
coupling to some continuum or very dense excitation spec-
trum, which can stem, for example, from the environment.
e Usually plasmons are measured using an external probe,
such as X-rays in inelastic X-ray scattering, or a beam of
fast electrons in electron energy loss spectroscopy. In the
case discussed here, the propagation of a system-internal
electron or hole excites the plasmons.
f For the sake of clarity of the comparison, here we use the
spin-resolved version.
g This statement refers to the fact that the wavefunction is a
single Slater determinant, and to the HF equations. This does
not preclude the fact that correlation can also be simulated
within HF, by letting a system relax in a Δ-SCF approach, as
it is explained in Screening in Finite and Infinite Systems.
h Note that a response function is a retarded quantity,
whereas here we work with time-ordered objects. However,
retarded and time-ordered quantities can be linked in a
straightforward way, and we do not make an explicit dis-
tinction here.
i Note that in order to fully represent L, the applied exter-
nal potential must be time-dependent. There are subtleties
for the use of Green’s function s in presence of a time-
dependent external potential, which means that the system

is driven out of equilibrium. A formulation such as the one
exposed here remains rigorous also out of equilibrium if
the concept of a time-contour is introduced. We will not
deepen this question here and refer the reader to the mod-
ern books (Refs 1 and 22).
j Note that the X-rays or fast electrons can be considered
to be classical probes, which explains why these experi-
ments can be described by the screening that is due to the
Hartree potential only.
k There is, however, self-screening in the GWA, because
variations of the Hartree potential are not combined with
the corresponding variations of the exchange self-energy,
as can be seen in Eq. (39).
l There is also an infinitesimal imaginary part included in
ωλ, similar to Eq. (16), but we do not display this here
and in the following in order to keep the equations
simpler.
m A similar expression holds when G is the interacting
Green’s function. In that case the independent-particle
orbitals are replaced by Dyson orbitals, and the
independent-particle eigenvalues by total energy differ-
ences, εi = EN + 1,i − EN for electron addition and
εi = EN − EN − 1.i for electron removal.
n Today, in practical applications better mean-field approxi-
mations are used, but here we use HF as a reference for the
discussion.
o Note that the term RPA is sometimes extended to include
the variation of the Fock exchange, which is also called
Random-Phase Approximation with Exchange, but our
definition does not contain this contribution.
p The self-energy in Figure 2 is an illustration for a case
where the linear approximation is reasonable.
q Though not always: the GWA cannot create a Mott gap,
which is purely due to correlation.
r Note that this continues the discussion at the end of
Screening in Finite and Infinite Systems: as it is stated there,
the GWA ‘understands’ that the squared wavefunction of
the additional electron is not a classical charge density.
However, it still treats the system to which the charge is
added as a (polarizable) mean field. There is no explicit
correlation between the extra charge and the system
particles.
s This is consistent with the fact that the many-body states
are superpositions of many excited Slater determinants,
which is explained in Spectral Functions.
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