
Reports on Progress in Physics

The GW method
To cite this article: F Aryasetiawan and O Gunnarsson 1998 Rep. Prog. Phys. 61 237

 

View the article online for updates and enhancements.

Related content
The electronic structure of magnetic
transition metallic materials
J B Staunton

-

Combining GW calculations with exact-
exchange density-functional theory: an
analysis of valence-band photoemission
for compound semiconductors
Patrick Rinke, Abdallah Qteish, Jörg
Neugebauer et al.

-

On correlation effects in electron
spectroscopies and the GW approximation
Lars Hedin

-

Recent citations
Position representation of effective
electron-electron interactions in solids
T. J. Sjöstrand et al

-

Photoabsorption spectra of small Na
clusters: TDHF and BSE versus CI and
experiment
C. H. Patterson

-

This content was downloaded from IP address 162.105.13.44 on 24/05/2019 at 01:42

https://doi.org/10.1088/0034-4885/61/3/002
http://iopscience.iop.org/article/10.1088/0034-4885/57/12/002
http://iopscience.iop.org/article/10.1088/0034-4885/57/12/002
http://iopscience.iop.org/article/10.1088/1367-2630/7/1/126
http://iopscience.iop.org/article/10.1088/1367-2630/7/1/126
http://iopscience.iop.org/article/10.1088/1367-2630/7/1/126
http://iopscience.iop.org/article/10.1088/1367-2630/7/1/126
http://iopscience.iop.org/article/10.1088/0953-8984/11/42/201
http://iopscience.iop.org/article/10.1088/0953-8984/11/42/201
http://iopscience.iop.org/article/10.1088/0953-8984/11/42/201
http://iopscience.iop.org/article/10.1088/0953-8984/11/42/201
http://iopscience.iop.org/article/10.1088/0953-8984/11/42/201
http://dx.doi.org/10.1103/PhysRevB.99.195136
http://dx.doi.org/10.1103/PhysRevB.99.195136
http://dx.doi.org/10.1103/PhysRevMaterials.3.043804
http://dx.doi.org/10.1103/PhysRevMaterials.3.043804
http://dx.doi.org/10.1103/PhysRevMaterials.3.043804
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/317353238/Middle/IOPP/IOPs-Mid-RPP-pdf/IOPs-Mid-RPP-pdf.jpg/1?


Rep. Prog. Phys.61 (1998) 237–312. Printed in the UK PII: S0034-4885(98)75097-3

The GW method

F Aryasetiawan† and O Gunnarsson‡
† Department of Theoretical Physics, University of Lund, Sölvegatan 14A, S-223 62 Lund, Sweden
‡ Max-Planck-Institut f̈ur Festk̈orperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany

Received 12 September 1997

Abstract

Calculations of ground-state and excited-state properties of materials have been one of
the major goals of condensed matter physics. Ground-state properties of solids have
been extensively investigated for several decades within the standard density functional
theory. Excited-state properties, on the other hand, were relatively unexplored inab initio
calculations until a decade ago. The most suitable approach up to now for studying excited-
state properties of extended systems is the Green function method. To calculate the Green
function one requires the self-energy operator which is non-local and energy dependent.
In this article we describe theGW approximation which has turned out to be a fruitful
approximation to the self-energy. The Green function theory, numerical methods for
carrying out the self-energy calculations, simplified schemes, and applications to various
systems are described. Self-consistency issue and new developments beyond theGW

approximation are also discussed as well as the success and shortcomings of theGW

approximation.
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1. Introduction

The Hamiltonian for a many-electron system is given by (in atomic units ¯h = m = e = 1)

H =
∑
i

[
−1

2
∇2(ri )+ V (ri )

]
+ 1

2

∑
i 6=j

1

|ri − rj | (1)

whereV is a local external potential such as the field from the nuclei. Solving the above
Hamiltonian has been a major problem in molecular and condensed matter physics. The
Coulomb interaction in the last term makes the Hamiltonian difficult to solve. For a small
system, such as an atom or a small molecule, it is possible to obtain the many-particle
ground-state wavefunction by means of the configuration interaction (CI) method (Boys
1950, Dykstra 1988). In this method the wavefunction is expanded as a sum of Slater
determinants (Slater 1930) whose orbitals and coefficients are determined by minimizing
the total energy. A very accurate ground state wavefunction and energy can be obtained. The
computational effort, however, scales exponentially with the system size so that applications
to large molecules or solids are not feasible. For excited states, the computational effort
becomes very large even for a small system. Fortunately, in practice we are interested in
quantities which do not require the full knowledge of the wavefunctions. For example, we
are interested in the total energy, excitation spectra and expectation values of single-particle
operators which can be obtained from the Green function described in a later section.

Approximate theories are usually concerned with finding a good single-particle
approximation for the Coulomb term. The earliest of these theories is the Hartree
approximation (1928) where the non-local Coulomb term is replaced by an average local
Coulomb potential (Hartree potential) from all the electrons. Although it gives reasonable
results, due to a cancellation between exchange and correlation, the Hartree theory is not
accurate enough in many cases. An extension of the Hartree theory which takes into account
the fermionic nature of the electrons leads to the Hartree–Fock approximation (HFA) (Fock
1930) where in addition to the average local Coulomb potential there is a non-local exchange
potential which reflects the Pauli exclusion principle. For systems with an energy gap in
their excitation spectra, the HFA gives a qualitatively reasonable result. In fact the HFA
works quite well for atoms but for insulating solids, the energy gap is in most cases too
large. The reason for this can be traced back to the neglect of correlations or screening
which is not too important in atoms but crucial in solids. The HFA already takes into
account to a large extent correlation between electrons of the same spin since the Pauli
exclusion principle (exchange) prevents them from getting close together. Two electrons of
opposite spin, on the other hand, are allowed to occupy the same single-particle state at the
cost of a large Coulomb energy. Correlations keep electrons away from each other, creating
a screening hole around each electron which reduces the interaction with the other electrons
and thereby the Coulomb energy. The energy cost of transferring an electron from one site
to a neighbouring site is substantially reduced by screening. In the tight-binding limit, i.e.
for localized states, the energy gap is approximately given byU and this is essentially the
effective Coulomb energy of the states that form the gap. Thus, correlation or screening
reduces the gap from its Hartree–Fock value. In metals, the absence of correlations in the
HFA leads to qualitatively wrong results such as a zero density of states at the Fermi level
due to a logarithmic singularity in the derivative of the single-particle spectra with respect
to k at kF (see, e.g., Ashcroft and Mermin 1976).

To simulate the effect of correlations, Slater introduced theXα method where the
exchange potential is modelled by a local potential of the formV x = αn1/3, derived from
the electron gas and scaled by a constantα to simulate correlations.n is the local electron
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density (Slater 1951a, b, 1953, 1974). This method has been quite successful in calculating
ground-state properties and excitation spectra but it is semi-empirical. TheXα theory may
be regarded as a precursor of the modern density functional theory (DFT) (Hohenberg and
Kohn 1964, Kohn and Sham 1965) which has become a standard method for calculating
ground-state properties of molecules and solids. Recent reviews on DFT may be found
in Jones and Gunnarsson (1989) and Dreizler and Gross (1990). In DFT, the ground-
state energy can be shown to be a functional of the ground-state density and to satisfy
the variational principle with respect to the density. The explicit form of the functional in
terms of the density is not known and such an explicit functional may not exist. Using the
variational property of the energy functional, one arrives at a set of single-particle equations,
the Kohn–Sham (KS) equations (Kohn and Sham 1965), to be solved self-consistently:

[− 1
2∇2+ V H + V xc]φi = εiφi (2)

n =
occ∑
i

|φi |2 (3)

whereV H and V xc are the Hartree and exchange-correlation potentials, respectively. In
practical applications, the functional containing the effects of exchange and correlations is
approximated by the local density approximation (LDA) where the density in the exchange-
correlation potential of the electron gas is replaced by the local density of the real system
(Kohn and Sham 1965). The KS eigenvaluesεi have no clear physical meaning except
for the highest occupied which corresponds to the ionization energy (Almbladh and von
Barth 1985a). Although there is no theoretical justification, they are often interpreted as
single-particle excitation energies corresponding to excitation spectra of the system upon a
removal or addition of an electron. In many cases, in particular in sp systems, the agreement
with photoemission spectra is quite good but as will be described in the next section, there
are also serious discrepancies.

A proper way of calculating single-particle excitation energies or quasiparticle energies
(Landau 1956, 1957) is provided by the Green function theory (Galitskii and Migdal 1958,
Galitskii 1958). It can be shown that the quasiparticle energiesEi can be obtained from
the quasiparticle equation:[

−1

2
∇2(r)+ V H(r)

]
9i(r)+

∫
d3r ′6(r, r′;Ei)9i(r′) = Ei9i(r). (4)

The non-local and energy-dependent potential6, or the self-energy, contains the effects of
exchange and correlations. It is, in general, complex with the imaginary part describing
the damping of the quasiparticle. It can be seen that the different single-particle theories
amount to approximating the self-energy operator6. Calculations of6 are unfortunately
very difficult even for the electron gas. We must resort to approximations and this review
describes theGW approximation (GWA) (Hedin 1965a) which is the simplest working
approximation beyond the HFA that takes screening into account.

1.1. Problems with the LDA

The LDA has been very successful for describing ground-state properties such as total
energies and structural properties. There is no clear theoretical justification why the LDA KS
eigenvalues should give excitation energies, and even the exactV xc is not supposed to give
the exact quasiparticle energies. Nevertheless, the LDA KS eigenvalues are often found to be
in good agreement with the quasiparticle energies measured in photoemission experiments.
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Despite its success, there are serious discrepancies already in sp systems and they become
worse in d and f systems:
• the bandwidth in Na is 10–20% too large, 3.2 eV in LDA against 2.65 eV

experimentally (see, however, section 5.1 for the experimental bandwidth);
• the bandgaps in semiconductors Si, GaAs, Ge, etc are systematically underestimated,

by as much as 100% in Ge;
• the bandwidth in Ni is∼30% too large, 4.5 eV in LDA against 3.3 eV experimentally

(Hüfner et al 1972, Himpselet al 1979);
• in f systems, the LDA density of states is in strong disagreement with experiment;
• in the Mott–Hubbard insulators of transition metal oxides the LDA bandgap is much

too small (Powell and Spicer 1970, Hüfner et al 1984, Sawatzky and Allen 1984) and
in some cases the LDA givesqualitatively wrong results; for example, the Mott–Hubbard
insulators CoO and the undoped parent compound of the high-Tc material La2CuO4 are
predicted to be metals (see, e.g., Pickett 1989);
• the magnetic moments in the transition metal oxides are systematically underestimated

(Alperin 1962, Fenderet al 1968, Cheetham and Hope 1983);
• in alkali-metal clusters, the ionization energies calculated within the LDA are too low

compared to experiment (Ishiiet al 1986, Saito and Cohen 1988);
• in the LDA, the image potential seen by an electron in the vacuum far from a surface

decays exponentially instead of the expected−1/4(z− z0) decay wherez is the coordinate
normal to the surface andz0 is the position of the image plane (Lang and Kohn 1973).

Strictly speaking, one should not blame the LDA for all of these discrepancies since
many of them are related to excited-state properties which are outside the domain of
DFT. However, excited-state properties of finite systems can be calculated within the time-
dependent extension of DFT (Runge and Gross 1984, Grosset al 1996).

1.2. Theories beyond the LDA

When discussing theories beyond the LDA, a distinction should be made between theories
which attempt to find better energy functionals but which lie within DFT and those theories
which attempt to mimic the self-energy in order to obtain better quasiparticle energies but
which are then usually outside DFT. The GWA belongs to the latter.

1.2.1. Gradient corrections. Since the LDA is based on the homogeneous electron gas, it
is natural to take into account the inhomogeneity in the charge density of real systems by
including gradient corrections in the energy functional. There are two main approaches. The
first is a semi-empirical approach where the exchange-correlation functional is modelled by
a functional containing parameters which are adjusted to give the best fit to the cohesive
energies of a number of ‘standard molecules’. The most successful of these models are due
to Becke (1988, 1992, 1996). The other approach attempts to calculate the coefficients in
the gradient expansion from first principles (Langreth and Mehl (1983), Svendsen and von
Barth (1996), Springeret al (1996); for a recent development see Perdewet al (1997) and
references therein). While, in general, gradient corrections give a significant improvement
in the total energy (Causa and Zupan 1994, Philipsen and Baerends 1996, Dal Corsoet al
1996) there is almost no major improvement for quasiparticle energies (Dufeket al 1994).

1.2.2. LDA+U . One of the problems with the LDA is the absence of orbital dependence
in the exchange-correlation potential. Since the potential does not distinguish between
orbitals with differentm-quantum numbers, for systems containing a partially filled d or
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f shell one obtains a corresponding partially-filled band with a metallic-type electronic
structure unless the exchange and crystal field splitting create a gap between the up and
down channel. Thus, the late transition metal oxides, which are insulators, are predicted
to be metals by the (nonspin-polarized) LDA. In the LDA+ U method (Anisimovet al
1991, 1993, Lichtensteinet al 1995), and its generalization (Solovyevet al 1994, 1996),
an orbital-dependent potentialU acting only on localized d or f states is introduced on top
of the LDA potential. For Mott–Hubbard insulators or rare-earth metal compounds where
the partially filled 3d or 4f bands are split by the Coulomb interaction, forming the upper
and lower Hubbard band, the LDA+ U works reasonably well (Anisimovet al 1997).
The bandstructure, however, is unsatisfactory. Another problem with the method arises for
systems with partially-filled 3d shells which are metallic, like the transition metals. In this
case, the LDA+U would produce unphysical results since it would split the partially-filled
band.

1.2.3. Self-interaction correction.Apart from the problem with orbital dependence in the
LDA, there is another problem associated with an unphysical interaction of an electron with
itself. In DFT, only the highest occupied state is free from self-interaction but, in LDA, there
is in general self-interaction for all states. This self-interaction is explicitly subtracted out
in the self-interaction correction SIC formalism resulting in an orbital-dependent potential
(Cowan 1967, Lindgren 1971, Zungeret al 1980, Perdew and Zunger 1981). Self-interaction
is significant for localized states and it tends to zero for extended states, since in the latter
case the charge is spread over the crystal and therefore the Coulomb interaction of an electron
with itself is of order 1/N . Since self-interaction is usually positive, one would expect the
LDA eigenvalues for localized states to be too high, as is indeed the case. For atoms, SIC
therefore lowers the LDA eigenvalues giving better agreement with experiment. The orbital-
dependent potential in SIC can describe Mott–Hubbard insulators although the bandstructure
is not likely to be satisfactory. SIC predicts all the 3d monoxides to be insulators except VO
which is correctly predicted to be a metal (Svane and Gunnarsson 1990, Szoteket al 1993,
Arai and Fujiwara 1995). SIC, however, fails to give a delocalized paramagnetic solution
for the doped high-Tc compounds and a similar problem is anticipated in LDA+ U . For
more itinerant systems, SIC does not give localized solutions, and it then reduces to the
LDA. Accordingly, application to semiconductors, for example Si, does not increase the
LDA gap.

1.2.4. A generalized KS scheme.A recent attempt to improve the LDA description of
quasiparticle energies is to choose a non-interacting reference system having the same
ground-state density as the real system, as in the conventional KS scheme, but with a non-
local potential (Seidlet al 1996). Since the potential is non-local, the choice is not unique,
different non-local potentials may generate the same ground-state density. A particular
choice is a non-local screened exchange potential minus its local form. By definition,
the functional from which this potential is derived, is zero at the correct density. The KS
equations consist of the usual LDA exchange-correlation potential plus the chosen non-local
potential. For semiconductors Si, GaAs, Ge, InP and InSb, this method improves the values
of the bandgap. Applications to other systems have not been performed so far.

Another recent scheme proposed by Engel and Pickett (1996) incorporates part of the
correlation energy into the kinetic energy functional which may be thought of as mass
renormalization. This scheme is shown to improve the description of bandgaps in silicon
and germanium but it gives negligible correction for diamond and carbon.
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1.2.5. The optimized effective potential method.A natural way of improving the LDA
would be to calculate the exchange energy exactly and to generate a local exchange potential
by taking a functional derivative of the exchange energy functional with respect to the density
(Kotani 1995, Kotani and Akai 1996, Bylander and Kleinman 1995a, b). The correlation
energy can be approximated by the LDA value. The original idea of this method is due to
Talman and Shadwick (1976) in their work on atoms where the Hartree–Fock total energy
is minimized with orbitals restricted to be solutions to single-particle Hamiltonians with
local potentials. The scheme is also known as the optimized effective potential method.
Applications of this approach to several semiconductors and insulators (C, Si, Ge, MgO,
CaO and MnO) yields encouraging results regarding the bandgaps, which in most cases
are improved from the corresponding LDA values. However, the scheme is still within
the density functional formalism and it is intended to improve the energy functional rather
than the self-energy. One advantage of this scheme is the possibility of systematically
improving the energy functional. With regard toGW calculations, the scheme may provide
better starting points than the LDA. The scheme may be extended to include correlations
by using a screened interaction potential.

1.3. Motivations for the GWA

The theories described above have drawbacks when applied to calculating quasiparticle
energies. Gradient corrections attempt to improve total energies but do not address the
problem of improving quasiparticle energies. Indeed, applications to transition metal
oxides, where the gap is zero or grossly underestimated by the LDA, do not give any
significant improvement. SIC theory only applies to localized occupied states and numerical
calculations show that the resulting eigenvalues are too low. The LDA+ U is designed
for systems with localized states split by the Coulomb correlation, forming the upper
and lower Hubbard band. Applications to transition metals, however, would lead to
unreasonable results. The generalized KS scheme using screened exchange, like the other
theories discussed above, has no energy dependence which can be important in some cases.
Moreover, the choice of the non-local potential is rather arbitrary. Since the theory has not
been applied extensively, it is difficult to judge its usefulness. The exact exchange approach
should, in principle, improve total energies when correlations are also taken into account
but it does not address the LDA problems with quasiparticles.

The GWA is derived systematically from many-body perturbation theory. The form
of the self-energy in the GWA is the same as in the HFA but the Coulomb interaction
is dynamically screened, remedying the most serious deficiency of the HFA. The self-
energy in the GWA is therefore non-local and energy dependent. The GWA is physically
sound because it is qualitatively correct in some limiting cases (Hedin 1995) which allows
applications to a large class of materials, metals or insulators.
• In atoms, screening is small and the GWA approaches the HFA which is known to

work well for atoms.
• In the electron gas, screening is very important which is taken into account in the

GWA and for semiconductors it can be shown that the GWA reduces the Hartree–Fock gaps.
• For a core electron excitation, the GWA corresponds to the classical Coulomb

relaxation energy of the other electrons due to the adiabatic switching on of the core hole
potential, which is just what is to be expected physically.
• For a Rydberg electron in an atom, the GWA gives the classical Coulomb energy of

the Rydberg electron due to the adiabatic switching on of an induced dipole in the ion core.
• For the decay rate and the energy loss per unit time of a fast electron in an electron
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gas, the GWA gives the correct formula.
The GWA has been applied with success to a wide class of systems ranging from simple

metals to transition metals and their compounds.
So far, the GWA has been applied mainly to calculate single-particle excitation spectra,

but it is also possible to calculate the total energy (Lundqvist and Samathiyakanit 1969,
Holm and von Barth 1997, Faridet al 1990) and the expectation value of any single-particle
operator in the ground state.

1.4. A short historical survey

The earliest attempt to include correlations beyond the HFA in the form ofGW theory was
probably the work of Quinn and Ferrell (1958) for the electron gas. Their calculations,
however, were limited to states around the Fermi energy and several approximations were
made. DuBois (1959a, b) also calculated the self-energy of the electron gas within aGW -
type theory but his calculations were only for small values of the electron gas parameter
rs < 1 or for high densities since(4π/3)r3

s = ρ, whereρ is the electron density. His
results have, therefore, received less attention because they are not directly relevant to real
metals which havers ∼ 2–5 (Al rs ∼ 2, Cs rs ∼ 5). The first full calculation of the
self-energy within the GWA for the electron gas was performed by Hedin (1965a). He also
showed in a systematic and rigorous way how the self-energy can be expanded in powers
of the dynamically screened Coulomb interaction, with the GWA as the first term in this
expansion. Later on, Lundqvist (1967a, b, 1968) did extensive calculations of the self-energy
of the electron gas for various densities and studied the spectral functions. Rice (1965)
used a different version of what is conventionally known as the GWA, including vertex
corrections (corrections beyond the GWA). His results are similar to those of Hedin. Later
on, Mahan and his group (Mahan and Sernelius 1989, Frota and Mahan 1992) performed
extensive self-energy calculations for the electron gas using various forms of theGW -type
approximations, studying the importance of vertex corrections.

Due to computational difficulties, the GWA was not applied to real materials until the
mid 1980s, starting with the work of Hybertsen and Louie (1985a, b, 1986, 1987a, b) on
semiconductors with encouraging results. At about the same time, Godbyet al (1986,
1987a, b, 1988) did the same calculations and their results are in good agreement with those
of Hybertsen and Louie (1986). We should also mention an earlier calculation for diamond
using the tight-binding approach by Strinatiet al (1982), although it is superseded by later
calculations. The good results for semiconductors encouraged further applications to more
complicated systems, transition metals and their compounds, jellium surface, sodium clusters
and to f systems. Now the GWA has become a standard method for including correlations
beyond the HFA.

2. Theory

In this section we describe a brief summary of the Green function theory and derive the
GWA. More details on the Green function theory may be found in standard text books
on many-body theory (e.g. Nozières 1964, Fetter and Walecka 1971, Inkson 1984, Mahan
1990) and in the review article by Hedin and Lundqvist (1969).
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2.1. The Green function and the self-energy

To study the electronic excitation spectrum of a solid, one performs photoemission
experiments where photons with a certain energyω are used as projectiles to knock out
electrons. By measuring the kinetic energy (KE) of the photoemitted electrons along a
certain directionk and using the conservation of energy and momentum, the excitation
spectrumE(k) of the solid can be obtained:

ω = KE+ E(k). (5)

A photoemission experiment then measures the excitation spectrum of a solid with the
presence of a hole (occupied density of states). An inverse photoemission experiment uses
electrons as probes to measure the unoccupied density of states or the excitation spectrum
with an additional electron.

In the limit of large kinetic energy (‘sudden approximation’) (Hedin and Lundqvist 1969)
of the photoemitted or probing electron, the spectrum is directly related to the one-particle
Green function which is defined as

iG(x, x ′) = 〈N |T [ψ̂(x)ψ̂†(x ′)]|N〉 (6)

=
{
〈N |ψ̂(x)ψ̂†(x ′)|N〉 for t > t ′ (electron)

−〈N |ψ̂†(x ′)ψ̂(x)|N〉 for t < t ′ (hole).
(7)

|N〉 is the exactN -electron ground state,̂ψ(x) is a field operator in the Heisenberg
representation which annihilates an electron atx = (r, t) andT is the time-ordering operator
which arises naturally from the time development operator defined later in equation (14).
The physical interpretation of the Green function is that fort ′ > t it is the probability
amplitude that a hole created atx will propagate tox ′ and for t > t ′ the probability
amplitude that an electron added atx ′ will propagate tox. Thus, the Green function
describes the photoemission and inverse photoemission processes.

From the Green function we can obtain:
• the expectation value of any single-particle operator in the ground state;
• the ground-state energy;
• the one-electron excitation spectrum.
In this review, we are mainly interested in the excitation spectra. The first and second

properties have not been explored for real systems.
From the Heisenberg equation of motion for the field operator

i
∂ψ̂(x)

∂t
= [ψ̂(x), Ĥ ] (8)

where the Hamiltonian is given by

Ĥ =
∫

d3r ψ̂†(x)h0(x)ψ̂(x)+ 1

2

∫
d3r d3r ′ ψ̂†(r, t)ψ̂†(r′, t)v(r − r′)ψ̂(r′, t)ψ̂(r, t) (9)

we obtain the equation of motion for the Green function:[
i
∂

∂t
− h0(x)

]
G(x, x ′)−

∫
dx ′′M(x, x ′′)G(x ′′, x ′) = δ(x − x ′) (10)

where the mass operator (Hartree potential+ self-energy)M is defined to be such that∫
dx1M(x, x1)G(x1, x

′)

= − i
∫

d3r1v(r − r1)〈N |T [ψ̂†(r1, t)ψ̂(r1, t)ψ̂(r, t)ψ̂
†(r′, t ′)]|N〉. (11)
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h0 is the kinetic energy operator plus a local external potential. The quantity on the right-
hand side is a special case of a two-particle Green function:

G2(1, 2, 3, 4) = (i)2〈N |T [ψ̂(1)ψ̂(3)ψ̂†(4)ψ̂†(2)]|N〉 (12)

where 1≡ x1 = (r1, t1) etc.
The self-energy may be evaluated in at least two ways, either by using Wick’s theorem

(Wick 1950, Fetter and Walecka 1971) or by Schwinger’s functional derivative method
(Schwinger 1951, Martin and Schwinger 1959). We follow the latter. This is done by
introducing a time-varying fieldφ(r, t) which is used as a mathematical tool for evaluating
the self-energy and it will be set to zero once the self-energy is obtained. Working in the
interaction (Dirac) picture we have

|ψD(r, t)〉 = Û (t, t0)|ψD(r, t0)〉. (13)

The time development operator̂U is given by

Û (t, t0) = T exp

[
− i

∫ t

t0

dτ φ̂(τ )

]
(14)

φ̂(τ ) =
∫

d3r φ(r, τ )ψ̂
†
D(r, τ )ψ̂D(r, τ ). (15)

The relationship between operators in the Heisenberg and Dirac representations is

ψ̂(r, t) = Û †(t, 0)ψ̂D(r, t)Û (t, 0). (16)

The field operatorψ̂D satisfies

i
∂

∂t
ψ̂D = [ψ̂D, Ĥ (φ = 0)] (17)

so it is the same as the unperturbed (φ = 0) Heisenberg operator. The Green function can
now be written as

iG(1, 2) = 〈N
0|T [Û (∞,−∞)ψ̂D(1)ψ̂

†
D(2)]|N0〉

〈N0|Û (∞,−∞)|N0〉 . (18)

By taking the functional derivative ofG with respect toφ we get

δG(1, 2)

δφ(3)
= G(1, 2)G(3, 3+)−G2(1, 2, 3, 3+). (19)

Using the above result forG2 in the definition ofM in equation (11) the termGG gives
the Hartree potentialV H and we define

6 = M − V H. (20)

The equation of motion for the Green function becomes[
i
∂

∂t
−H0(x)

]
G(x, x ′)−

∫
dx ′′6(x, x ′′)G(x ′′, x ′) = δ(x − x ′) (21)

where

H0 = h0+ V H + φ. (22)

Using the identity

δ

δφ
(G−1G) = G−1 δG

δφ
+ δG

−1

δφ
G = 0 → δG

δφ
= −GδG

−1

δφ
G (23)
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and evaluatingδG−1/δφ, where from equation (21)

G−1 = i
∂

∂t
−H0−6 (24)

we get

6(1, 2) = i
∫

d3 d4G(1, 3+)W(1, 4)3(3, 2, 4). (25)

W is the screened Coulomb potential

W(1, 2) =
∫

d3ε−1(1, 3)v(3− 2) (26)

ε−1(1, 2) = δV (1)

δφ(2)
(27)

whereV is the sum of the Hartree and the external potential:

V = V H + φ. (28)

3 is the vertex function

3(1, 2, 3) = −δG
−1(1, 2)

δV (3)

= δ(1− 2)δ(2− 3)+ δ6(1, 2)

δV (3)

= δ(1− 2)δ(2− 3)+
∫

d(4567)
δ6(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)3(6, 7, 3). (29)

The second line is obtained from equation (24) and the last line by using the chain rule
δ6/δV = (δ6/δG)(δG/δV ) and by using the identity in equation (23) and the definition
of 3.

Fourier transformation of equation (21) gives (withφ now set to zero)

[ω −H0(r)]G(r, r
′, ω)−

∫
d3r ′′6(r, r′′, ω)G(r′′, r′, ω) = δ(r − r′). (30)

If G0 is the Green function corresponding to6 = 0, then we have the Dyson equation

G = G0+G06G. (31)

The first termG0(1, 2) is a direct propagation from 1 to 2 without exchange-correlation
interaction and6 contains all possible exchange-correlation interactions with the system
that an electron can have in its propagation from 1 to 2.

In practical applications,G0 corresponds toH0 = HHartree+V xc whereV xc is some local
and energy-independent exchange-correlation potential, for exampleV xc

LDA . In this case, the
Dyson equation becomes

G = G0+G016G (32)

where16 = 6 − V xc.
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2.2. The polarization and response function

The response function is an important quantity in the evaluation of the self-energy. It is
related to the inverse dielectric functionε−1 as follows:

ε−1 = δV

δφ

= 1+ v δρ
δφ

= 1+ v δρ
δV

δV

δφ
. (33)

The response function is defined as

R(1, 2) = δρ(1)

δφ(2)
(34)

which gives the change in the charge density upon a change in theexternal field. We
note that the above response function is a time-ordered one which is related to the physical
(causal) response functionRR by (Fetter and Walecka 1971)

ReR(ω) = ReRR(ω) ImR(ω)sgnω = ImRR(ω). (35)

The polarization function is defined as

P(1, 2) = δρ(1)

δV (2)
(36)

which gives the change in the charge density upon a change in thetotal (external+ induced)
field. Noting that

ρ(1) = −iG(1, 1+) (37)

we can write

P(1, 2) = −i
∫

d3 d4G(1, 3)3(3, 4, 2)G(4, 1+). (38)

In summary, we have

ε−1 = 1+ vR (39)

ε = 1− vP (40)

R = P + PvR (41)

W = v + vPW
= v + vRv. (42)

2.3. The Hedin equations

Summarizing the results in the previous sections, we arrive at the well known set of coupled
integral equations (Hedin 1965a, Hedin and Lundqvist 1969). From equations (25), (31),
(29) and (42) we have

6(1, 2) = i
∫

d(34)G(1, 3+)W(1, 4)3(3, 2, 4) (43)

G(1, 2) = G0(1, 2)+
∫

d(34)G0(1, 3)6(3, 4)G(4, 2) (44)

3(1, 2, 3) = δ(1− 2)δ(2− 3)+
∫

d(4567)
δ6(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)3(6, 7, 3) (45)
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W(1, 2) = v(1, 2)+
∫

d(34) v(1, 3)P (3, 4)W(4, 2) (46)

whereP is given in equation (38). LikeG, 3 andW satisfy Dyson-like equations. Starting
from a given approximation for6 the above set of equations can be used to generate higher-
order approximations. Although the equations are exact, a straightforward expansion for
the self-energy in powers of the screened interaction may yield unphysical results such
as negative spectral functions (Minnhagen 1974, Schindlmayr and Godby 1997). In fact,
the expansion itself is only conditionally convergent due to the long-range nature of the
Coulomb potential. So far there is no systematic way of choosing which diagrams to sum.
The choice is usually dictated by physical intuition.

2.4. Quasiparticles

From the classical theory of the Green functions the solution to equation (10) can be written
in a spectral representation

G(r, r′, ω) =
∑
i

9i(r, ω)9
†
i (r
′, ω)

ω − Ei(ω) (47)

where9i are solutions to the quasiparticle equation:

H0(r)9i(r, ω)+
∫

d3r6(r, r′, ω)9i(r′, ω) = Ei(ω)9i(r, ω). (48)

In a crystal, the indexi may be associated with the Bloch wavevector and band index.
The eigenvaluesEi are, in general, complex and the quasiparticle wavefunctions are not,
in general, orthogonal because6 is not Hermitian but both the real and imaginary part of
6 are symmetric. Suppose at someω = ωi we find thatωi = ReEi(ωi). If Im Ei(ωi) is
small, then the imaginary part ofG is expected to have a peak at this energy (quasiparticle
peak) with a lifetime given by 1/ImEi(ωi). It may happen thatω − ReEi(ω) is zero or
close to zero at some other energies and if the corresponding ImEi(ω) are small, then we
get satellites. For a non-interacting system,6 is Hermitian and thereforeEi is real so that
the quasiparticle has an infinite lifetime.

The spectral representation can also be obtained directly from the definition ofG by
inserting a complete set of (N ± 1)-electron states in between the field operators and
performing a Fourier transformation, keeping in mind that the field operators are in the
Heisenberg representation, i.e.ψ̂(t) = exp(iĤ t)ψ̂(0) exp(−iĤ t):

G(r, r′, ω) =
∫ µ

−∞
dω′

A(r, r′, ω′)
ω − ω′ − iδ

+
∫ ∞
µ

dω′
A(r, r′, ω′)
ω − ω′ + iδ

. (49)

The spectral function or density of statesA is given by

A(r, r′, ω) = − 1

π
ImG(r, r′, ω)sgn(ω − µ)

=
∑
i

hi(r)h
∗
i (r
′)δ[ω − µ+ e(N − 1, i)] (50)

+
∑
i

p∗i (r)pi(r
′)δ[ω − µ− e(N + 1, i)] (51)

where

hi(r) = 〈N − 1, i|ψ̂(r, 0)|N〉 (52)

pi(r) = 〈N + 1, i|ψ̂†(r, 0)|N〉 (53)
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|N ± 1, i〉 is the ith eigenstate of theN ± 1 electrons with an excitation energy

e(N ± 1, i) = E(N ± 1, i)− E(N ± 1) (54)

which is positive andE(N ± 1) is the ground-state energy of theN ± 1 electrons. The
quantityµ is the chemical potential,

µ = E(N + 1)− E(N)
= E(N)− E(N − 1)+O(1/N). (55)

The physical meaning of the poles ofG is therefore the exact excitation energies of the
N ± 1 electrons. Since the poles ofG in equations (47) and (49) must be the same, it
follows that the real parts ofEi(ωi) are also the excitation energies of theN ± 1 electrons.
For a very large system, the poles are usually so close together that it is meaningless to
talk about the individual poles, and in an infinitely large system the poles form a branch
cut. In this case, it is more meaningful to interpret the excitation spectrum in terms of
quasiparticles with energies ReEi(ωi) and lifetimes 1/ImEi(ωi).

From equation (31), the spectral functionA is schematically given by

A(ω) = 1

π

∑
i

|ImGi(ω)|

= 1

π

∑
i

|Im6i(ω)|
|ω − εi − Re16i(ω)|2+ |Im6i(ω)|2 (56)

whereGi is the matrix element ofG in an eigenstateψi of the non-interacting system
H0. A is usually peaked at each energyEi = εi + Re16i(Ei) (quasiparticle peak) with a
lifetime given by 1/|Im6i(Ei)| and renormalization factor (weight of the Lorentzian)

Zi =
[

1− ∂ Re16i(Ei)

∂ω

]−1

< 1. (57)

At some other energiesωp, the denominator may be small andA(ωp) could also show peaks
or satellite structure which can be due to plasmon excitations or other collective phenomena.

If we start with a single-particle Hamiltonian which is in some sense close to the
true interacting Hamiltonian, the quasiparticles of the former Hamiltonian are just a set
of δ-functions centred at the single-particle eigenvalues. If the interaction is switched on,
typically the delta functions become broadened since the single-particle states can now decay
to other excitations and lose some weight which might appear as collective excitations or
satellite structures. The term quasiparticle is arbitrary but we usually refer to quasiparticle
as an excitation originating from a single-particle state and to satellite as an excitation not
contained in the approximate non-interacting system.

The quasiparticle energy can also be calculated to first order inEi − εi as follows:

Ei = εi + Re16i(Ei)

= εi + Re16i(εi)+ (Ei − εi)∂ Re16i(εi)

∂ω
= εi + Zi Re16i(εi). (58)

2.5. The GW approximation

The GWA may be regarded as a generalization of the Hartree–Fock approximation (HFA)
but with a dynamically screened Coulomb interaction. The non-local exchange potential in
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the HFA is given by

6x(r, r′) = −
occ∑
kn

ψkn(r)ψ
∗
kn(r

′)v(r − r′). (59)

In Green function theory, the exchange potential is written as

6x(r, r′, t − t ′) = iG(r, r′, t − t ′)v(r − r′)δ(t − t ′)
which when Fourier transformed yields equation (59). The GWA corresponds to replacing
the bare Coulomb interactionv by a screened interactionW :

6(1, 2) = iG(1, 2)W(1, 2). (60)

This is physically well motivated, especially in metals where the HFA leads to unphysical
results such as a zero density of states at the Fermi level, due to the lack of screening.
Formally, the GWA is obtained by neglecting the second term in the vertex function in
equation (29), i.e. setting3(1, 2, 3) = δ(1−2)δ(2−3). Fourier transforming equation (60)
we get

6(r, r′, ω) = i

2π

∫
dω′G(r, r′, ω + ω′)W(r, r′, ω′). (61)

For a non-interactingG0 the imaginary part of the correlation part of the self-energy can
be evaluated explicitly:

Im6c(r, r′, ω 6 µ) = π
occ∑
kn

ψkn(r)ψ
∗
kn(r

′) ImW c(r, r′, εkn − ω)θ(εkn − ω) (62)

Im6c(r, r′, ω > µ) = −π
unocc∑
kn

ψkn(r)ψ
∗
kn(r

′) ImW c(r, r′, ω − εkn)θ(ω − εkn) (63)

where

W c = W − v (64)

is the frequency-dependent part ofW . The above results are obtained by expressingG

and W c in their spectral representations. The spectral representation ofG is given in
equation (49). ForW c it is given by

W c(r, r′, ω) =
∫ 0

−∞
dω′

D(r, r′, ω′)
ω − ω′ − iδ

+
∫ ∞

0
dω′

D(r, r′, ω′)
ω − ω′ + iδ

. (65)

D is proportional to the imaginary part ofW and defined to be anti-symmetric inω:

D(r, r′, ω) = − 1

π
ImW c(r, r′, ω)sgn(ω) (66)

D(r, r′,−ω) = −D(r, r′, ω). (67)

The spectral representation of the correlation part of the self-energy is

6c(r, r′, ω) =
∫ µ

−∞
dω′

0(r, r′, ω′)
ω − ω′ − iδ

+
∫ ∞
µ

dω′
0(r, r′, ω′)
ω − ω′ + iδ

(68)

where

0(r, r′, ω) = − 1

π
Im6c(r, r′, ω)sgn(ω − µ). (69)

The real part of6c can be obtained by performing the principal value integration (the
Kramers–Kronig relation or Hilbert transform).
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A physically appealing way of expressing the self-energy is by dividing it into a
screened-exchange term6SEX and a Coulomb-hole term6COH (COHSEX) (Hedin 1965,
Hedin and Lundqvist 1969). It is straightforward to verify that the real part of the self-energy
can be written as

Re6SEX(r, r
′, ω) = −

occ∑
i

ψi(r)ψ
∗
i (r
′)ReW(r, r′, ω − εi) (70)

Re6COH(r, r
′, ω) =

∑
i

ψi(r)ψ
∗
i (r
′)P

∫ ∞
0

dω′
D(r, r′, ω′)
ω − εi − ω′ . (71)

The physical interpretation of6COH becomes clear in the static approximation due to Hedin
(1965a). If we are interested in a state with energyω close to the Fermi level, the matrix
element〈ψ |Re6COH(ω)|ψ〉 picks up most of its weight from states with energiesεi close
to ω in energy. We may then assume thatω − εi is small compared to the main excitation
energy ofD, which is at the plasmon energy. If we setω − εi = 0, we get

Re6COH(r, r
′) = 1

2δ(r − r′)W c(r, r′, 0). (72)

This is simply the interaction energy of the quasiparticle with the induced potential due to
the screening of the electrons around the quasiparticle. The factor of 1/2 arises from the
adiabatic growth of the interaction. In this static COHSEX approximation,6COH becomes
local.

The polarization function needed to evaluateW is calculated within the random phase
approximation (RPA) (Pines and Bohm 1952, Bohm and Pines 1953, Lindhard 1954, Pines
1961, Gell-Mann and Brueckner 1957) which corresponds to neglecting the second term in
the vertex function and using a non-interactingG0:

P(r, r′, ω) =
∑
spin

occ∑
kn

unocc∑
k′n′

ψ∗kn(r)ψk′n′(r)ψ
∗
k′n′(r

′)ψkn(r′)

×
{

1

ω − εk′n′ + εkn + iδ
− 1

ω + εk′n′ − εkn − iδ

}
. (73)

We have used the fact that for everyψkn there is aψ∗−kn with the same eigenvalue due
to the time-reversal symmetry. The wavefunctionψkn is normalized to unity in the entire
space. The physical meaning of the RPA is that the electrons respond to the total field
(external+ induced field) as if they were non-interacting.

3. Numerical methods

One of the main computational problems is to calculate the polarization in equation (73).
SinceP can be long-ranged for crystals, the conventional method of calculating it is to use
Bloch basis functions. Noting thatP(r + T , r′ + T ) = P(r, r′), P can be expanded in
general as follows

P(r, r′, ω) =
∑
qij

Bqi (r)Pij (q, ω)B
∗
qj (r

′) (74)

where{Bqi} is a set of Bloch basis functions large enough to describeP and the sum over
q is restricted to the first Brillouin zone. The matrix elements ofP in the basis are given by

Pij (q, ω) =
∑

spin,k

occ∑
n

unocc∑
n′
〈Bqiψkn|ψk+qn′ 〉〈ψk+qn′ |ψknBqj 〉
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×
{

1

ω − εk+qn′ + εkn + iδ
− 1

ω + εk+qn′ − εkn − iδ

}
.

Similarly, the Coulomb potentialv can be expanded as in equation (74). The screened
potentialW can then be calculated from equation (42).

The matrix element of the imaginary part of the self-energy in a stateψqn is given by

Im6c
qn(ω) = π

∑
k

∑
n′6µ

∑
ij

〈ψqnψk−q,n′ |Bki〉 ImW c
ij (k, ω − εk−q,n′)

×〈Bkj |ψk−q,n′ψqn〉θ(ω − εk−q,n′) for ω 6 µ. (75)

If we are only interested in quasiparticle energies, it is more favourable to perform the
frequency integration in the expression for the self-energy in equation (61) along the
imaginary axis (Godbyet al 1988). In this case,W must also be calculated along the
imaginary axis which is advantageous since the pole structure along the real axis is avoided.
For states away from the Fermi level, there is in addition a contribution to the self-energy
from the poles of the Green function.

The choice of basis functions depends on the type of materials we are interested in.
For sp systems, plane waves are appropriate especially when used in conjunction with
pseudopotentials. For systems containing rather localized states such as the 3d and 4f
systems, a large number of plane waves would be needed and therefore localized basis
functions are more suitable.

3.1. Plane-wave basis

In this caseBkj → exp[i(k+G) ·r]/√� where the indexj is represented by the reciprocal
lattice vectorG and� is the unit cell volume. This is probably the simplest basis with the
following advantages.
• Programming ease: the matrix elements can be calculated easily, particularly when

the wavefunctions are also expanded in plane waves.
• The Coulomb potential is diagonal with matrix elements given by 4π/|k +G|2.
• There is good control over convergence.
However, the disadvantages are as follows.
• It is not feasible to do all-electron calculations. In many cases, it is essential to include

core electrons. For example, the exchange of a 3d valence state with the 3s and 4p core
states in the late 3d transition metals is overestimated by the LDA by as much as 1 eV
which would lead to an error of the same order in the pseudopotential method.
• The size of the response matrix becomes prohibitively large for narrow-band systems

due to a large number of plane waves.
• It has no direct physical interpretation.

3.2. Localized basis

For systems containing 3d or 4f electrons, plane-wave basis becomes very costly. Methods
based on the linear-muffin-tin-orbital (LMTO) basis or Gaussian basis are more appropriate.
In the LMTO method (Andersen 1975), the wavefunctions are expanded as follows,

ψkn(r) =
∑
RL

χRL(r,k)bkn(RL) (76)
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whereχ is the LMTO basis, which in the atomic sphere approximation (ASA) forr in the
central cell is given by

χRL(r,k) = φRL(r)+
∑
R′L′

φ̇R′L′(r)hR′L′,RL(k). (77)

φRL(r) = ϕRl(r)YL(�) is a solution to the Schrödinger equation inside a sphere centred
on an atom at siteR for a certain energyεν , normally chosen at the centre of the band.
φ̇RL is the energy derivative ofφRL at εν . One advantage of the LMTO method is that
φRL is independent ofk. When forming the polarization function in equation (73) we have
products of wavefunctions forr or r′ of the form

ψψ = [φφ + (φφ̇ + φ̇φ)h+ φ̇φ̇h2]b2. (78)

It is then clear that the sets of productsφφ, φφ̇, φ̇φ̇ form a complete basis for the polarization
function and the response function (Aryasetiawan and Gunnarsson 1994a) since the latter
can be written as

R = P + PvP + PvPvP + · · · (79)

so that the basis forR is completely determined by that ofP . Although this product
basis is not complete for the Coulomb potential, it is of no consequence sincev is always
sandwiched between twoP ’s. It can be easily shown that the product basis is also complete
for the self-energy. Thus schematically

6(kn, ω) = 〈ψkn|iGW |ψkn〉
= 〈ψknψ |v|ψψkn〉 + 〈ψknψ |vRv|ψψkn〉 (80)

which shows that it is sufficient to expandv in the product basis and the latter is, therefore,
a complete basis for the self-energy.

The number of product functions is still large, with nine spd orbitals we have
2[9(9+ 1)/2] products ofφφ andφ̇φ̇ and 9× 9 products ofφφ̇ giving in total 161 product
functions. With spdf orbitals the number of product functions is 528. It can be reduced
considerably without too much loss of accuracy by neglecting theφ̇ terms since they are
small. Moreover, in the polarization function there are no products between conduction
states. Therefore, in sp and d systems products ofφdφd and φf φf , respectively, can be
neglected. After these eliminations, the remaining product functions turn out to have a
significant number of linear dependences, typically 30–50%, which can be eliminated further
giving ∼100 optimized product functions per atom for spdf orbitals. A product function is
given by

B̃α(r) = φRL(r)φRL′(r)
= ϕRl(r)ϕRl′(r)YL(�)YL′(�) (81)

whereα ≡ (R, LL′). This function is non-zero only inside an atomic sphere centred on atom
R. There are no products between orbitals centred on different spheres. The optimization
is performed by calculating the eigenvalues of the overlap matrixOαβ = 〈B̃α|B̃β〉 and
subsequently neglecting eigenvectors with eigenvalues less than a certain tolerance. The
optimized product functions are then linear combinations

Bα =
∑
γ

B̃γ zγα (82)

wherez are the eigenvectors of the overlap matrix:Oz = ez. Due to the localized property
of the basis, the calculation of the dielectric matrix scales asN3. This approach has
been used with success to calculate loss spectra (Aryasetiawan and Gunnarsson 1994b) and
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Figure 1. The energy loss spectra of Ni forq = (0.25, 0, 0)2π/a, a = 6.654a0. The large dots
correspond to the experimental spectrum taken from Feldcampet al (1979). The full curve and
small dots are respectively the loss spectra with and without local field corrections due to the
inhomogeneity in the charge density. Both spectra are calculated with 4s, 4p, 3d, 4d, 4f, and 5g
orbitals, including an empty sphere at (0.5, 0.5, 0.5)a and core excitations. After Aryasetiawan
and Gunnarsson (1994b).

self-energy for 3d systems (Aryasetiawan and Gunnarsson 1995). The loss spectra of Ni
calculated using the product basis is shown in figure 1.

Another approach using a localized basis set is based on Gaussian functions (Rohlfing
et al 1993). The wavefunctions and the dielectric matrix are expanded in this basis. For Si,
for example, the number of Gaussian orbitals needed to perform theGW calculation is 40
to 60 whereas 350 plane waves are needed in the conventional approach. This approach has
been applied with success to a number of semiconductors and insulators, and to semicore
states in Si, Ge and CdS as well as to the Si surface.

3.3. The plasmon-pole approximation

One of the major computational efforts in self-energy calculations is the calculation of the
screened interactionW . The physical features ofW are well known; the imaginary part of
W is characterized by a strong peak corresponding to a plasmon excitation at the plasmon
frequency. This is particularly evident in the case of the electron gas or the alkalis such as
Na and Al. The plasmon-pole approximation assumes that all the weight in ImW resides in
the plasmon excitation (Lundqvist 1967a, b, Overhauser 1971, Hedin and Lundqvist 1969,
Hybertsen and Louie 1986). In the case of the electron gas, this is strictly true in the limit of
long wavelengthq→ 0. For finiteq, the spectrum also contains particle–hole excitations at
lower energies. The particle–hole spectrum eventually merges with the plasmon excitation
asq gets larger. Thus, in the simplest form, the plasmon-pole approximation is given by
(Lundqvist 1967a, b, Hedin and Lundqvist 1969) Imε−1(q, ω) = Aqδ(ω − ωq). The two
parametersAq andωq are determined from the static limit ofε−1 and thef -sum rule. In the
generalized plasmon-pole approximation due to Hybertsen and Louie (1986), each matrix
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component of the inverse dielectric function is written (for positive frequency)

Im ε−1
GG′(q, ω) = AGG′(q)δ(ω − ωGG′(q)). (83)

The corresponding real part is given by

Reε−1
GG′(q, ω) = δGG′ +

�2
GG′(q)

ω2− ω2
GG′(q)

. (84)

The effective bare plasma frequency�GG′ is defined below. The unknown parameters
AGG′(q) andωGG′(q) are determined from the static limit ofε−1

Reε−1
GG′(q, 0) = δGG′ +

2

π
P

∫ ∞
0

dω
1

ω
Im ε−1

GG′(q, ω) (85)

and thef -sum rule∫ ∞
0

dωω Im ε−1
GG′(q, ω) = −

π

2
ω2

p
(q +G) · (q +G′)
|q +G|2

ρ(G−G′)
ρ(0)

≡ −π
2
�2
GG′ . (86)

Thus, there are no adjustable parameters. Thef -sum rule is true for the exact response
function since it is obtained from the double commutator [[H, ρ̂q+G], ρ̂q+G′ ] which yields

1

2

∑
s

(Es − E0){〈0|ρ̂q+G|s〉〈s|ρ̂†q+G′ |0〉 + CC} = (q +G) · (q +G′)ρ(G−G′). (87)

The states|s〉 are the exact many-body excited-states andρ(G) is the Fourier component
of the electron density. It can also be shown from the definition of the linear response
dielectric function in terms of the ground-state matrix element of the commutator of the
density operators that∫ ∞

0
dωω Im ε−1

GG′(q, ω) = −
π

2
v(q +G)1

2

∑
s

(Es − E0){〈0|ρ̂q+G|s〉〈s|ρ̂†q+G′ |0〉 + CC}.
(88)

The f -sum rule follows immediately from the last two equations (Hybertsen and Louie
1986) recalling thatωp =

√
4πρ(0). The quality of the plasmon-pole approximation is

illustrated in figure 2.
One drawback of the Hybertsen and Louie model is that the plasmon frequency may

become complex, which is somewhat unphysical. A different model proposed by von der
Linden and Horsch (1988) circumvents this problem by using the dielectric-bandstructure
approach. Here one defines a Hermitian dielectric matrix

εGG′(q, ω) = δGG′ +
4π

|q +G||q +G′|α
0
GG′(q, ω) (89)

P 0
GG′(q, ω) =

∑
spin

∑
k

occ∑
n

unocc∑
m

〈k, n|ei(q+G)·r|k + q, m〉〈k + q, m|e−i(q+G′)·r|k, n〉
ω − εkn + εk+q,m . (90)

The inverse static dielectric matrix is expressed in its eigenrepresentation

ε−1
GG′(q, 0) = δGG′ +

∞∑
i=1

Uq,i (G)[d
−1
i (q)− 1]U ∗q,i (G

′). (91)

The matrixU is formed by the eigenvectors of the inverse dielectric matrix. The plasmon-
pole approximation is then obtained by introducing the frequency dependence in the
eigenvalues:

d−1
i (q, ω)− 1= zi(q)

ω2− [ωi(q)− iδ]2
. (92)
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Figure 2. Comparison between the numerically calculated inverse dielectric function (Walter
and Cohen 1972) and the corresponding plasmon-pole results for Si. After Hybertsen and Louie
(1988a).

The eigenfunctions forω 6= 0 are approximated by the static eigenfunctions (von der Linden
and Horsch 1988). As in the Hybertsen and Louie approach, the unknown quantitieszi and
ωi are determined from the static limit ofε−1 andf -sum rules. These give

zi(q) =
ω2

p

ρ(0)

∑
GG′

U ∗q,i (G)
(q +G) · (q +G′)
|q +G||q +G′| ρ(G−G

′)Uq,i (G′) (93)

and

ω2
i (q) =

zi(q)

1− d−1
i (q)

. (94)
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It can be shown that the pole strengthzi can be expressed in terms of the real-space
eigenpotentials

zi(q) =
ω2

p

ρ(0)

∫
d3r ρ(r)|∇9qi (r)|2 (95)

where

9qi (r) =
∑
G

Uqi (G) e−i(q+G)·r

|q +G| (96)

so that the pole strength is positive definite. The eigenvaluesd−1
i of the static dielectric

matrix lie between (0, 1) which implies that the plasmon frequenciesωi are all real (von der
Linden and Horsch 1988). A generalization of the plasmon-pole model has been proposed
by Engelet al (1991) and Engel and Farid (1992, 1993).

One drawback of the plasmon-pole approximation is that the imaginary part of the
self-energy is zero except at the plasmon poles. As a consequence, the lifetime of the
quasiparticles cannot be calculated. Another drawback is its limited applicability to other
than sp systems. For more complex systems where the plasmon excitations merge with
the particle–hole excitations, it is not clear anymore if the plasmon-pole approximation is
appropriate.

3.4. The spacetime method

Conventional ways of performing self-energy calculations express all quantities in frequency
and reciprocal space. This is natural because in solids the Bloch momentum is a good
quantum number and, by working in reciprocal space, one takes advantage of the lattice
translational symmetry. In the extreme case of the electron gas, the self-energy becomes
diagonal ink. In fact, it has been found numerically that, in the Bloch-state representation,
the self-energy is almost diagonal even in systems that bear little resemblance to the
electron gas (Hybertsen and Louie 1986, Aryasetiawan 1992). The reason for this has been
clarified recently by Hedin (1995). The frequency representation is also natural because
most experiments generally focus on energy-dependent measurements. For example,
photoemission spectra are measured as functions of momentum and energy. Theoretically,
however, the self-energy becomes a multidimensional convolution when expressed in
momentum–energy space which is computationally very expensive as may be seen in
equation (75). In the spacetime representation, on the other hand, the self-energy in the
GWA takes a simple multiplicative form

6(r, r′, t) = iG(r, r′, t)W(r, r′, t). (97)

The polarization function also has a simple form

P 0(r, r′, t) = −iG0(r, r′, t)G0(r′, r,−t) (98)

and the non-interacting Green functionG0 is given by

G0(r, r′, t) =


i

occ∑
kn

ψkn(r)ψ
∗
kn(r

′) eiεknt t < 0

−i
unocc∑
kn

ψkn(r)ψ
∗
kn(r

′) e−iεknt t > 0.

(99)
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Evaluation ofG0 in real time is not advantageous due to the oscillatory exponential term. In
imaginary time this exponential term decays rapidly and the summation can be performed
easily.G0 becomes (Rojaset al 1995)

G0(r, r′, iτ) =


i

occ∑
kn

ψkn(r)ψ
∗
kn(r

′) e−εknτ τ < 0

−i
unocc∑
kn

ψkn(r)ψ
∗
kn(r

′) e−εknτ τ > 0.

(100)

This is obtained by analytically continuing the expression forG0 in equation (49) from real
to imaginary energy and taking the Fourier transform from imaginary energy to imaginary
time. From translational and lattice symmetry,r can be restricted to lie in the irreducible
wedge butr′ must run over all grid points which are located inside a large sphere of radius
Rmax centred onr. The method was tested for jellium and Si, and typical values for the
grids are1r = 0.5 au, 1τ = 0.3 au, Rmax = 18 au andτmax = 10 au, where au is
atomic units, which give convergence in the quasiparticle energy differences to 0.05 eV and
absolute values to 0.1 eV (Rojaset al 1995).

Although the polarization functionP 0 takes a particularly simple form in the spacetime
representation, calculatingε−1 in real space is still computationally prohibitive because of
the large size of matrices in inverting the dielectric function. In practice, one performs a
six-dimensional fast Fourier transform from(r, r′) to (k,G,G′) and a one-dimensional
Fourier transform from imaginary time to imaginary energy and solves forε−1 as a matrix
equation inG,G′ for eachk and iω. After formingWGG′(k, iω) one Fourier transforms
back to real space and to the imaginary time representation. The advantages of this method
are that the computational effort is much reduced compared to the conventional techniques
since the double summation overk points and bands are avoided and there is no need for
a plasmon-pole approximation.

For comparison with experiment, the self-energy has to be calculated at real frequencies.
This is achieved by first calculating the self-energy and the matrix element of the self-energy
correction directly in real space〈ψkn|6(iτ)− V xc|ψkn〉 and then Fourier transforming the
result from imaginary time to imaginary energy. The imaginary energy representation can
then be analytically continued to real energies by fitting the self-energy to the multipole
form

a0+
n∑
i=1

ai

ω − bi (101)

where the parametersai andbi are, in general, complex. A good fit is obtained with only
n = 2 with a root-mean-square error of 0.2%. An example is shown in figure 3. The
advantage of calculating the self-energy along the imaginary axis is that one avoids the
sharp pole structures in bothG andW . For quantities which require frequency integration,
it is then useful to perform the integration along the imaginary axis whenever possible.
However, when the detailed structure of the self-energy is required along the real axis,
knowledge of it at a few points along the imaginary axis is not likely to be sufficient.

One important aspect of the spacetime method is its scaling with respect to the system
size (Rojaset al 1995). It is found numerically that the range ofW and6 is rather material
independent so that the parametersRmax and1r do not change with system size. This means
that the information stored as well as the computational time for the non-interacting response
function should scale linearly with the system size. However, the calculation of the dielectric
function involves matrix inversions which scale asN3. It is still favourable compared with
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Figure 3. The real part of the matrix elements of the self-energy operator of Si continued onto
the real axis for the first eight bands atk = 0. Inset: The matrix elements calculated along the
imaginary axis for band 4 (the valence band maximum) together with the fitted form (with two
poles). After Rojaset al (1995).

the conventional plane-wave basis approach which scales asN4 but comparable to the
localized basis approach which also scales asN3 (Aryasetiawan and Gunnarsson 1994b).

An interesting mixed-space approach for calculating the polarization function was
recently proposed by Blaseet al (1995). The polarization function is written as

P(r, r′, ω) =
∑
q

exp[iq · (r − r′)]Pq(r, r′, ω) (102)

where

Pq(r, r
′, ω) =

∑
spin

occ∑
kn

unocc∑
n′
u∗kn(r)uk+qn′(r)u

∗
k+qn′(r

′)ukn(r′)

×
{

1

ω − εk+qn′ + εkn + iδ
− 1

ω + εk+qn′ − εkn − iδ

}
. (103)

The functionPq(r, r′, ω) is periodic inr and r′ separately and it needs to be calculated
within a unit cell only which distinguishes this approach from the direct real-space method
where one of the position variables is not restricted to the central cell. The former approach
scales asN3, similar to localized-basis methods. It was found that the crossover between
the mixed-space and reciprocal-space methods occurs for unit cells as small as that of Si.

The real-space or the mixed-space approach is suitable for systems with large unit cells
and a large variation in the electron density, or open systems.
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4. SimplifiedGW theory

GW calculations are computationally expensive and therefore it is desirable to find
simplifications which reduce the numerical effort but still maintain the accuracy of the
full calculations. So far there is no simplifiedGW theory that is applicable to all systems.
Most simplified theories are for semiconductors and insulators. Although some success has
been achieved, none of these models is very reliable. While bandgaps can be reasonably
well reproduced by these models, details of bandstructures are not satisfactorily described.
It is a major challenge to construct a good approximation for the self-energy which includes
both non-locality and energy dependence, but which is simple enough to be applicable to
complex systems without significant loss of accuracy.

4.1. The static Coulomb-hole and screened-exchange (COHSEX) approximation

One of the earliest attempts to simplifyGW self-energy is the static COHSEX approximation
(Hedin 1965a). It is obtained formally by settingω − εkn = 0 in equations (70) and (71)
yielding

6SEX(r, r
′) = −

occ∑
kn

φkn(r)φ
∗
kn(r

′)W(r, r′, 0) (104)

6COH(r, r
′) = 1

2δ(r − r′)[W(r, r′, 0)− v(r − r′)]. (105)

The first term is the exchange self-energy but with a statically screened interaction.
The second term is the Coulomb-hole term which is the interaction energy between
the quasiparticle and the potential due the Coulomb hole around the quasiparticle, as a
result of the rearrangement of the electrons (screening). Both the screened-exchange and
the Coulomb-hole terms in equations (70) and (71) are energy dependent and non-local,
respectively, but in the static COHSEX approximation they are energy independent and the
Coulomb-hole term is local. The validity of the COHSEX approximation relies on whether
ω − εkn is small compared to the energy of the main excitation in the screened interaction
which is essentially the plasmon energy. Comparison to the results of the full calculations
shows that the COHSEX approximation consistently overestimates the magnitude of the
self-energy, by about 20% in Si, resulting in larger bandgaps in semiconductors (Hybertsen
and Louie 1986). Forω corresponding to an occupied state, most of the error resides in the
Coulomb-hole term. The approximationω − εkn = 0 is more severe for the Coulomb-hole
term than for the screened-exchange term because the Coulomb-hole term involves a sum
over unoccupied states as well as over occupied states whereas the screened-exchange term
involves a sum over occupied states only.

Another source of error comes from the neglect of dynamical renormalization orZ-factor
in equation (57). When taking the matrix element〈φkn|6|φkn〉 and settingω−εkn = 0, this
approximately corresponds to calculating the self-energy atω = εkn but the true self-energy
should be calculated at the quasiparticle energy, leading to the formula in equation (58).
Indeed, a significant improvement can be obtained if theZ-factor is taken into account
when the self-energy itself is calculated within the COHSEX approximation.

4.2. Improving the COHSEX approximation

An attempt to include dynamical renormalization into a simplifiedGW scheme was made
by Bechstedtet al (1992). In this scheme, the energy-dependent part of the self-energy is
expanded to linear order around the LDA eigenvalue. A proper calculation of the self-energy
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derivative, or equivalently theZ-factor, requires unfortunately a full frequency-dependent
response function. It is not sufficient to calculate the static response function and its energy
derivative atω = 0. For the screened-exchange term, on the other hand, knowledge of the
first energy derivative of the response function atω = 0 is sufficient to expand6SEX to first
order around the LDA eigenvalue.

To take into account the energy dependence of the self-energy, the screened interaction
W is calculated within the plasmon-pole model. The static dielectric function is modelled
by (Bechstedtet al 1992)

ε(q, ρ) = 1+
[
(ε0− 1)−1+ α

(
q

qTF

)2

+ 3

4

(
q2

kFqTF

)2 ]−1

(106)

wherekF andqTF are the Fermi and Thomas–Fermi wavevectors, respectively, which depend
on the average electron densityρ. This model forε interpolates between the free-electron
gas result 1+ (2ωp/q

2)2 at highq, 1+ α(qTF/q)
2 at smallq (Thomas–Fermi theory) and

the q = 0 valueε0 for the semiconductor. It allows analytical calculation of the screened
Coulomb interaction. The coefficientα is obtained by fitting the model dielectric function
to a full RPA calculation forω = 0. The values ofα turn out to be material independent
for those semiconductors considered (Si, GaAs, AlAs and ZnSe).

To take into account local field effects due to the inhomogeneity in the charge density,
an LDA ansatz is used (Hybertsen and Louie 1988a)

W(r, r′, ω = 0) = 1
2[W h(r − r′, ρ(r))+W h(r − r′, ρ(r′))] (107)

whereW h is the screened interaction for the electron gas. The sum rule, that the total
induced charge around a test charge is−1+1/ε0, is fulfilled but the induced charge density
is allowed to vary according to the local density. Using this model, the static Coulomb-hole
term can be calculated analytically (Bechstedtet al 1992)

VCOH(r) = −
(

1− 1

ε0

)1/2
qTF(r)√

α

[
1+ qTF(r)

αkF (r)

√
3ε0

ε0− 1

]−1/2

. (108)

It is interesting to observe that the matrix element of6dyn = 6 −6COHSEX and its energy
derivative can be shown to be independent of the state if local field effects are neglected.
The state dependence thus comes from the local field effects and it is found to be rather
weak. We note also the dependence onqTF ∼ ρ1/3 as in the LDA.6dyn gives an upward
shift of ∼1.4 eV for all the materials mentioned above. This means that good values for
the bandgaps are obtained by using6 = 6COHSEX but taking into account the dynamical
renormalization factorZ. The results for Si, GaAs, AlAs and ZnSe show agreement with the
full GW calculations to within 0.2 eV for most of the states considered. Application has also
been made recently to GaN (Palummoet al 1995). This scheme reduces the computational
effort by two orders of magnitude. Further tests on a wide range of semiconductors and
insulators are desirable to evaluate the validity of the number of approximations used in the
model.

4.3. Extreme tight-binding models

One of the major problems inGW calculations is the calculation of the response function. In
electron-gas-like materials such as the alkalis, it is reasonable to model the dielectric function
with a single plasmon and to neglect off-diagonal elements. In semiconductors, however,
local field effects, which are described by the off-diagonal elements of the dielectric matrix,
are important. The local field is dominant at distances on the interatomic scale so that
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high Fourier components are needed to describe it in a plane-wave basis, resulting in a
large matrix. It is, therefore, advantageous to calculate the dielectric matrix and its inverse
directly in real space. A real-space approach is also useful for systems with low symmetry.
Ortuno and Inkson (1979) proposed an extreme tight-binding model where the valence and
conduction bands were assumed to be flat so that the bandgapEg is the only parameter
entering the model. Due to its simplicity, the model allows analytic evaluation of the
dielectric function to a certain degree.

The wavefunctions are expanded in localized Wannier functions

ψkn(r) = 1√
N

∑
νT

eik·Tφnν(r − T )cnν(k) (109)

whereφnν is a Wannier function localized in bondν andT is a lattice translational vector.
In the two-flat-band model, the coefficientscnν are equal to one. Sinceφnν is localized in
each cell and in each bond, we have∫

d3r φnν(r − T )φnµ(r − T ′) ∝ δνµδTT ′ . (110)

Using this expansion in the expression for the polarization function and using the flat-
band approximation,εk′n′ − εkn = Eg, one arrives at a simple expression for the dielectric
function:

ε(r, r′, ω) = δ(r − r′)−N(ω)
∑
νT

∫
d3r ′′ v(r − r′′)Aν(r′′ − T )A∗ν(r′ − T ) (111)

where

N(ω) = 4Eg

ω2− (Eg− iδ)2
(112)

Aν(r − T ) = φcond,ν(r − T )φ∗val,ν(r − T ). (113)

This has the form of a separable matrixε = 1−BC (Hayashi and Shimizu 1969, Sinha
1969) whose inverse is given byε−1 = 1+B(1−CB)−1C. Under certain approximations,
the matrixε can be inverted giving a screened interaction (Ortuno and Inkson 1979)

W(r, r′, ω) =
∫

d3r ′′ε−1(r, r′′, ω)v(r′′ − r′)

= v(r − r′)− 4Eg

E2
g + ω2

p − ω2

∑
νT

Dν(r − T )D∗ν (r′ − T ) (114)

where

Dν(r − T ) =
∫

d3r ′ v(r − r′)Aν(r′ − T ) (115)

and ωp is the plasmon energy. The approximation is good in the limitEg � ωp. The
screened potential is effective atω = Eg and approaches a bare value atω = ωp. The
quantityDν(r−T ) represents a dipole moment atr due to bondν in cell T . The physical
interpretation of the second term in equation (114) is that an electron on a site interacts with
other electrons through the Coulomb interaction, inducing dipole moments on the other sites.
These dipoles in turn produce a potential which is screened by other induced dipoles by the
frequency-dependent factor arising from the inversion of the dielectric function (Sterne and
Inkson 1984).
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Using the above screened interaction, the self-energy can be evaluated analytically.
Defining a state-dependent local potential∫

d3r ′6(r, r′, ω = En)ψkn(r′) = V xc
n ψkn(r) (116)

gives two potentials for the valence and conduction states, respectively, (Sterne and Inkson
1984)

V val
COHSEX(r) = −ρ1/3(r)

γ

2

[
2π

3

]1/3 [
1+ 1

ε0

]
− C

2

[
ε0− 1

ε0+√ε0

]
(117)

V cond
COHSEX(r) = −ρ1/3(r)

γ

2

[
2π

3

]1/3 [
1− 1

ε0

]
− C

2

[
ε0− 1

ε0−√ε0

]
(118)

where

C =
∫

d3r d3r ′A∗ν(r − T )v(r − r′)Aν ′(r′ − T ) (119)

is an on-site exchange interaction and

ε0
∼=
E2

g + ω2
p

E2
g

. (120)

Comparison with the LDA exchange-only potential,V LDA
x = −[3/π ]1/3ρ1/3, gives a value

for γ = 2[9/(2π2)]1/3. It is interesting to observe that although the potentials have been
derived from an extreme tight-binding picture, one arrives at a formula similar to that
obtained from the electron gas (Sterne and Inkson 1984).

The method has been applied to C, Si, GaAs, Ge and ZnSe (Jenkinset al 1993). Good
agreement with the fullGW calculations are obtained for Si and GaAs but not for the other
two materials. Perhaps this is not surprising in view of the flat extremal bands in Si and
GaAs, making them ideal for the present approach. Moreover, the pseudopotentials used in
the LDA calculations are better for the first two materials than for the last two so that the
eigenfunctions used to calculate the matrix elements of the self-energy are correspondingly
better. The LDA exchange only gap is 0.41 eV whereas the calculated value is 1.25 eV
(experimentally 1.17 eV). The direct gap at the0 point is also improved from 2.49 eV to
3.32 eV (experimentally 3.35 eV). In the case of Ge the improvement is not as good as
in the case of Si but while the LDA predicts Ge to be a metal with a negative bandgap
of −0.19 eV, the method gives a gap of 0.34 eV albeit too low compared to experiment
(0.89 eV). In diamond, the method improves the gap at the0 point from 5.46 eV in the LDA
(exchange only) to 7.87 eV (experimentally 7.4 eV). Similar improvement is also obtained
across the Brillouin zone. Finally, the results for ZnSe are rather poor. The bandgap is
overestimated by∼1 eV (3.77 eV against 2.82 eV). The problem could be related to the
difficulties of treating 3d states within the pseudopotential approach resulting in relatively
poor wavefunctions.

A similar tight-binding approach was also proposed by Hanke and Sham (1988) and
Bechstedt and Del Sole (1988). They derived an analytical model for6, V xc and the gap
correction in insulators. They arrived at a similarρ1/3 formula for the exchange-correlation
potential but they also included a term corresponding to the bare conduction-band exchange
which is neglected in the Sterne and Inkson model. The method was applied to Si, diamond
and LiCl, and the results are within a few per cent of the more elaborate calculations.
A more recent work uses an orthogonalized linear combination of atomic orbitals with
applications to diamond, Si, Ge, GaAs, GaP and ZnSe. The gaps are generally within 10%
of the experimental values (Gu and Ching 1994).
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4.4. Quasiparticle local density approximation (QPLDA)

This approximation is based on the work of Sham and Kohn (1966) who showed that for
a system with a slowly-varying density the self-energy is short range in|r − r′| although
for larger energies the self-energy is expected to be long range since screening is not very
effective at large energies. Numerical calculations by Hedin (1965a) show that the self-
energy of the homogeneous electron gas quickly vanishes beyond|r−r′| = 2rs for ω ≈ EF

and it depends, therefore, on the density in the vicinity of(r + r′)/2 which suggests the
following approximation (Sham and Kohn 1966),

6(r, r′, ω) ≈ 6h(r − r′, ω −1µ(n); n) (121)

where6h(r − r′, E; n) is the self-energy operator of the homogeneous electron gas with
density n, n = n[(r + r′)/2] and1µ = µ − µh(n) is the difference between the true
chemical potential and that of the homogeneous electron gas of densityn. The local density
approximation for the self-energy is obtained by assuming the quasiparticle wavefunction
in equation (48) as a superposition of locally plane-wave-like functions (Sham and Kohn
1966)

9(r, ω) ≈ A(r) eik(r,ω)·r (122)

which when inserted into the quasiparticle equation gives the solutionω(E) = E if k
satisfies the local-density conditionk = kLD with

−E + 1
2k

2
LD + V H(r)+6(kLD, E −1µ(n); n) = 0. (123)

In obtaining the above equation, ther dependence ofA andk has been neglected. For a
slowly-varying density, the local change in the chemical potential from its homogeneous
value is simply given by the electrostatic potential (Thomas–Fermi)

V H(r) = 1µ[n(r)] (124)

and by definition

µh(n) = 1
2k

2
F(n)+ µxc(n)

= 1
2k

2
F(n)+6(kF, µh(n), n). (125)

Using the last two expressions, the condition for the local-density wavevector becomes
1
2(k

2
LD − k2

F) = (E − µ)− [6h(kLD, E −1µ(n); n)−6h(kF, µh(n); n)]. (126)

When operating on the locally plane-wave function, the effect of the non-local operator
6h(r − r′, E) can be reproduced exactly by a local operator6h(kLD, E; n)δ(r − r′). The
local density approximation for the self-energy operator consists of using this local operator
when operating on the actual wavefunction at energyE. It may happen that for some values
of E equation (126) has no solution for positivek2

LD. In this case, one should analytically
continue the self-energy operator into complex momentum. An early work of approximating
the self-energy by a local potential using information from the local density is given by
Hedin and Lundqvist (1971).

Instead of calculating the full self-energy6h(k, E; n) it is useful to write (Wang and
Pickett 1983, Pickett and Wang 1984)

6h(k, E; n) = µxc(n)+6h(k, E; n)−6h(kF, µh; n)
= µxc(n)+1(k,E; n) (127)

sinceµxc has been calculated rather accurately for the electron gas. The GWA is then used
to calculate the relatively small quantity1. Hedin and Lundqvist (1971) calculated1(kLDA )
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and for metals, the self-energy corrections in the LDA turn out to be very small.1 is of
the order of a few 10−2 eV. For Ni, for example, the corrections are smaller than 0.1 eV
(Watsonet al 1976). The main reason for such small corrections is probably due to the
weak energy dependence of the electron-gas self-energy. Furthermore, most of the effect
of the self-energy is already accounted for by the local termµxc. The QPLDA self-energy
is dominated by a constant contribution and the assumption of slowly-varying density is
probably not good enough in many cases.

Above, the homogeneous electron gas was used to obtain an approximate self-energy for
inhomogeneous systems. For semiconductors and insulators one can also use a homogeneous
insulator model for this purpose which turns out to give a significant improvement. The
presence of an energy gap in these systems brings in new physics not presence in the
electron gas. The response function needed to calculate the screened interaction is obtained
from a model semiconducting homogeneous electron gas. One simply introduces a gap in
the otherwise metallic spectrum of the electron gas, that is to say (Penn 1962, Levine and
Louie 1982)

ε2(k, ω) =
{

0 |ω| < λEF

εRPA
2 (k, ω−) |ω| > λEF

(128)

whereω− =
√
ω2− λ2E2

F sgnω. This function satisfies thef -sum rule. The dielectric
gapλEF, which is in general larger than the minimum direct gap, is determined from the
experimental value of the static, long-wavelength dielectric constantε0,

λEF = ωp√
ε0− 1

(129)

whereωp =
√

4πn is the plasmon frequency. The single-particle spectrum has a gapEg

E(k) = 1
2k

2+ 1
2Eg sgn(k − kF). (130)

The gapEg is taken to be the average value across the Brillouin zone of the direct gap and
it is numerically different fromλEF. It can be shown that the valence bands are lowered
and the conduction bands are raised by the self-energy corrections, independently of the
density sampled by the wavefunctions. This means that the QPLDA will always lead to an
increase in the gap over the LDA value (Wang and Pickett 1983, Pickett and Wang 1984).

The QPLDA was applied to Si and diamond with considerable success. For Si, the
zone-boundary transitions X4 → X1, L′3 → L3 and L′3 → L1 are well reproduced by the
QPLDA. The zone-centre transition025′ → 015 is underestimated by 0.25 eV, which is the
worst case, but the transition025′ → 015 is reproduced well. The calculated indirect gap
of 0.93 eV still underestimates the experimental value by 0.24 eV. The QPLDA gives a
valence-bandwidth of 12.5 eV, in good agreement with the experimental data 12.4±0.6 eV
(Grobman and Eastman 1972) and 12.6 ± 0.6 eV (Ley et al 1972). For diamond, the
QPLDA gives an indirect gap of 5.74 eV, which is a slight overestimate compared to
the experimental value of 5.47 eV. The LDA value is 4.05 eV. The025′ → 015 gap is
experimentally about 7.3 eV and the QPLDA gives 7.36 eV (compared to the LDA value
of 5.51 eV). The valence bandwidth is 23.4 eV, in good agreement with the experimental
data of McFeelyet al (24.2± 1.0 eV) (McFeelyet al 1974) but in disagreement with the
data of Himpselet al (21 eV) (Himpselet al 1980). The LDA bandwidth is 20.4 eV.

4.5. LDA+ δ6COHSEX
In metals, the screened interactionW decreases rapidly for|r− r′| > k−1

TF , but in insulators
and semiconductors it decreases as 1/ε0|r− r′| for large |r− r′| since the screening is not
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complete. Accordingly, one writes (Gygi and Baldereschi 1989)

W(r, r′, ω) = W IEG(r, r′, ω)+ δW(r, r′, ω) (131)

whereW IEG is the short-range interaction potential of a metallic inhomogeneous electron
gas andδW has the same long-range behaviour asW . The self-energy arising from the first
term inW has been shown by Sham and Kohn (1966) to be short ranged and depends only
on the density in the vicinity ofr andr′, and is therefore approximated by a local potential:

6GW(r, r
′, ω) = µxc(r, ω)δ(r − r′)+ i

2π

∫
dω′G(r, r′, ω + ω′)δW(r, r′, ω′). (132)

Pickett and Wang (1984) found that the inclusion of energy dependence in the local
exchange-correlation potential had very little effects on the eigenvalues obtained with an
energy-independent LDA potential. It is then assumed that for states close to the Fermi
level, µxc takes its value at the Fermi levelµxc

LDA (r). Furthermore, it is assumed thatδW
depends only on|r − r′|, which is strictly valid only when|r − r′| → ∞, but it has been
found numerically that in non-metals the local field effects become negligible as|r − r′|
exceeds the interatomic distance (Hybertsen and Louie 1986, Godbyet al 1988). One now
makes the COHSEX approximation onδ6, rather than on the full self-energy

δ6(r, r′) = −ρ(r, r′)δW(r − r′)+ δ6COH (133)

where the first term is the screened-exchange contribution and

δ6COH = �

2(2π)3

∫
d3q δW(q) (134)

is the Coulomb-hole contribution which is a constant, shifting all eigenvalues by the same
amount. The Fourier transform ofδW is given by

δW(q) = 4π

�q2
[ε−1

SC(q, q, ω = 0)− ε−1
M (q, ω = 0)] (135)

whereε−1
SC(q, q, 0) is the diagonal part of the inverse dielectric matrix for the semiconductor

calculated in the RPA andε−1
M (q, 0) is the inverse of the static Lindhard dielectric function

(Lindhard 1954) of a homogeneous electron gas.
Applications to diamond, Si, Ge, GaAs, AlAs and GaP give values in general agreement

to within 0.2 eV with the results of the full calculations. Larger deviations (0.3–0.4 eV)
occur for the X4v→ X1c gap in diamond and the025′v → 02′c gaps in Ge. The Coulomb-
hole contributionδECOH is positive and cancels approximately the effect of the screened-
exchange term in the valence bands. As a result, the net effect of the self-energy correction
is to shift the conduction band upwards and leave the valence bands essentially unchanged.
This is also in agreement with the full calculations.

5. Applications

5.1. Alkali metals

The early calculations in the GWA were performed for the electron gas, because of its
simplicity (for a review see Hedin and Lundqvist (1969)). The alkali metals are therefore
of particular interest, being the systems which are the closest approximation to the electron
gas. For these systems the correlation effects are only moderately strong, and the GWA
could therefore be expected to be relatively accurate. It therefore created a lot of interest
when the first high-resolution angular-resolved photoemission experiments for the alkali
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metals appeared (Jensen and Plummer 1985, Lyo and Plummer 1988, Itchkawitzet al 1990).
Two unexpected observations were made. First the bandwidth was smaller than expected.
For Na the occupied part of the band was found to be 2.65 eV broad (Lyo and Plummer
1988). This is consistent with an old angular-integrated measurement by Kowalczyket al
(1973). This bandwidth is substantially smaller than the width 3.2 eV predicted by nearly-
free-electron (NFE) theory. Figure 4 shows the experimental peak position (crosses) as a
function of the photon energy together with the prediction of NFE theory (dashed curve).
The band narrowing is about a factor of two larger than the narrowing (0.27 eV) predicted by
GW calculations for the electron gas of the appropriate density (Hedin 1965a). Although
this error is not very large in absolute terms, it raised questions about the accuracy of
the GWA for these systems. In addition, a set of essentially dispersionless states were
observed close to the Fermi energy, which was completely unexpected according to the
NFE bandstructure. This raised the interesting issue that the alkali metals may have charge
density waves (Overhauser 1985).

Figure 4. Peak position as a function of photon energy for photoemission at normal angle from
the Na (110) surface. The crosses show experimental results (Jensen and Plummer 1985), the
full circles show the photoemission calculations of Shung and Mahan (1987), the full curve the
quasiparticle energies and the dashed curves the NFE theory. After Shung and Mahan (1987).

A GW calculation was performed by Northrupet al (1987, 1989) for Na metal and by
Surhet al (1988) for K, using a generalized plasmon-pole approximation. These calculations
gave essentially the same band narrowing (0.31 eV) for Na as aGW calculation for the
electron gas. A much better agreement with experiment was, however, obtained by using
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an improved dielectric function (Northrupet al 1987, 1989)

ε−1 = 1+ v[1− P(v +Kxc)]−1P (136)

whereP is the independent particle polarizability andKxc = δV xc/δρ with V xc the (LDA)
exchange-correlation potential andρ the density. Equation (136) gives the appropriate
dielectric function within the density functional formalism. Using thisε instead of the
RPA ε, the bandwidth narrowing increased from 0.31 eV to 0.57 eV. Finally, a calculation
was performed using a Green function with a certain self-consistency, namely with the
LDA eigenvalues replaced by the quasiparticle energies. This led to a further increase of
bandwidth narrowing to 0.71 eV. Lyo and Plummer (1988) also observed large effects when
including the corrections to the dielectric function in equation (136).

The theoretical justification for including such corrections without simultaneously adding
vertex corrections is, however, weak. We notice that the total energy of the system can
be expressed in terms of the dielectric function. The quasiparticle energies can then be
obtained by differentiating with respect to the occupation numbers (Rice 1965). If the
dielectric function has the form of equation (136), it has been shown that there is also a
vertex correction of the type (Rice 1965, Tinget al 1975, Mahan 1994)

0 = 1

1− PKxc
. (137)

Mahan and Sernelius (1989) have extensively tested various corrections to the dielectric
function, including the corresponding vertex corrections when calculating the self-energy.
They found that for the electron gas the vertex corrections cancel most of the effects of the
corrections of the dielectric function, and the final results are rather close to the original
GWA. Del Soleet al (1994) obtained similar conclusions for Si. The results for the electron
gas suggest that there are discrepancies between appropriate self-energy calculations and the
peak positions in the photoemission experiments.

The relation between the peak position in photoemission and the quasiparticle energies
was studied by Mahan and coworkers in a series of papers, focusing on surface and
quasiparticle lifetime effects (Shung and Mahan 1986, 1988, Shunget al 1987). They
studied a model which includes the rapidly varying potential in the surface region as well
as the lattice potential in the bulk. The effects of these potentials on the photoemission
process were included, while the lattice part of the potential was neglected when calculating
the states. The self-energy was calculated using the Rayleigh–Schrödinger perturbation
theory, which gives results that differ slightly from the traditionalGW results. For instance,
the Na bandwidth is reduced by 0.37 eV due to this self-energy. Mahan and coworkers,
furthermore, included the effects of the imaginary part of the self-energy of the emitted
electron, by using the wavefunctionφ> for these electrons which decayed exponentially
inside the surface. Finally, the self-energy of the initial state was included as well. Due
to the exponential decay ofφ>, the electron momentum perpendicular to the surface is not
conserved, and there are non-vertical (nonk⊥-conserving) transitions.

Mahan and coworkers found that the broadening of the initial state and the instrumental
resolution, as well as the interference between bulk and surface photoemission, shift the
apparent peak positions towards lower binding energies relative to the quasiparticle energies
by about 0.2–0.4 eV (Shung and Mahan 1988). Including these effects, as well as the
quasiparticle self-energy shifts, leads to the full circles in figure 4. There is a substantial
band narrowing relative to the quasiparticle energies (full curve) and the agreement with
experiment is generally quite good. This suggests that the GWA gives good quasiparticle
energies for Na, and that the main reason for the discrepancy between these energies
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and the photoemission peak positions can be explained by considering the details of the
photoemission process.

Mahan and coworkers also gave an explanation for the unexpected features close to
the Fermi energy (see the essentially dispersionless structure in figure 4). These features
occur for photon energies for which there are now vertical, energy-conserving transitions
available. Due to the exponential decay ofφ>, non-vertical but energy-conserving transitions
are available. It has been shown that interference between surface and bulk emission puts
most of the weight of these transitions close to the Fermi energy (Shung and Mahan 1986).
Figure 4 illustrates that the theory can almost completely explain the experimental features,
with just a few experimental points at larger photon energy unexplained. Thus, there seems
to be no need to assume a charge-density wave to explain this structure.

5.2. Semiconductors and insulators: sp systems

The LDA systematically underestimates the bandgaps in semiconductors and insulators. In
table 1 the calculated LDA bandgaps of some materials are compared with the experimental
gaps. The discrepancies range from 30–100% and for Ge the LDA conduction and valence
bands in fact overlap when relativistic corrections are included. Also, individual bands
away from the Fermi level can be in error by up to 50%. It is natural to ask if the
bandgap problem originates from the error in the LDA. Exchange-correlation potentialsV xc

calculated fromGW self-energies turn out to be similar to the LDAV xc (Godbyet al 1988)
which indicates that even the exactV xc probably does not give the correct gap, but this
is still an open question. TheV xc may be a non-analytic function of the particle number
(Almbladh and von Barth 1985b, Perdew and Levy 1983, Sham and Schlüter 1983). That is
to say,V xc with an extra electron,V xc

N+1, may have an additional constant compared toV xc
N

and this constant may be large. Moreover, experience with empirical potentials shows that
a local potential cannot, in general, give both the correct band structure and the ground-state
electron density (Kane 1971).

In table 1 the bandgaps of some materials calculated within the GWA are shown. The
agreement with experiment is very good, in most cases to within 0.1 eV. Although it is
not strictly true, the self-energy correction is approximately an upward rigid shift of the
conduction band relative to the valence band, the so-called scissor operator, i.e. cutting the
bandstructure along the bandgap and shifting the conduction band rigidly upwards. The
scissor operator is accurate to 0.1, 0.2, 0.2 and 0.4 eV in Si, GaAs, AlAs and diamond,
respectively (Godbyet al 1988). The validity of the scissor operator in Si is somewhat
fortuitous, due to an almost complete cancellation between the strong energy dependence
and non-locality.

The experimental values are obtained from optical measurements or photoemission and
inverse photoemission experiments. The latter corresponds closer to the theoretical values
whereas the former may contain excitonic binding energy, which should be subtracted off
but unfortunately it is unknown. In optical experiments, the excited electron does not leave
the system and may therefore form an exciton with the corresponding hole.

To discuss in more detail the features in the self-energy which are important for the
quasiparticle energies, we consider Si as a prototype since it has been studied extensively.
The main features are energy dependence and non-locality. We first consider non-locality
within the COHSEX approximation. A measure of non-locality in the self-energy is its
range, the distance|r−r′| beyond which the self-energy is approximately zero. This range
rh is approximately given by the corresponding value for a jellium with the average density
of Si (rs = 2) andrh ∼ 2rs . In Si more than 99% of the matrix element of the self-energy in
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Table 1. Minimum bandgaps of semiconductors and insulators which have been calculated
within the GWA. The energies are in eV.

LDA GWA Experiment

AlAs −1.37 2.18a 2.32b

Al 0.5Ga0.5As −1.12 2.06c 2.09b

AlN (wurtzite) −3.9 5.8d 6.2b

AlN (zinc-blende) −3.2 4.9d

AlP −1.52 2.59c 2.50b

AlSb −0.99 1.64c 1.68b

CdS (zinc-blende) −1.37e, 0.83f 2.83e, 2.45f 2.55g,b

CdS (wurtzite) −1.36 2.79e 2.59b

CdSe (zinc-blende)−0.76 2.01e 1.90b

CdSe (wurtzite) −0.75 1.91e 1.97b

CdTe (zinc-blende)−0.80 1.76e 1.92b

CdTe (wurtzite) −0.85 1.80e 1.60b

Diamond −3.90 5.6h, 5.33a, 5.67i 5.48b

GaAs −0.67 1.58a, 1.32i , 1.22c 1.52b, 1.63j

GaN (wurtzite) −2.3 3.5d 3.5b

GaN (zinc-blende) −2.1 3.1d 3.2k, 3.3l

GaP −1.82 2.55c 2.39b

GaSb −0.10 0.62c 0.80b

Ge < 0 0.75h, 0.65i 0.744b

InAs −0.39 0.40c 0.41b

In0.53Ga0.47As −0.02 0.80c 0.81b

InP −0.57 1.44c 1.42b

InSb −0.51 0.18c 0.23b

LiCl −6.0 9.1h 9.4b

Li 2O −5.3 7.4m 6.6n

MgO −5.0 7.7o 7.83p

Si −0.52 1.29h, 1.24a, 1.25i 1.17q

SiC (β) −1.31 2.34i 2.39b

ZnS (zinc-blende) −2.37 3.98e 3.80b

ZnS (wurtzite) −2.45 4.03e 3.92b

ZnSe (zinc-blende)−1.45 2.84e 2.96b

ZnSe (wurtzite) −1.43 2.75e 2.87b

ZnTe (zinc-blende)−1.33 2.57e 2.71b

ZnTe (wurtzite) −1.48 2.67e

a Godbyet al (1988).
b Hellwege and Madelung (1982).
c Zhu and Louie (1991).
d Rubio et al (1993).
e Zakharovet al (1994).
f Rohlfing et al (1995a).
g Cardonaet al (1965).
h Hybertsen and Louie (1986).
i Rohlfing et al (1993).
j Aspnes (1976).
k Lei et al (1992a, b), Eddyet al (1993).
l Paisleyet al (1989), Sitaret al (1992).
m Albrecht et al (1997).
n Rauch (1940).
o Scḧonberger and Aryasetiawan (1995).
p Whited et al (1973).
q Baldini and Bosacchi (1970).
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a stateψ , 〈ψ |6|ψ〉, originates from|r−r′| < rh. One expects non-locality to be important
when rh is comparable to or greater than the extent or wavelength of the wavefunction
which is the case in Si. The matrix element in a non-local potential can be very sensitive
to the nodal structure ofψ . This is contrary to the case when6 is local, such asV xc, since
it is then |ψ |2 that enters into the integral. In Si, non-locality has the effect of widening
the gap. This can be understood as follows. The top of the valence band is bonding p
whereas the bottom of the conduction band is antibonding p. Therefore non-locality has a
larger effect on the conduction band than on the valence band since the antibonding state
has an extra node which means a smaller wavelength than that of the bonding state. The
presence of an extra node in the antibonding state reduces the matrix element〈ψ |6|ψ〉
relative to〈ψ |V xc|ψ〉 and therefore the conduction band is pushed upwards. Non-locality
has a smaller effect on the valence state so the net effect is a widening of the gap (Godby
et al 1988).

The non-locality arises from the density matrix (exchange charge)

ρx(r, r
′) =

occ∑
i

ψi(r)ψ
∗
i (r
′) (138)

and the screened potentialW(r, r′, ω). In semiconductors, the screening is not complete
because, due to the gap, a finite energy is required to excite a particle–hole pair. The range
of the screened interaction and its nodal structure are then determined byρx. Apart from
non-locality, anisotropy also plays an important role. In a homogeneous system,ρx and
W only depend on|r − r′|. In an inhomogeneous system, the screening potentialW − v
as a function ofr′ may strongly depend on the locationr of the test charge. In Si, for
example, there is a large accumulation of charge in the bonding region as opposed to the
antibonding region. It is to be expected that the screening potential of a test charge located
in the bonding and antibonding regions will be very different, as shown in figure 5. This
local field effect, which is entirely missing in the homogeneous case, is very important in
covalent materials. Local fields are crucial in determining the strength of the screening hole
but not its shape, and they contribute directly to the differing strengths of6 at different
points in the unit cell (figure 5) and therefore to the bandgap correction (Hybertsen and
Louie 1986). In Si, local fields account for more than one-third of the screening potential
in the region around the bond as can be seen in figure 5.

The local fields shift the centre of the screening potential, increase it in the bonding
region and reduce it in the interstitial. The local field effect is one important feature in Si
which distinguishes covalent-bond semiconductors from the alkalis. The screening potential
in these materials is therefore considerably more complex than in the alkalis. Calculations
for Si show that the local field effect inW is confined to a region nearr as shown in
figure 5. This is not surprising since the long-range part of the potential is contained in
the diagonal elementW(q) corresponding to smallq. In the plane-wave basis, the local
fields are described by the off-diagonal elements of the dielectric matrix. Nevertheless,
6(r, r′, ω = 0) is almost spherical as a function ofr′ for a fixed r and it is reasonably
well reproduced by jellium6 with the same average density as that of Si. This is illustrated
in figure 6. However, the interaction of the wavefunction with the non-locality in6 is not
contained within the jellium model.

The local field effect has a large influence on6COH. In fact, in a homogeneous system
6COH is a constant within the COHSEX approximation (equation (105)). Thus, if the local
field effect is neglected,6COH has no effects on the band dispersion.6COH is deeper in
the bonding region and shallower in the antibonding region as shown in figure 7. Since
the valence state is concentrated in the bonding region and the conduction state in the
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Figure 5. (a) and (c) show the screening potential in response to a single electron atr (indicated
by +) in the (1̄10) plane of Si in units of Ryd. (b) and (d) show the contribution from local
fields only. The bond chain is indicated by a straight line. After Hybertsen and Louie (1986).

antibonding region,6COH makes a large contribution to the gap.6COH is, however, a local
potential within the COHSEX approximation, a feature which is common toV xc as opposed
to 6SEX which is non-local (figure 8). This mechanism of gap opening by6COH could, in
principle, be accounted for byV xc. The local field effect on6SEX, on the other hand, is
small, since the local field effect is rather localized and6SEX is dominated by the large bare
Coulomb interaction for small|r − r′|. The local field contribution to6SEX is about 25%
of that to6COH but of opposite sign (Hybertsen and Louie 1986). Non-locality is essential
in determining the correct quasiparticle energies and, in particular, the bandgap.

The COHSEX approximation is a static approximation to the self-energy. Strictly
speaking, the quasiparticle energy should be obtained from the position of the peak in
the spectral function. This procedure requires knowledge of the energy dependence of the
self-energy, at least around the quasiparticle energy. The degree of the energy dependence
is related to the renormalization factorZ (weight of the quasiparticle, equation (57)): the
smallerZ, the stronger the energy dependence. The value ofZ for semiconductors is 0.7
to 0.8 (Hybertsen and Louie 1986). The slope of the real part of the self-energy around
the chemical potential is negative and the renormalization factorZ reduces the self-energy
correction, as shown in equation (58). Thus, if the energy dependence of the self-energy
is neglected, that is if the self-energy were calculated at the LDA instead of quasiparticle
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Figure 6. Contour plots of the self-energy6(r, r′, ω = midgap) in eV au−3 for r fixed at the
bond centre andr′ shown in the (110) plane for (a) Si, (b) GaAs, (c) AlAs and (d) diamond.
For Si, the corresponding plot withr fixed at the tetrahedral interstitial site is also shown (e).
For comparison, the self-energy operator of jellium withrs = 2.0 (the average electron density
of Si) is shown in (f) (from Hedin (1965a)). After Godbyet al (1988).

energy, the bandgap correction would be overestimated. This is in agreement with the
results of the COHSEX approximation which approximately corresponds to neglecting the
renormalization factorZ. A similar conclusion is reached if the self-energy is approximated
by its value atω = 0. In this case, the self-energy correction for the valence state would
be underestimated whereas for the conduction state overestimated, leading again to an
overestimated bandgap. A much better agreement is obtained if the self-energy correction
(6COHSEX− V xc) is simply multiplied byZ. We note that the COHSEX approximation
without local field effect generally gives a gap in better agreement with experiment, although
not for Si. This means that local field effect, or in a certain sense non-locality, tends to
cancel energy dependence. The importance of energy dependence is illustrated by plotting
〈ψkn|6(Ekn) − V xc|ψkn〉 and 〈ψkn|6(0) − V xc|ψkn〉 as a function ofEkn. The first
quantity is very much like a step function (scissor operator) while the second quantity
shows a strong energy dependence (figure 5(b) and 6(b) of Godbyet al 1988). The
effect of energy dependence is therefore to alter greatly the dispersion of the individual
bands.

In general, the energy dependence of6 leads to a strongly state-dependent self-energy
correction16 = 6 − V xc within each band as well as across the gap. The weak state
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Figure 7. The local potential corresponding to the Coulomb hole part of the electron self-energy
in the COHSEX approximation in the (11̄0) plane of Si in units of Ryd. After Hybertsen and
Louie (1986).

dependence of16 for Si within a band, resulting in a scissor operator, is therefore a
coincidence. In diamond, for instance, the scissor operator approximation is not as good as
in Si.

The highest occupied state in the exact DFT gives the exact ionization energy (Almbladh
and von Barth 1985a). Assuming that the LDAV xc is close to the exact one, we expect the
self-energy correction to shift the conduction band but not the top of the valence band. If
the RPA is used to obtain the electron gas data (von Barth and Hedin (1972) potential), it
is indeed found that the top of the valence band is almost the same within the LDA and the
GWA (Godbyet al 1988). More accurate electron gas data obtained fromGW calculations
(Lundqvist and Samathiyakanit 1969) or quantum Monte Carlo simulations (Ceperley and
Alder 1980), however, shift the top of the valence band upward by about 0.5 eV. Thus,
vertex corrections (corrections beyond the GWA) may shift theGW bandstructure by 0.5 eV
upwards (Godbyet al 1988) or the LDA may not be sufficiently accurate.

Other authors have also repeatedGW calculations for Si bandstructure with similar
results (Hamadaet al 1990, Rohlfing et al 1993). Calculations of the quasiparticle
bandstructure and the bandgap of many semiconductors and insulators have been performed
by a number of authors. Quasiparticle bandstructures of six II–VI compounds ZnS, ZnSe,
ZnTe, CdS, CdSe and CdTe have been calculated by Zakharovet al (1994). We list in
table 1 the results of these calculations. Quasiparticle energies for the F-centre defect in
LiCl have also been calculated by Surhet al (1995) and self-energy calculations of carrier-
induced bandgap narrowing in Si may be found in the work of Oschlieset al (1992, 1995).
Berggren and Sernelius (1981) also studied the bandgap narrowing in doped Si and Ge as a
function of impurity concentration. Application of the GWA to the metal–insulator transition
of Si in diamond structure (Godby and Needs 1989) suggests that the metalization occurs
at a much smaller volume than in the LDA which in turn indicates that the Fermi surface
obtained from the Kohn–Sham DFT is not necessarily the same as that of the real system as
shown by Scḧonhammer and Gunnarsson (1988) for model systems. Recently, application
to a two-dimensional crystal found good agreement between the quasiparticle energies in
the GWA and quantum Monte Carlo results (Engelet al 1995).
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Figure 8. (a) and (c): The exchange charge in the (11̄0) plane of Si withr′ fixed (indicated
by +) in units of electrons/cell. (b) and (d): The screened-exchange part of the self-energy
× |r − r′| in the COHSEX approximation in units of au Ryd/cell. The contours increase in
powers of two. After Hybertsen and Louie (1986).

5.2.1. Core polarization. A disadvantage of using pseudopotentials is a difficulty of
including the core states in the calculation of the exchange potential as well as the
polarization. Within a pseudopotential scheme, it is inevitable that core electrons are treated
in an approximate manner. The core electron charge densities are frozen at their atomic
values in the reference configuration used for constructing the pseudopotential. The core
electrons and their potential are then eliminated so that there is no possibility for them to
relax. Core relaxation gives rise to crystal field distortion and strong mixing between 3d
and 3p states. These single-particle effects are small and can be includeda posteriori by
comparison with all-electron calculations. It is, however, important to take into account
many-body effects arising from core relaxation since they can be large. In atoms with
easily polarizable core the inclusion of core relaxation leads to an increase in the ionization
energies, a contraction of the valence shell, a reduction of polarizabilities and oscillator
strengths of the valence electrons.

The self-energy may be broken up into three terms (Hedin 1965b, Hedin and Lundqvist
1969):

6 = iGcW + iGvWv + iGvvRcv (139)

whereW = Wv + vRcv. The first term is the core–valence and core–core (screened)
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exchange which is essentially the same as the bare exchange since screening is ineffective
for small distances. The second term is the self-energy of the valence electron and the last
term is the screened polarization potential due to the core electrons acting on the valence
electrons. In pseudopotential calculations, the first and last term together are approximated
by the LDA. The absolute contribution from these terms is estimated to be∼1 eV for
atomic Na (Hedin and Lundqvist 1969) and solid Al (Arbman and von Barth 1975) but
the difference6 − V xc, which is a more relevant quantity, is much smaller. For s–p
semiconductors, this difference can be significantly larger. As a result, the calculated direct
gaps and also the orderings and splittings of the conduction bands in Ge and GaAs, materials
of technological interest, are in disagreement with experiment. It is important to get the
orderings of the conduction band right since they affect the transport properties and lifetime
of thermally excited carriers. Atomic calculations in Ge estimate the error for the 4s and
4p states to be 0.3 and 0.04 eV, respectively (Hybertsen and Louie 1986). If this error is
taken into account, the result for the bandgap becomes even better. In transition metals it
is crucial to include the core electrons in the calculations of the bare exchange since the
error can be as large as∼1 eV.

While the core-valence exchange can be treated straightforwardly in the Hartree–Fock
theory, core-valence correlation is more complicated. A good approximation for taking
into account core polarization is provided by the core polarization potential (CPP) method
used in quantum chemistry (M̈uller et al 1984). The physical idea behind this method
is that core polarization functions are characterized by sharp high-frequency excitations
and are rather insensitive to the valence environment. This allows evaluation of the core
polarization function for isolated atoms and neglect of frequency dependence. Consider
a valence electron in the presence of a core. The electron polarizes the core resulting in
polarizationp = αc∇(1/r), wherer is the position of the electron with respect to the core.
From the classical theory of electrostatics, the electric field arising from this polarization at
r′ is given by

E(r′) = 3(p · r′)r′ − r ′2p
r ′5

. (140)

The potential experienced by another electron atr′ due to core polarization is then

Ve–e(r, r
′) = −αc r · r

′

(rr ′)3
(141)

assuming that bothr and r ′ are large. For a set of cores and many valence electrons, the
core polarization potential is

VCPP= −1

2

∑
c

αcfc · fc (142)

wherefc is the electric field acting on corec due to the valence charges ati and all other
cores,
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whereC is a cut-off function,Zc′ is the net charge of corec′ andRcc′ = Rc′ −Rc. Inserting
fc into equation (142) yields (M̈uller et al 1984)
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The first term is the CPP in atoms with a single valence electron. Without the cut-off
function, it would diverge at smallr. The cut-off functionC is semi-empirical with a
parameter related to the size of the core (Biermann 1943, Biermann and Lübeck 1948,
Bates 1947). The first term is a one-particle operator which is added to the pseudopotential.
The second term is the two-electron interaction which was qualitatively discussed above.
The third term is an indirect interaction of a valence electron with another core. This term
is repulsive and cancels the attractive potentials from the first and last term. The latter is a
core–core interaction and, together with the third term, essential to make sure of a vanishing
long-range interaction with a neutral atom.

The effective interaction among thevalenceelectrons is given by (Hedin and Lundqvist
1969)

WC = v + v
∑
c

Rcv + v
∑
c

Rcv
∑
c′ 6=c

Rc′v + · · · (145)

Rc is the full or self-consistent response function of corec given by

vRcv = Ve−e. (146)

Thus, the screened interaction becomes

W = ε−1v

= [1−WCP
0]−1WC (147)

whereP 0 is the valence RPA polarization function. Using this CPP formalism, various
transition energies for Si, Ge, AlAs and GaAs were calculated by Shirleyet al (1992). The
results for the fundamental bandgaps of Si, Ge, AlAs and GaAs shown in table 2 are in
systematically better agreement with experiment compared with previous calculations where
core relaxation effects were taken into account within the LDA only. The correction can
be as large as 0.4 eV for the fundamental gap in GaAs. Notable also (not shown in the
table) is the correct L–0–X ordering of conduction-band states in Ge obtained in the CPP
approach. X–L and X6c–X7c splittings in GaAs are also improved (Shirleyet al 1992).

Table 2. Fundamental bandgaps of Si, Ge, AlAs and GaAs calculated within the LDA and the
GWA including core polarization within the CPP formalism (Shirleyet al 1992) compared with
experiment (Madelung 1984). Energies are in eV.

LDA CPP Experiment

Si
08v→ 0.85X5c 1.29 1.16 1.17
Ge
08v→ 07c 0.53 0.85 0.89
08v→ L6c 0.58 0.73 0.744
AlAs
08v→ X6c 2.09 2.01 2.24
GaAs
08v→ X6c 1.02 1.42 1.52

The CPP formalism is relatively easy to implement in many-body valence calculations
without increasing computational cost significantly. Apart from its use within the
pseudopotential approach, it can also be used in all-electron calculations with a frozen
core.
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5.3. Transition metals

The success of the GWA in semiconductors has encouraged applications to more complicated
systems of transition metals and their compounds. From a numerical point of view, transition
metals require a new approach for calculating the response function and the self-energy.
The conventional plane-wave basis is not suitable in this case because the localized nature
of the 3d states results in a prohibitively large number of plane waves. From a theoretical
point of view, it has been argued that the localized nature of the 3d states makes the atomic
approach more suitable for explaining the characteristic properties of transition metals. The
presence of a Fermi surface as shown by de Haas–van Alphen measurements, on the other
hand, strongly suggests that the itinerant character of the 3d electrons should be taken
into account. Moreover, the bandwidths in transition metals are not too small and the ratio
between the HubbardU and the bandwidth is of order one. This is crucial when we consider
screening of a photoemission hole where 3d electrons from neighbouring cells can take part
in the screening, whereas such a possibility is absent in the atomic case. It then seems
that an RPA type of approach such as the GWA is meaningful for these systems.GW

calculations for transition metals have not been extensively performed. We concentrate,
therefore, on two materials, Ni (Aryasetiawan 1992, Aryasetiawan and von Barth 1992)
and NiO (Aryasetiawan and Gunnarsson 1995), for which fullGW calculations have been
done in some detail and on MnO for which a modelGW calculation has been performed
(Massiddaet al 1995a).

5.3.1. Nickel. Among the transition elements, Ni is the most anomalous case in many
respects. The LDA bandstructure deviates significantly from angle-resolved photoemission
data. The occupied 3d bandwidth is 30% smaller than that of the LDA (3.3 eV against
4.5 eV) (Ḧufner et al 1972, Himpselet al 1979) and the experimental exchange splitting
is half the LDA value (0.25–0.30 eV against 0.6 eV) (Eberhardt and Plummer 1980).
Furthermore, there is the famous 6 eV satellite below the Fermi level (Hüfner et al 1972,
Hüfner and Wertheim 1973, Kemeny and Shevchik 1975) which is entirely missing in
the LDA or in any single-particle theory. These discrepancies are related to excited-state
properties. An indication that single-particle theories would have difficulties in describing
quasiparticle properties in Ni is the fact that the two lowest atomic configurations 3d94s
and 3d84s2 are almost degenerate, differing by only 0.025 eV (Moore 1958). Another
indication of many-body effects in Ni is the unusually large quasiparticle widths (Eberhardt
and Plummer 1980)—up to 2 eV at the bottom of the 3d band—which implies strong
interaction between the quasiparticles and the rest of the system resulting in short lifetimes.
The photoemission process introduces an additional 3d hole to an already existing one,
causing on-site many-body correlations not amenable to a single-particle treatment. This is
in contrast to Cu where there is only one 3d hole after photoemission and where the LDA
bandstructure is good, apart from a somewhat too high position (0.5 eV) of the 3d band
relative to the 4s band (see, e.g., Jones and Gunnarsson 1989). Ground-state properties such
as the equilibrium lattice constant, bulk modulus and magnetic moment are well reproduced
by the LDA with the exception of the cohesive energy, where the LDA value is about 1 eV
too large (Moruzziet al 1978).

The GW results for Ni may be summarized as follows (Aryasetiawan 1992,
Aryasetiawan and von Barth 1992). The LDA bandstructure is much improved, in particular
the 3d bandwidth is narrowed by almost 1 eV, as shown in figure 9. The quasiparticle
lifetimes are also given rather well by the GWA but the exchange splittings remain essentially
unchanged from their LDA values and the 6 eV satellite is not reproduced.
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Figure 9. The bandstructure of Ni along0 = (0, 0, 0) andX = (1, 0, 0) and along0 and
L = (0.5, 0.5, 0.5). The full curves are the experiment and the dotted curves are the LDA (from
Mårtensson and Nilsson 1984). The full circles are the quasiparticle energies in the GWA. After
Aryasetiawan (1992) and Aryasetiawan and von Barth (1992).

The self-energies show a number of interesting features. As an illustration, the self-
energy as a function of frequency for the0′25 state is shown in figure 10, later. The imaginary
part of the self-energy is significantly more complicated compared with those of the alkalis
or semiconductors. The latter are typically characterized by a large peak associated with
a plasmon excitation but they otherwise show no other distinct structures. The frequency
structure of the imaginary part of the self-energy is determined essentially by the imaginary
part of the screened interactionW , as may be seen in equation (62). In alkalis or s–p
semiconductors ImW is dominated by a plasmon peak which is then mirrored in Im6c.
Similarly in Ni, there is a strong similarity between ImW (figure 1) and Im6c. In transition
metals, there is no well defined plasmon excitation, rather it merges with the single-particle
excitations forming a broad spectrum. There is a two-peak structure at about 20 and 30 eV
which is probably due to plasmon excitation. An estimate based on the electron gas formula
gives a plasmon energy of 30.8 eV when the 3d electrons are included in the density. This
coincides rather well with the second large peak in the two-peak structure. A smaller
structure at around 5–6 eV originates from transitions from the occupied valence band to
states just above the Fermi level which constitute a large density of states. Interesting to
observe is the behaviour of Im6c at large frequencies. The hole and particle parts show
similar behaviour and they therefore tend to cancel each other when one performs a Hilbert
transform to obtain the real part of the self-energy. This justifies the use of energy cut-off
in the calculation of the response function. It also agrees with our physical intuition that the
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Figure 10. The real and imaginary parts of the correlation part of the self-energy for the
minority and majority spin state0′25 (the lowest 3d state at the0 point). The units are in au
(Hartree= 27.2 eV). After Aryasetiawan (1992).

main contribution to the self-energy should come from energies up to the plasmon energy.
For states lying a few eV below the Fermi level, the hole part (negative energy) of Im6c

has larger weight than the particle part (positive energy). This simply reflects the fact that
the hole (occupied) states have larger overlap and correlation with other occupied states
resulting in a larger correlated part of the self-energy for the hole part. As we go towards
the Fermi level, the hole and particle parts become of almost equal weight. This is the
reason why the self-energy correction for states at the bottom of the band is larger than for
those at the top of the band, resulting in band narrowing. Im6c around the Fermi level
shows a quadratic Fermi liquid behaviour but it becomes linear rather quickly.

The real part of the self-energy is obtained by Hilbert transforming the imaginary
part. A notable feature is a large derivative at around the Fermi level which implies
large renormalization of the quasiparticle weights. A typical value for the renormalization
factor is 0.5 for the 3d states (Aryasetiawan 1992). This is significantly smaller than in
the electron gas (0.7) (Hedin and Lundqvist 1969) or semiconductors (0.8) (Hybertsen and
Louie 1986) which reflects a larger loss of single-particle character of the quasiparticles.
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The s states, on the other hand, have a renormalization factor∼0.7, comparable to those
in the alkalis and semiconductors. It is in agreement with our physical picture that the 3d
states are more correlated than the 4s–4p states.

In comparison with semiconductors, the self-energy corrections in Ni is considerably
more complicated. While in semiconductors the self-energy correction is approximately
a scissor operator which increases the bandgap by shifting the conduction band upwards
and leaving the valence band unchanged, the self-energy correction in Ni shows a rather
strong state and energy dependence. The self-energy correction can be positive or negative
depending on the state and its magnitude varies throughout the Brillouin zone. For example,
at theX-point the bottom of the 3d band experiences a self-energy correction of 0.8 eV
while the top of the band is almost unchanged. The correction to the state0′25 is positive
whereas at the L′2 state it is negative. The state dependence of the self-energy correction is
demonstrated clearly in figure 9 by the lowest valence band which is of 4s character at the
bottom and a mixture between s and d at the top. The self-energy correction is approximately
zero at the bottom of the band and positive at the band edges. The free-electron-like s states
are well described by the LDA but the description of the more localized d states is less
satisfactory.

As can be seen in figure 9, the 3d bandwidth is reduced by almost 1 eV. The exchange
splittings on the other hand remain essentially unchanged from their LDA values. The
discrepancy between the LDA exchange splitting and the experiment is rather small, 0.3 eV,
which is slightly larger than the numerical accuracy (0.1–0.2 eV) but the results seem to
indicate inadequacy in the GWA itself.GW calculations on transition metal atoms also show
that strong correlations among 3d electrons of opposite spin are not well accounted for by
the GWA (Shirley and Martin 1993). The quasiparticle widths or the inverse lifetimes are
in reasonable agreement with available experimental data (Aryasetiawan 1992). The large
width at the bottom of the 3d band indicates a strong interaction between the quasiparticles
and the rest of the system.

As mentioned before, the 6 eV satellite is not reproduced in the GWA. That the 6 eV
satellite is missing in the GWA can be seen directly in the imaginary part of the self-energy.
For the existence of a satellite, there should be a strong peak at around 5–6 eV reflecting
the presence of a stable excitation. However, as can be seen in figure 10, such a peak is
missing.

3p-resonance photoemission measurements at 67 eV photon energy corresponding to
the binding energy of the 3p core exhibit an asymmetric (Fano) resonant enhancement of
the satellite and the main 3d line shows a strong antiresonance (Guillotet al 1977). This
is explained as an Auger process where a 3p core electron is excited to fill the empty 3d
states followed by a super Coster–Kronig decay

3p63d94s+ h̄ω→ 3p53d104s→ 3p63d84s+ e. (148)

Although there is some indication that the 6 eV structure might arise from single-particle
states (Kanskiet al 1980) the 3p resonance photoemission provides strong evidence of the
many-body character of the 6 eV satellite. The standard explanation for the presence of
the satellite (Penn 1979, Liebsch 1979, 1981) is that a 3d hole created in a photoemission
experiment introduces a strong perturbation due to its localized nature, causing another 3d
electron to be excited to an empty state just above the Fermi level. In atomic picture, the
state with two 3d holes correspond to the configuration 3d74s2 which is separated from the
main line configuration 3d84s by more than 6 eV but which is reduced considerably by
metallic screening. The two holes scatter each other repeatedly forming a ‘bound state’ at
6 eV. In a simple picture, the photon energy is used to emit a d electron and to excite another
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into an empty d state so that the emitted electron appears to have a lower binding energy
(satellite). The excited electrons mainly come from the bottom of the d band since they
have the largest mixing with the s–p states and, therefore, according to the dipole selection
rule, a large transition to the empty d states. This then has been argued as the source of
band narrowing. TheGW calculations, however, show that the largest contribution to band
narrowing comes mainly from screening rather than two-hole interactions.

The reduction in the exchange splittings is related to the satellite. For simplicity we
consider a two-level model with fully occupied majority channel and one occupied minority
channel. A photoemission hole in the majority channel can induce another hole in the
minority channel but notvice versasince the majority channel has no empty states. Thus,
the effects of two-hole interactions are larger for the majority than for the minority channel
resulting in a reduction in the exchange splitting. Calculations based on the Hubbard
model within theT -matrix approach (Kanamori 1963) confirm this picture (Liebsch 1979,
1981, Penn 1979). These model calculations also assign the reduction in the bandwidth
as originating from the two-hole interactions, which is not in complete agreement with the
GW calculations. These results may be reconciled as follows. In theT -matrix calculations,
it was found that there was no value ofU that gave the correct satellite position and the
bandwidth. To obtain the correct bandwidth, the value ofU was such that the satellite
energy became too large (Liebsch 1981). If we assume that theT -matrix theory gives the
correct physical description for the satellite, the appropriate value ofU would not give a
large reduction in the bandwidth, but this is taken care of by the GWA. Thus one concludes
that self-energy calculations which include the diagrams of the GWA andT -matrix theory
may give both the correct bandwidth and the satellite structure. Diagrammatic comparison
between the GWA and theT -matrix theory reveals that hole–hole interactions described by
theT -matrix are not included in the GWA except to second order only. Direct comparison
betweenGW calculations on real systems and Hubbard model calculations is, however,
difficult if not impossible. This is because the HubbardU cannot be easily related to the
screened interaction in theGW calculations.

An extension of theT -matrix theory including Faddeev’s three-body interaction
(Faddeev 1963) was made by Igarashi (1983, 1985) and by Calandra and Manghi (1992).
The theory has been applied to Ni (Igarashiet al 1994, Manghiet al 1997) and NiO (Manghi
et al 1994).

5.3.2. Nickel oxide. NiO is a prototype of the Mott–Hubbard insulators. It was pointed
out by Mott in the late 1940s that a system with an on-site Coulomb energy larger than
the single-particle bandwidth tends to become an insulator and that single-particle theory
is bound to give a wrong prediction for the state of the system (Mott 1949). Indeed, the
LDA predicts NiO to be a metal when the calculation is performed in a paramagnetic state
(Mattheiss 1972a, b). Slater (1974) suggested that a gap could be opened by an interplay
between antiferromagnetism and crystal-field splittings. A detailed work along this direction
can be found in the paper by Terakuraet al (1984). The LDA does produce a gap in an
antiferromagnetic state but of only 0.2 eV, in contrast to the experimental gap of 4.0 eV
(Powell and Spicer 1970, Ḧufner et al 1984, Sawatzky and Allen 1984). As expected,
the free-electron like O p band is well described by the LDA but the magnetic moment
is too small (1.0 µB) compared to experiment (1.7–1.9 µB) (Alperin 1962, Fenderet al
1968, Cheetham and Hope 1983). Clearly there is something seriously wrong with the
LDA. A more convincing evidence is provided by CoO, where the number of electrons
in the paramagnetic structure is odd, making it impossible for any single-particle theory
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to predict CoO as an insulator without doubling the unit cell. Experimentally, CoO is an
antiferromagnetic insulator so that one might argue like Slater that single-particle theory
could still give the correct prediction if the calculation is performed in an antiferromagnetic
structure. One realizes, however, that the difference in magnetic energy distinguishing
the paramagnetic and antiferromagnetic states is only a fraction of an eV, which is much
smaller than the bandgap. This means that the result of a theoretical calculation for the
bandgap should not depend on whether the calculation is performed in a paramagnetic or
an antiferromagnetic structure.

The basic physics of the Mott–Hubbard insulators was explained by Mott several decades
ago (Mott 1949). From the tight-binding limit, switching on hopping matrix elements causes
the formation of a band of widthw centred around the atomic eigenvalue. The possibility
of occupying states with lower energy favours electron hopping but it costs a Coulomb
energyU for an electron to hop from one site to the neighbouring site. IfU is larger than
w, the gain in kinetic energy is overwhelmed by the loss in Coulomb energy and the system
prefers to be an insulator with a gap approximately given byU , splitting the lower and
upper Hubbard bands. While the Mott picture is essentially correct, there are a number of
experimental data which cannot be explained. The value ofU , for instance, is estimated to
be 8–10 eV which is much larger than the experimental gap. More recent studies initiated
by Fujimori et al (1984) and Sawatzky and Allen (1984) based on the cluster approach and
Anderson impurity model show that the gap in NiO is a charge-transfer gap. If an electron
is removed from a Ni site the number of holes increases leading to a state with high energy
due to an increase in the Coulomb interaction among the holes. The hole created on the
Ni site may be filled by the transfer of an electron from an O site. Although it costs some
energy transfer this leads to a state with a small binding energy. The states at the top of
the valence band therefore have a large O p character. The lowest conduction state is of d
character as in the Mott picture and the gap is therefore formed between the valence O p and
conduction Ni d states. Much of the Ni d weight goes into a satellite located below the O p,
opposite to the Mott and the Slater pictures. This model is able to explain experimental data
which would otherwise be difficult to explain by the Mott and Slater pictures. The most
convincing evidence supporting the charge-transfer picture is the 2p resonant photoemission
experiment in CuO (Tjenget al 1991) which has a similar electronic structure as that of
NiO. In this experiment, a 2p core electron is excited and the remaining hole is subsequently
filled by a valence electron. Since the dipole transition matrix element is largest between
p and d states, resonance in the valence energy region can be identified as the position of
d states which turns out to be below the O p band, rather than above as in the Mott and
Slater pictures.

The LDA antiferromagnetic bandstructure is shown in figure 11. The highest valence
state is formed by the majority eg and minority t2g Ni states and the lowest conduction
band is formed by the minority eg state. TheGW calculation for NiO gives a gap of
∼5.5 eV (Aryasetiawan and Gunnarsson 1995). Starting from the LDA antiferromagnetic
bandstructure with a gap of 0.2 eV, aGW calculation shifts the Ni eg conduction upwards,
increasing the gap to∼1 eV. This upward shift of the eg conduction band leads to a
substantial change of the character of the wavefunctions, reducing the amount of minority
eg character in the occupied states. To include a limited self-consistency, we introduce
a new non-interacting HamiltonianH 0 with a non-local potential1| eg〉〈 eg|, where1 is
chosen so that the bandgap obtained fromH 0 agrees with the gap obtained from the previous
GW calculation. ThisH 0 is then used to generate a newG0 and a new self-energy in the
GWA. This procedure is iterated to self-consistency. The non-local potential modifies the
eigenvalues as well as the wavefunctions used to construct the zeroth-order Green function
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Figure 11. (a) Comparison between the LDA (full curve) and the experimental bandstructure
of antiferromagnetic II NiO. From Shenet al (1990, 1991a, 1991b). (b) Comparison between
the LDA bandstructure (full curve) and the quasiparticle bandstructure in the GWA (full circles)
for NiO. After Aryasetiawan and Gunnarsson (1995).

G0. The raising of the unoccupied majority eg band by the self-energy correction reduces
the hybridization with the O p band and has the effects of raising the bottom of the O p band
and pushing down the top of the O p band at the0-point resulting in better agreement with
photoemission data. In addition, the width of the unoccupied eg band is reduced. The
reduction in hybridization also reduces the magnitude of the exchange interaction of the eg

band with the occupied states which has the consequence of widening the gap. Thus, it is
important that the wavefunctions are also modified in the self-consistent procedure. The
final position of the unoccupied eg band is just below the Ni 4s. As a check, the calculation
has also been performed in the ferromagnetic state. A gap of∼5.2 eV was obtained, close
to the antiferromagnetic value. In contrast to the Slater model, the gap does not depend on
the antiferromagnetic ordering and the results correctly predict that NiO remains an insulator
above the Ńeel temperature. TheGW calculation clearly improves the LDA gap markedly
and it is in reasonable agreement with the experimental value of 4.0 eV. An estimate of the
magnetic moment yields a value of 1.6 µB (Aryasetiawan and Gunnarsson 1995) in good
agreement with the experimental value of 1.7–1.9 µB.
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Figure 12. The spectral function of antiferromagnetic NiO atk = 2
3(1, 0, 0)2π/a within the

GWA projected on the O p orbitals (full curve) and the Ni d orbitals (the dotted curve corresponds
to the majority spin and the dashed curve the minority spin). After Aryasetiawan and Gunnarsson
(1995).

To study the character of the states at the top of the valence band, the spectral function
has been calculated (figure 12). Projection of the spectrum into the Ni 3d and O p orbitals
shows that there is an increase of the O p character at the top of the valence band but
the main character is primarily Ni 3d. The satellite at−8 eV (Shenet al 1990, Shen
et al 1991a, b) is not reproduced at the final self-consistent spectrum but a more detailed
study of the satellite structure reveals that it is rather sensitive to the starting Hamiltonian
(Aryasetiawan and Karlsson 1996). Starting from the LDA Hamiltonian in fact gives a
satellite at about−10 eV but this satellite diminishes in intensity as the gap opens up. The
origin of this behaviour can be traced back to the presence of a plasmon-like peak at low
energy which is related to the incorrect LDA bandstructure. As the gap opens up, this peak
structure becomes broadened and consequently the satellite structure diminishes. As in the
case of Ni, it appears that the satellite structure is due to short-ranged correlations which are
not properly taken into account by the RPA. TheT -matrix approach could be appropriate
and might remove some Ni d weight from the top of the valence band to the satellite region,
but it is not clear how this could increase the charge transfer from the O p orbital.

5.3.3. Manganese oxide.A calculation on MnO based on a simplifiedGW scheme
described in section 4 has been performed by Massiddaet al (1995a). The electronic
structure of MnO is the simplest among the transition metal oxides and in some respects
similar to NiO. As in the case of NiO, the LDA gives a too small bandgap of 1.0 eV
compared with the experimental value of 3.8–4.2 eV. The magnetic moment is also
somewhat too small (LDA 4.3µB, experiment 4.6–4.8µB) although the relative discrepancy
is not as large as in NiO. The larger LDA bandgap is due to the fact that in MnO the majority



The GW method 287

spin is fully occupied and the minority spin is empty resulting in a large magnetic moment
so that the exchange splitting is also large and dominates the ligand-field splitting and band
broadening due to intersublattice coupling. In NiO the magnetic moment is smaller and the
exchange splitting is comparable to the ligand-field splitting and band broadening.

The semi-empirical modelGW calculation gives a gap of 4.2 eV which compares well
with the experimental value of 3.8–4.2 eV. The LDA magnetic moment is also improved to
4.52µB. There is an increase of O p character and a decrease of Ni 3d character at the top
of the valence band, which are percentagewise large but small in absolute terms, so that the
main character is still primarily Ni 3d (figure 13). The results are qualitatively similar to
the fullGW calculations on NiO described above. Calculation on CaCuO2 using the model
GW scheme has also been performed recently (Massiddaet al 1997).

5.3.4. 3d semicore states.It is well known that the LDA eigenvalues for localized states
are usually too high compared to experiment. The discrepancies can be several eV. For
example, the Zn semicore 3d states in ZnSe are too high by 2.5 eV, the Ga semicore 3d
states in GaAs by 4 eV and the Ge 3d semicore states by as much as 5 eV. In free atoms
these deviations are even larger and in, for instance, a free Zn atom the 3d eigenvalue is
about 6.5 eV too high. This raises interesting questions about whether or not GWA can
describe these shallow core levels and why the LDA eigenvalues are substantially worse
for free atoms than for solids, although the semicore states are almost completely localized.

For deepcore levels, an important contribution to the GWA self-energy comes from the
polarization (relaxation) of the more weakly bound electrons (Hedin and Lundqvist 1969,
Lundqvist 1969). This relaxation is a classical electrostatic effect, which can be described
in 1SCF calculations, performing ground-state calculations with and without the core hole.
Explicit 1SCF calculations for free atoms were performed by Hedin and Johansson (1969),
who obtained quite accurate results. This suggests that GWA may be rather accurate for
such deep core levels, since it includes similar physics as the1SCF calculations.

It is not a priori clear that GWA can describe semicore states. Unlike the deep core
states, theshallow core states are screened by states which are almost degenerate with the
hole, which may introduce new effects. Calculations for semicore states in ZnSe, GaAs and
Ge (Aryasetiawan and Gunnarsson 1996) showed, however, that GWA improves the LDA
eigenvalues significantly also for these core states, leaving a discrepancy of only 0.5–1.0 eV
from experimental values (too small a binding energy).

The errors in the LDA eigenvalues are to a large extent due the unphysical interaction
of an electron with itself. This interaction is only incompletely cancelled by the exchange
correlation potential (Gunnarssonet al 1974). This leads to an ionization energy which
is too small. In addition, relaxation effects are neglected, which tends to overestimate
the ionization energy and therefore partly cancels the error from the self-interaction. As
discussed above, essential relaxation effects are included in1SCF calculations. In addition,
the LDA total energies are rather accurate and the self-interaction errors are rather small.
This is due to an exact sum rule satisfied by the LDA (Gunnarsson and Lundqvist 1976).
While this sum rule is very important for total energy calculations, it does not necessarily
imply a good exchange-correlation potential or accurate eigenvalues. It is therefore crucial
that1SCF calculations involve total energy differences rather than eigenvalues.

To understand the different accuracy of the LDA eigenvalues for a solid and a free
atom, Aryasetiawan and Gunnarsson (1996) performed transition-state calculations in the
Slater transition state approach (Slater 1974). These calculations showed that in the solid
the creation of a core hole led to a substantial charge transfer to the site where the hole
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Figure 13. Partial densities of spin-up states of antiferromagnetic MnO. Top panel: The
total O 2p projection into the O spheres. Second and third panels: d projection into the
two inequivalent Mn spheres. Full (dashed) curves correspond to the modelGW (spin
polarized LDA) calculations. Bottom panel, upper curves: Inverse photoemission spectrum
(from van Elpet al 1991) and the difference between the on- and off-resonance photoemission
spectra (from Lad and Henrich 1988), representing the Mn contribution. Lower curves:GW

d-projected density of states into both Mn spheres. Dotted curves illustrate the integrated-
intensity background. After Massiddaet al (1995a).

was created (Lang and Williams 1977, Zunger and Lindefelt 1983). Due to this charge
transfer the relaxation energy is larger than for a free atom. The cancellation of the error
in the eigenvalues due to the self-interaction and the error due to the neglect of relaxation
effects therefore becomes more complete in the solid than in a free atom. This explains why
the errors in the eigenvalues are much smaller in the solid (Aryasetiawan and Gunnarsson
1996).
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The1SCF gave ionization energies for the 3d semicore states which were about 1 eV
too large. The discrepancy between1SCF and GWA may be due to an error in the LDA,
which tends to overestimate the exchange-correlation energy between a 3d electron and the
3s–3p core (Gunnarsson and Jones 1980) which is about 1 eV in the series K–Cu (Harris
and Jones 1978). It could also be due to the difference in the RPA screening and the static
LDA screening. Transition-state calculations for a number of Zn compounds have also
been performed by Zhanget al (1995). We observe, however, that the Slater transition-
state approach requires that the semicore states are sufficiently localized to form a bound
state in the transition-state calculations. The bound state has no dispersion, in contrast to the
GW results which show the full bandstructure. Thus, if a bound state is not formed in the
transition-state calculation, the result would be identical to that of the LDA. The problem
can be illustrated for Cu metal where the 3d band is 0.5 eV too high. The transition state
would give a single number rather than a band assuming that a bound state is formed in
the first place. AGW calculation, on the other hand, lowers the position of the band by
0.2–0.3 eV while maintaining the LDA bandstructure (Aryasetiawan and Gunnarsson 1997).

A model GW calculation for ZnO by Massiddaet al (1995b) also improved the
LDA result from −5.4 eV to −6.4 eV, but a significant error remains when compared
to experimental results−8.6 eV and−7.5 eV.

5.4. Surfaces

5.4.1. Jellium surface.GW calculations for a model jellium–vacuum interface have been
performed in some detail. The problem of interest here is what the surface barrier looks
like. According to classical electrostatics, the image potential seen by an electron in the
vacuum far from the surface behaves like

Vimage= − 1

4(z− z0)
(149)

where z is the coordinate normal to the surface andz0 is the position of the effective
image plane. In the LDA, the image potential is known to decay exponentially (Lang and
Kohn 1973). This unphysical behaviour is due to the fact that in the LDA the exchange-
correlation hole is determined by the local density and it does not feel the surface directly.
The exchange-correlation hole obeys a sum rule that it must integrate to one but since the
density is small outside the surface it means that the hole becomes very extended. In fact,
about half the hole resides far inside the surface. Due to the very extended structure of the
hole, the resultingV xc decays exponentially outside the surface. The situation is similar
to the atomic case where the LDAV xc decays exponentially instead of decaying as 1/r

as in the exactV xc (Almbladh and von Barth 1985a). Similarly, the exact DFT exchange-
correlation potential should be capable of reproducing the correct behaviour of the image
potential which is important in many applications. For example, the LDA potential cannot
produce the Rydberg series of image states. Binding energies and the lifetime of surface
states bound by the image potential depend crucially on the 1/z dependence, as do tunnelling
currents in the scanning-tunnelling microscope and positions of alkali ions adsorbed on metal
substrates. Interpretation of inverse photoemission data relies on the existence of the image
tail of the surface barrier.

By calculating the self-energy for the surface,V xc can be derived simply by taking the
trace of the following Dyson equation (Sham and Schlüter 1983, 1985, van Leeuwen 1996)

G = GDF+GDF(6 − V xc)G (150)
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and noting that the exact density is equal to the exact DF density (i.e. the trace ofG is
equal to the trace ofGDF). This yields∫

d3r1V
xc(r1)

∫
dωGDF(r, r1, ω)G(r1, r, ω)

=
∫

d3r1

∫
d3r2

∫
dωGDF(r, r1, ω)6(r1, r2, ω)G(r2, r, ω). (151)

The exchange-correlation potential obtained from the above equation using theGW self-
energy exhibits the correct asymptotic behaviour as can be seen in figure 14. It can also
be seen from the figure that it is the correlation potential originating from the Coulomb
correlation that determines the asymptotic behaviour of the image potential. The exchange
potential, on the other hand, is numerically found to decay asvx ∼ −a/z2 and to contribute
significantly to the determination ofz0. The position of the effective image planez0 deduced
from V xc is therefore different from the one for a classical test charge. Thus, forrs = 2.07
the value ofz0 deduced from the image tail ofV xc is z0 = 0.72±0.1 au measured from the
jellium edge, while the value obtained from a linear response calculation isz0 = 1.49 au
(Eguiluz et al 1992).

Figure 14. V xc(z) at a jellium surface forrs = 3.93 (λF = 12.9 au). The full curve is the
solution to equation (151) using the GWA for6, and the dotted curve is the corresponding LDA
potential. The dashed curve is the image potentialVimage(z) = −1/4(z − z0). After Eguiluz
et al (1992).

The Kohn–Sham eigenvalues calculated from theV xc deduced from6GW turn out to
be very close to the quasiparticle energies obtained from the Dyson equation (Deiszet al
1993). The differenceEQP− EKS = 0.02 eV for q‖ = 0, which is much smaller than
the binding energy of the state which is about 0.5 eV. Furthermore, the Kohn–Sham and
quasiparticle eigenfunctions are practically identical (the overlap is greater than 0.999).
This does not, however, imply that the physics of the self-energy at the surface can be
completely described by a local potential. The imaginary part of the self-energy associated
with damping is intrinsically non-local and energy dependent. It cannot be mimicked by
a local complex potential. As the electron moves away from the surface, the maximum
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of Im6 remains at the surface, reflecting a high degree of non-locality. The range of this
non-locality is comparable with the decay length of the electron density in the vacuum
(Deiszet al 1993). It has also been found that Im6 deviates from the quadratic behaviour
' (E−EF)

2 when the electron is in the vacuum outside the surface and the departures grow
as the electron–surface separation increases. The effect is attributed to the suppression of
one-electron decay channels near the Fermi level (Deisz and Eguiluz 1997).

5.4.2. Si(1 0 0) surface.There have also been studies for more detailed microscopic models
of surfaces. In particular, the Si(100) surface has been extensively studied experimentally
and theoretically, because of the technological importance of Si. At room temperature there
is a 2×1 reconstruction which at low temperatures goes over in ac(4×2) reconstruction (see,
e.g., Johanssonet al 1990 for references to experiment). The surface atoms are believed
to form buckled dimers, where one atom moves out of the surface and the other into the
surface. The room temperature photoemission spectrum has been measured by Johansson
et al (1990).

The electronic structure has been calculated in the GWA by Northrup (1993) (c(4×2)),
by Kresset al (1994) (2× 1) and by Rohlfinget al (1995b) (2× 1). In figure 15 we
show the results of Rohlfinget al (1995b). These calculations were performed using a
Gaussian basis set and a super cell containing eight Si layers. The figure shows the LDA
bulk bands (dashed) andGW surface states. TheGW surface band agrees rather well
with an experimental band, while another experimental band has no correspondence in the
theoretical calculation. It is interesting that the calculation of Northrup, using the low-
temperature structure, produced two bands in close agreement with experiment. Actually,
the experimental samples may have some domains with thisc(4× 2) structure (Johansson
et al 1990). TheGW calculation shifts the conduction band by about+0.50 to+0.65 eV
relative to the valence band (Rohlfinget al 1995b). According to optical experiments,
the bottom of the valence band at0 is 1.1 eV above the top of the valence band in good
agreement with the theoretical result 0.95 eV. For the indirect bandgap there are experimental
estimates in the range 0.44–0.9 eV compared with the theoretical result 0.7 eV (Rohlfing
et al 1995b).

In this context we also mention that there has been work within the GWA for interfaces,
for example, for calculating Schottky barriers. This work will not be discussed further here,
but we refer the reader to Charlesworthet al (1993) and Godby and Sham (1994) for an
example of such work and further references. For other work on semiconductor surfaces
we refer to Hybertsen and Louie (1988b) and Bechstedt and Del Sole (1990). Rohlfinget al
(1996) performed calculations on a clean, H and S terminated Ge(001) surface and Zhang
et al (1988) have calculated the valence band off-set of AlAs–GaAs(001).

5.5. Clusters

Electronic excitations and optical spectra in clusters have been studied mainly within the
configuration interaction approach (Bonacic-Kouteckyet al 1990a, b, 1992). While it
gives accurate results, its applications are limited to systems containing a small number
of electrons, typically less than 10. GWA provides an alternative for calculating excitation
properties in clusters with relatively large numbers of electrons which cannot be handled
by the configuration interaction method.

GW calculations have been performed for a jellium-sphere model for alkali metals
(Saitoet al 1989) and more recently for the real cluster Na4 (Onidaet al 1995). In alkali-
metal clusters, it is known that the ionization energies calculated within the LDA are too
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Figure 15. Calculated dangling-bond bands. Full curves, GWA energies; dashed curves, LDA
energies. The experimental results are shown by diamonds (Uhrberget al 1981) and circles (full
and open) (Johanssonet al 1990). (After Rohlfinget al 1995b).

low compared to experiment (Ishiiet al 1986, Saito and Cohen 1988) and the discrepancy
becomes worse the smaller the cluster. The size dependence of the ionization energy in
the LDA is too weak. This discrepancy is attributed to self-interaction which is not taken
into account properly in LDA eigenvalues. That the discrepancy gets worse for smaller
clusters is intuitively clear, since the larger the clusters the more they resemble an electron
gas on which the LDA is based. On the other hand, the LDA gives the correct sequence of
eigenvalues for the valences states in the jellium-sphere model which is 1s, 1p, 1d, 2s, 1f,
2p, etc (Saitoet al 1989).

In the jellium-sphere model, the ionic charges are smeared to form a sphere of a uniform
positive background. TheGW calculation for this model corresponding to Na20 lowers the
occupied LDA eigenvalues and increases the unoccupied ones, thus increasing the energy
gap similar to the results for bulk semiconductors and insulators. The ionization energy as
a function of cluster size is also in better agreement with experiment although the absolute
values are somewhat too large (Saitoet al 1989). This could be due to the absence of
core polarization in the jellium-sphere model which gives a positive contribution to the
self-energy. The GW results are actually rather close to the HF results, the reason being
that screening due to long-range correlations is much less important in a small finite system
than in a solid (Saitoet al 1989).

TheGW calculation for real Na4 yields similar results (Onidaet al 1995). The calculated
absorption spectra are shown in figure 16. The empty states, including the lowest unoccupied
molecular orbital (LUMO), are raised by between 0.75 and 0.90 eV while the highest
occupied molecular orbital (HOMO) and the lowest occupied molecular orbital state are
lowered by 1.55 and 1.40 eV, respectively, giving a HOMO–LUMO gap of 3.0 eV compared
with the LDA value of 0.55 eV. Again theGW result is close to the HF value of 3.4 eV for
the reason discussed above. Indeed, the calculation of the static dielectric function for this
cluster shows a metallic behaviour for small distances but it drops to less than unity starting
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at about 6 au. For comparison, the value of the dielectric function for metallic sodium
at 5 au is about 50 whereas in the cluster it is 1.2. This phenomenon of antiscreening is
typical of a small system. If a positive test charge is introduced at the centre of the cluster,
say, electrons will surround the test charge and the surface of the cluster will therefore be
positively charged. Thus, as the distance from the centre increases, the screening quickly
vanishes and becomes negative (Onidaet al 1995). A similar behaviour is also observed
in the C60 molecules (Gunnarsson 1992).

Figure 16. Calculated absorption spectra of Na4 including self-energy and excitonic effects
(dotted curve) in arbitrary units and using a Gaussian broadening of 0.06 eV. The full curve is
the experimental photodepletion cross sections from Wanget al (1990). The vertical bars show
the unbroadened spectrum and the inset shows the LDA results. After Onidaet al (1995).

5.6. Fullerenes

Solid C60 (fullerite) is a molecular solid, where the orbitals of a free C60 molecule essentially
keep their character and the hopping between the molecules only leads to a small broadening
of the discrete molecular states. The bandstructure of C60 is shown in figure 17. In undoped
C60 the Hu band is occupied and the T1u band is empty. The LDA (figure 17(a)) bandgap
is about 1 eV (Erwin and Pickett 1991, Troullier and Martins 1992, Satpathyet al 1992),
which is substantially smaller than the experimental value, 2.3 eV (Lofet al 1992), obtained
from photoemission and inverse photoemission.

Shirley and Louie (1993) have performed aGW calculation for solid C60 on a face-
centred cubic (fcc) lattice with all molecules having the same orientation (Fm3̄ structure).
This differs somewhat from the experimentalT = 0 structurePa3, where the molecules take
four different orientations. This difference should not be important for the present discussion.
Shirley and Louie (1993) used the Levine and Louie (1982) model for the static dielectric
function together with a plasmon-pole approximation. Their results are shown in figure 17.
The bandgap is increased to 2.15 eV in good agreement with the experimental results. The
bandwidths were also increased by about 30%. There are no reliable experimental results
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Figure 17. LDA (a) and GW (b) bandstructures for solid C60 in the Fm3̄ structure. After
Shirley and Louie (1993).

for the dispersional bandwidths. It was concluded that undoped solid C60 is a standard band
insulator with dispersive bands.

The calculation by Shirley and Louie was performed for the undoped C60 solid. In
A3C60 (A = K, Rb) the T1u band is half-filled. The HubbardU ∼ 1.5 eV (Lof et al 1992),
describing the interaction between two electrons on the same molecule, is large compared
with the width (W ∼ 0.6 eV) of the partly-filled T1u band. One may, therefore, expect strong
correlation effects for these systems. Although it is not clear if theGW approximation can
describe such strong correlation effects, it is interesting to perform such a calculation.

To screen the HubbardU , Gunnarsson (1997) considered a model dielectric function

ε(q, ω) = ε0−
ω2

0p

m∗ω2
(152)

which describes the coupling to a plasmon atω = ω0p/
√
m∗ε0. This plasmon is due to

the oscillations of the three electrons donated by the alkali atoms to the T1u band. The
model (152) is therefore complimentary to the calculation of Shirley and Louie (1993),
since this T1u plasmon does not exist for the undoped system, while the physics considered
by Shirley and Louie is neglected in equation (152). This model of the dielectric function
was combined with a tight-binding (TB) model (Satpathyet al 1992) for the bandstructure,
which reproduces the LDA T1u band well.

First, an HF calculation was performed for this model. It was found that in the HFA the
width of the T1u band is increased by about 75%. Next aGW calculation was performed.
Including the coupling to the T1u plasmons was found to reduce the T1u width to a value
35% smaller than the original TB width. In fact, for a model of this type one can show under
rather general assumptions that the bandwidth is always reduced if there are no other bands
above or below the band considered (Gunnarsson 1997). The density of the T1u electrons
is very small and corresponds to the electron gas parameterrs ∼ 7. Thus the density is
substantially smaller than for the free-electron-like metals. It is then not too surprising that
the quasiparticle weightZ ∼ 0.4–0.5 is also smaller than for these metals. This means
that much of the spectral weight appears in satellites. If the narrowing of the T1u band due
to the coupling to the T1u plasmon is combined with the broadening found by Shirley and
Louie due to other couplings, the net result is a small change of the bandwidth.
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6. Self-consistency

The set of Hedin’s equations (43)–(46), in the original formulation of the self-energy
expansion in powers of the screened interactionW , constitutes a self-consistent cycle
(Hedin 1965a, Hedin and Lundqvist 1969). Within the GWA, starting from a (usually)
non-interacting Green functionG0, one calculates the polarization functionP0 = −iG0G0

and the corresponding screened interactionW0. The self-energy is then obtained from
60 = iG0W0. In mostGW calculations that have been performed so far,60 is taken
to be the final self-energy. The interacting Green functionG obtained from the Dyson
equationG = G0 +G060G is, however, not necessarily the same asG0. To achieve self-
consistency, the Green function obtained from the Dyson equation should be used to form a
new polarization functionP = −iGG, a new screened interactionW and a new self-energy
6 which in turns yields a new Green function through the Dyson equation. This process
is continued untilG obtained from the Dyson equation is the same asG used to calculate
the self-energy. Self-consistency is evidently an important issue since it guarantees that the
final results are independent of the starting Green function. Moreover, according to Baym–
Kadanoff theory (1961), a self-consistentGW scheme ensures conservation of particle
number and energy when the system is subjected to an external perturbation. Conservation
of particle number means that the continuity equation

−∂tn(r, t) = ∇ · j(r, t) (153)

is satisfied. Conservation of energy means that the energy change when an external potential
is applied to the system is equal to the work done by the system against the external
potential when calculated using the self-consistentG (Baym and Kadanoff 1961, Baym
1962). Moreover, self-consistency ensures that

N = 1

π
tr
∫ µ

−∞
dω ImG(ω) (154)

gives the correct total number of particles, whenn andj are obtained from the self-consistent
Green function. The first self-consistentGW calculation was probably by de Grootet al
(1995) for a model quasi-one-dimensional semiconducting wire. The relevance of this model
to real solids is, however, unclear.

Five aspects may be distinguished in relation to self-consistency (von Barth and Holm
1996):

(1) modification of quasiparticle wavefunctions;
(2) shift of quasiparticle energies;
(3) modification of quasiparticle weights (Z factors);
(4) modification of quasiparticle lifetimes;
(5) modification of the screening properties of the system.
These aspects have recently been studied in detail by von Barth and Holm (1996) and

by Shirley (1996) for the electron gas. Naturally, the first aspect cannot be addressed for
the electron gas since the quasiparticle wavefunctions remain plane waves. The results of
these studies are:
• the bandwidth is increased from its non-self-consistent value as can be seen in

figure 18, worsening the agreement with experiment;
• the weight of the quasiparticles is increased, reducing the weight in the plasmon

satellite;
• the quasiparticles are narrowed, increasing their lifetime;
• the plasmon satellite is broadened and shifted towards the Fermi level (figure 19). In

fact, it almost disappears at full self-consistency.



296 F Aryasetiawan and O Gunnarsson

Figure 18. The quasiparticle dispersion for the electron gas forrs = 2 and 4 from partial
self-consistentGW0 calculations (W0 is held fixed at the RPA whereasG is allowed to vary
for self-consistency) compared with the free-electron dispersion. The largest change in the
bandwidth occurs forrs = 4. After von Barth and Holm (1996).

Figure 19. The spectral function from a partial self-consistentGW0 calculation (see previous
figure) compared to that of the first iteration fork = 0.5kF and rs = 4. The self-consistent
quasiparticle energy is lowered (band broadening) compared to the non-self-consistent one
whereas the satellite position is somewhat improved. After von Barth and Holm (1996).

As discussed later, the main effects of self-consistency are caused by allowing the
quasiparticle weight to vary (von Barth and Holm 1996). These results are true for the
case when the screened interactionW is fixed at the RPA level (calculated using the non-
interactingG0) and only the Green function is allowed to vary for self-consistency and



The GW method 297

also for the case when bothG andW are allowed to vary (full self-consistency case). The
increase in the bandwidth is disturbing and can be understood as follows. Let us consider
the first case with fixedW = W0 for simplicity. First we note that theGW result for
the bandwidth after one iteration is close to the free-electron one. This means that there
is almost a complete cancellation between exchange and correlation. After one iteration
the quasiparticle weight is reduced to typically 0.7 and the rest of the weight goes to the
plasmon satellite. Correspondingly, when the newG is used to calculate a new Im6c, its
weight is transferred away from low energy to high energy, due to the sum rule (von Barth
and Holm 1996)∫ ∞

−∞
dω|Im6c(k, ω)| =

∑
q

∫ ∞
0

dω|ImW0(q, ω)| (155)

which shows that the left-hand side is a constant depending only on the pre-chosenW0 but
independent ofk and self-consistency. For a state at the Fermi level, this has little effect
since Im6c has almost equal weights for the hole (ω 6 µ) and the particle part (ω > µ)
which cancel each other when calculating Re6c, as can be seen in equation (68). However,
for the state at the bottom of the valence band, Im6c has most of its weight in the hole part so
that the shifting of the weight in Im6c to higher energy causes Re6c to be less positive than
its non-self-consistent value. A similar effect is found for the exchange part, which becomes
less negative, but because the bare Coulomb interaction has no frequency dependence, the
renormalization factor has a smaller effect on6x so that the reduction in6x is less than
the reduction in6c. The net effect is then an increase in the bandwidth. The shifting of the
weight in Im6c to higher energy has the immediate consequences of increasing the lifetime
and the renormalization weightZ (through a decrease in|∂ Re6c/∂ω|) of the quasiparticles
and of broadening the plasmon satellite, compared to the results of one iteration (von Barth
and Holm 1996).

WhenW is allowed to vary (full self-consistency) the results become even worse: the
bandwidth becomes even wider and the plasmon satellite becomes broad and featureless,
in contradiction to experiment. The quasiparticle weight is increased further. These results
can be explained by the disappearance of a well defined plasmon excitation inW . The
quantityP = −iGG no longer has the physical meaning of a response function, rather it
is an auxiliary quantity needed to constructW . Indeed, it does not satisfy the usualf -sum
rule. The equations Reε(q, ωp) = Im ε(q, ωp) = 0 determining the plasmon energy are not
satisfied any more since the Green function now always has weight aroundω = ωp. This has
the effect of transferring even more weight in Im6c to higher energy with the consequences
discussed in the previous paragraph. Shirley (1996) included the second-order self-energy
diagram (vertex correction) and found that it cancelled the effects of self-consistency to
some degree.

A very interesting outcome of the full self-consistent calculation (Holm and von Barth
1997) is that the total energy calculated with the Galitskii–Migdal formula (1958) turns out
to be strikingly close to the total energy calculated from a much more elaborate quantum
Monte Carlo technique (Ceperley and Alder 1980). Forrs = 2 and 4 quantum Monte Carlo
analysis gives 0.004 and−0.155 Ryd, respectively, while the self-consistentGW calculation
gives 0.005 and−0.156 Ryd, respectively. This unexpected result may be related to the fact
that the self-consistentGW scheme is energy conserving. The result is also partly explained
by consideration of the Luttinger–Ward energy functional (1960) which is variational with
respect toG and has a minimum equal to the value obtained from the Galitskii–Migdal
formula. What is not clear is why the first-order energy diagram (giving theGW self-
energy upon taking a functional derivative with respect toG) appears to represent a very
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good energy functional. Furthermore, the chemical potential calculated fromµ = ∂E/∂N
is in agreement with the value obtained fromµ = k2

F/2+6(kF, µ) and the particle density
n = 2

∑
k

∫ µ
−∞ dωA(k, ω) yieldsn = k3

F/(3π
2), i.e. particle number is conserved, as proven

by Baym (1962). It has also been proven that with a fixedW = W0, particle number is
also conserved (Holm and von Barth 1997).

The conclusion is that it is not a good idea to perform fully self-consistentGW

calculations for quasiparticle energies. If full self-consistency is not introduced, an important
question is how to chooseH0 determiningG0. Farid (1996) argued thatH0 should be chosen
so that its ground-state density is the same as that resulting from theGW calculation. It
could be more favourable to perform partially self-consistent calculations by, for instance,
fixing W at the RPA level and modifying the quasiparticle energies inG0, or by choosing
a single-particle Hamiltonian such that the resulting quasiparticle energies obtained from
a GW calculation are the same as those of the single-particle Hamiltonian. In any case,
efforts should be directed towards finding vertex corrections (beyondGW ).

7. Vertex corrections

By vertex corrections we mean corrections to the self-energy beyond theGW–RPA
approximation and corrections to the response function beyond the RPA. Vertex corrections
to the RPA response function naturally involve interaction between screening electrons
which are not taken into account in the RPA. This interaction must include the effect of
exchange and correlation, which makes the interaction depend upon the relative spin states
of the electrons. Vertex corrections to the self-energy, on the other hand, involve interaction
of the hole with its surroundings which is not taken into account in the GWA. A consistent
treatment should include vertex corrections in both the response function and the self-energy
(Ward 1950). This preserves conservation laws and is a natural outcome of the perturbation
expansion of the self-energy in the functional derivative technique of Baym and Kadanoff
(1961) and Baym (1962). For example, calculations of the optical spectra of Si indicate a
cancellation between vertex corrections in the response function and the renormalization of
the quasiparticle energies (Bechstedtet al 1997, Del Sole and Girlanda 1996). Mahan and
Sernelius (1989) found a similar effect in the calculations of bandwidths of the electron gas.
Conserving approximations including vertex corrections with exchange effects only have
been considered by Hong and Mahan (1994) for the electron gas.

In the GWA, the screened interaction is calculated within the RPA which takes
into account primarily long-range correlation which gives rise to collective excitations
(plasmons). The photoemission hole is coupled to one plasmon only in the GWA. Vertex
corrections may be loosely divided into the short-range and long-range parts. Short-
range vertex corrections improve the description of the quasiparticles and low-energy
satellites whereas long-range vertex corrections improve description of high-energy satellites
(plasmons).

The RPA pair distribution function, which is the probability of finding another electron at
a certain distance from a given electron, is negative for small distances, which is unphysical
(Pines 1961). Exchange and correlations should therefore increase the probability of finding
another electron at small distances. The same applies to holes. For a test charge, the
screening becomes more effective when the effects of exchange and correlations are taken
into account. But for an electron, the RPA screening isreduced when the effects of
exchange and correlations between the screened electron and the surrounding electrons
are taken into account. The physical interpretation of vertex corrections is as follows: an
electron pushes away other electrons in its vicinity creating a screening hole around the
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electron. Taking into account exchange and correlations of the screening holes increases
the screening since the probability of the holes getting closer together is increased leading to
more screening holes. If we now take into account the effects of exchange and correlations
between the screened electron and the other electrons, then screening will be reduced because
the probability of finding electrons at small distances to the screened electron is increased,
leading to stronger effective interactions between the electrons. The net effect is that the RPA
screening is reduced. Thus, vertex corrections for electrons will in general reduce screening.
Vertex corrections in the response function can also take the form of interaction between
electrons and holes in electron–hole pairs created by the perturbation in the system due to
the presence of a photoemission hole. This interaction may actually create an additional
bound state (exciton) much lower in energy, of the order of a few eV, than the plasmon
energy.

Vertex corrections to the self-energy are particularly important for systems with localized
states, such as those containing 3d and 4f orbitals. This is because the electron–hole pairs
created in the screening process can be rather localized and therefore interact strongly with
the localized photoemission hole. This interaction can significantly modify the quasihole
energy and its weight, as well as creating new collective excitations appearing as low-
energy satellites. This type of vertex correction is short range in nature. Long-range vertex
corrections modify the structure of the plasmon satellites and may create multiple plasmons
as observed in the alkalis. In the GWA, the photoemission hole only couples to one plasmon,
resulting in a one-plasmon satellite. The hole, however, can in general interact with several
plasmons during its propagation, producing multiple plasmon satellites.

7.1. Direct evaluation of the second-order self-energy

Formally, the GWA is the first-order term in the expansion of the self-energy in the screened
interactionW . It is then thought that the simplest vertex correction is the second-order self-
energy. This procedure, however, warrants some precautions. First, the physical meaning
of the second-order term is not clear. Second, this second-order term when evaluated with
a frequency-dependent interaction can give a self-energy with wrong analytic properties
which result in a negative density of states, as shown in the electron-gas case (Minnhagen
1974).

This type of vertex correction was calculated for the bandgap of Si both with a bare
and a screened interaction (Daling and van Haeringen 1989, Dalinget al 1991, Bobbert
and van Haeringen 1994). The second-order self-energy with the bare Coulomb interaction
for the015 and0′25 states was found to be factors of 18 and 37 smaller than the first-order
self-energy. This second-order self-energy gives a correction of∼1% to the Hartree–Fock
direct gap. A calculation using a screened interaction yields a correction to the gap of the
order of∼4%. Since this calculation was performed for the gap states only, it is not clear if
the density of states became negative for some energies. Both calculations indicate in any
case that the second-order term is small. This is encouraging since it suggests that higher-
order terms are probably small too since the GWA already gives results in agreement with
experiment. An interesting result is that the second-order vertex correction does not shift
the absolute position of the LDA valence-band maximum which, in the approximation used,
is too low by 0.5 eV. It is speculated that higher-order vertex corrections could account for
the required shift (Bobbert and van Haeringen 1994).
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7.2. Vertex corrections based on the LDA exchange-correlation potential

The set of equations (43)–(46) derived by Hedin provides a systematic way of developing
a perturbation series for the self-energy in powers of the screened interactionW . In the
original derivation, the zeroth-order Green function is taken to be the Hartree one. However,
the bandstructure and wavefunctions in the Hartree theory are less accurate compared with
those of the LDA, making the Hartree Green function a poor starting point. In practical
calculations, one uses a Green function constructed from the LDA bandstructure. The
response function is also calculated using the LDA Green function.

Consistent vertex corrections have been derived by Rice (1965) in relation to the
dielectric function as discussed in the alkali section. A similar approach was also made by
Ting et al (1975) and Mahan (1994). Alternatively, consistent vertex corrections can also
be derived from the set of equations (43)–(46) where one regardsV xc

LDA as a self-energy
correction to the Hartree approximation, albeit anad hoc one (not based on a systematic
diagrammatic expansion). Based on this starting point, the vertex function3 can be easily
evaluated yielding (Hybertsen and Louie 1986, Del Soleet al 1994)

3(1, 2, 3) = δ(1, 2)δ(1, 3)− i
∫

d(5, 6, 7)Kxc(1, 5)G(5, 6)G(7, 5)3(6, 7, 3) (156)

where

Kxc(1, 5) = δV xc(1)

δρ(5)
(157)

remembering thatρ(1) = −iG(1, 1+). The new self-energy with vertex corrections has the
form of the GWA but with a new screened potential

W̃ = v[1− P 0(v +Kxc)]−1 (158)

corresponding to a dielectric function

ε̃ = 1− P 0(v +Kxc). (159)

The same result was already discussed in section 5.1 where the self-energy was expressed
as a corrected dielectric functionε (equation (136)) and a vertex correction0 (equation
(137)). The productε−10 is equal toε̃−1 with ε̃ given above. This dielectric function
may also be derived straightforwardly from the time-dependent LDA and may therefore be
interpreted as the dielectric function that screens the external potential felt by an electron,
as opposed to a test charge (Hybertsen and Louie 1986). This distinguishes itself from the
RPA (time-dependent Hartree) dielectric function in that the induced charge does not only
generate the Hartree potential but also an exchange-correlation potential. It is clear that one
could start with a different local zeroth-order self-energy other thanV xc

LDA and arrive at a
similar formula. Note that in the formula for the self-energy in equation (43), the vertex
function3 enters bothW , throughP , and6. A problem with starting with a local zeroth-
order self-energy is that the self-energy with the vertex corrections becomes asymmetric in
r andr′.

Application of this scheme to the electron gas gives small changes compared with the
original GWA (Mahan and Sernelius 1989). Similarly, for Si it yields practically the same
gap (0.70 eV) and valence bandwidth (11.4 eV) as those of the standardGW calculation
(Del Sole et al 1994). However, the absolute position of the top of the valence band is
shifted 10 meV upwards by theGW + vertex corrections and 400 meV downwards by the
standardGW calculation. This could improve the calculations of band off-sets at interfaces.
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A calculation with the vertex corrections in the response functionR only but not in6, that
is with

W = v[1+ v[1− P 0(v +Kxc)]−1P 0] (160)

R = [1− P 0(v +Kxc)]−1P 0 (161)

gives a smaller gap (0.57 eV) and a smaller bandwidth (10.9 eV) (Del Soleet al 1994). The
latter result is similar to the case of the alkalis (Northrupet al 1987, Surhet al 1988). The
top of the valence band is shifted downward by 0.4 eV as in the standard GWA. The result
for the bandwidth should be taken with caution because the plasmon-pole approximation
was used in the calculations. The worse results obtained by including vertex corrections in
R only, is consistent with the violation of conservation laws.

7.3. The cumulant expansion

A diagrammatic approach for including vertex corrections is provided by the cumulant
expansion method. One of the first applications of the cumulant expansion method was
in studying the x-ray spectra of core electrons in metals (Nozières and de Dominicis
1969, Langreth 1970). Later on the method was extended to valence states by Bergersen
et al (1973) and Hedin (1980). The core-electron problem is modelled by a Hamiltonian
consisting of a core electron interacting with a set of plasmons:

H = εc†c +
∑
q

ωqb
†
qbq +

∑
q

cc†gq(bq + b†q) (162)

wherec is the annihilation operator for the core electron with energyε, b†q is the creation
operator for a plasmon of wavevectorq and energyωq, and the last term is the coupling of
the core electron to the plasmon field. The Hamiltonian can be solved exactly and it can
be shown that the cumulant expansion also gives the exact solution (Langreth 1970):

A±(ω) =
∞∑
n=0

e−aan

n!
δ(ω − ε −1ε ∓ nωp) (163)

where+ refers to absorption spectrum and− to emission spectrum.a = ∑
q g

2
q/ω

2
p and

1ε = aωp is the shift in core energy due to the interaction with the plasmon field. It is
assumed that the plasmon excitations have no dispersion although this assumption is not
necessary. The spectra consist, therefore, of the main quasiparticle peak atω = ε+1ε and
a series of plasmon excitations at multiples of the plasmon energy below the quasiparticle
peak which is in accordance with experiment. This is in contrast to theGW spectra which
only has one plasmon excitation located at too high an energy, typically 1.5ωp below the
quasiparticle peak (Hedinet al 1970). More recently the cumulant expansion method was
applied to a model Hamiltonian with electron–boson interaction and the cumulant was
calculated to higher order (Gunnarssonet al 1994).

In the cumulant expansion approach, the Green function for the hole (t < 0) is written
as (Langreth 1970, Bergersenet al 1973, Hedin 1980)

G(k, t < 0) = iθ(−t)〈N |ĉ†k(0)ĉk(t)|N〉
= iθ(−t) e−iεkt+Ch(k,t) (164)

and the hole spectral function is

A(k, ω 6 µ) = 1

π
ImG(k, ω 6 µ)
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= 1

2π

∫ ∞
−∞

dt eiωt 〈N |ĉ†k(0)ĉk(t)|N〉

= 1

π
Im i

∫ 0

−∞
dt eiωt e−iεkt+Ch(k,t) (165)

wherek denotes all possible quantum labels andCh(k, t) is defined to be the cumulant.
Expanding the exponential in powers of the cumulant we get

G(k, t) = G0(k, t)[1+ Ch(k, t)+ 1
2[Ch(k, t)]2+ · · ·] (166)

whereG0(k, t) = i exp(−iεkt). In terms of the self-energy, the Green function for the hole
can be expanded as

G = G0+G06G0+G06G06G0+ · · · . (167)

To lowest order in the screened interactionW, the cumulant is obtained by equating

G0C
h = G06G0 (168)

where6 = 6GW = iG0W . If G0 corresponds to, for exampleGLDA , then6 = 6GW −V xc.
The first-order cumulant is therefore (Hedin 1980, Almbladh and Hedin 1983, Aryasetiawan
et al 1996)

Ch(k, t) = i
∫ ∞
t

dt ′
∫ ∞
t ′

dτ eiεkτ6(k, τ ). (169)

The cumulant may be conveniently divided into a quasiparticle part and a satellite part:
Ch = Ch

QP+ Ch
S where

Ch
QP(k, t) = (iαk + γk)+ (−i1εk + ηk)t (170)

Ch
S(k, t) =

∫ µ

−∞
dω

ei(εk−ω−iδ)t

(εk − ω − iδ)2
0(k, ω) (171)

with

iαk + γk = ∂6(k, ω)

∂ω

∣∣∣∣
ω=εk

(172)

1εk = P
∫ ∞
−∞

dω
0(k, ω)

εk − ω ηk = π0(k, εk) = |Im6(k, εk)|. (173)

ηk is the inverse lifetime of the quasiparticle and0(k, ω) is the spectral function of the
self-energy which is proportional to Im6(k, ω). A similar derivation can be carried out for
the particle Green function

G(k, t > 0) = −iθ(t) e−iεkt+Cp(k,t). (174)

The result is

Cp(k, t) = −i1εkt − ηkt + ∂6(k, ω)
∂ω

∣∣∣∣
ω=εk
+
∫ ∞
µ

dω
ei(εk−ω+iδ)t

(εk − ω + iδ)2
0(k, ω). (175)

It is physically appealing to extract the quasiparticle part from the Green function:

Gh
QP(k, t) = iθ(−t) eiαk+γk e(−iEk+ηk)t Ek = εk +1εk. (176)

The spectral function for this quasiparticle can be calculated analytically (Almbladh and
Hedin 1983):

AQP(k, ω < µ) = e−γk

π

ηk cosαk − (ω − Ek) sinαk
(ω − Ek)2+ η2

k

. (177)
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From equation (165) we have

〈N |ĉ†k(0)ĉk(t)|N〉 = e−iεkt+Ch(k,t) for t < 0.

By analytically continuing tot > 0 the spectral function in equation (165) can be rewritten
as

A(k,w) = 1

2π

∫ ∞
−∞

dt eiωt e−iεkt+Ch(k,t) (178)

where fort > 0 we haveCh(k, t) = Ch∗(k,−t). The total spectra can be written as a sum
of AQP and a convolution between the quasiparticle and the satellite part:

A(k, ω) = AQP(k, ω)+ 1

2π

∫ ∞
−∞

dt eiωt eC
h
QP(k,0) e(−iEk+ηk)t [eC

h
S(k,t) − 1]

= AQP(k, ω)+ AQP(k, ω) ∗ AS(k, ω) (179)

where

AS(k, ω) = 1

2π

∫
dt eiωt {eCh

S(k,t) − 1}

= 1

2π

∫
dt eiωt

{
Ch

S(k, t)+
1

2!
[Ch

S(k, t)]
2+ · · ·

}
. (180)

The second termAQP ∗ AS is responsible for the satellite structure. The Fourier transform
of Ch

S can be done analytically (Aryasetiawanet al 1996)

Ch
S(k, ω < 0) = 0(k, εk + ω)− 0(k, εk)− ω0′(k, εk)

ω2
. (181)

As follows from equations (177) and (179), the quasiparticle energy in the cumulant
expansion is essentially determined byEk, which is the quasiparticle energy in the GWA.

By comparing the diagrammatic expansions in the GWA and the cumulant expansion
we can gain some idea about the vertex corrections. In figure 20 the Green function
diagrams are shown to second order in the screened interaction, which should be sufficient
for our purpose. The cumulant expansion diagrams are obtained by considering the three
possible time orderings of the integration time variablest ′ in Ch2

(k, t) with Ch(k, t) given
by equation (169). The cumulant expansion contains second-order diagrams which are
not included in the GWA. It is these additional diagrams that give rise to the second
plasmon satellite and they are quite distinct from the second-order diagram common to
both approximations. The interpretation of the latter diagram is that a hole emits a plasmon,
which is reabsorbed at a later time, and the hole returns to its original state before plasmon
emission. This process is repeated once at a later time. Thus there is only one plasmon
coupled to the hole at one time. In contrast, the other two diagrams, not contained in the
GWA, describe an additional plasmon emission before the first one is reabsorbed, giving
two plasmons coupled to the hole simultaneously. Similar consideration can be extended
to the higher-order diagrams. If self-consistency is taken into account then the second
second-order diagram is also included in the GWA.

The cumulant expansion contains only boson-type diagrams describing emission and
reabsorbtion of plasmons but it does not contain diagrams corresponding to the interaction
between a hole and particle–hole pairs. For this reason, the cumulant expansion primarily
corrects the satellite description whereas the quasiparticle energies are to a large extent
determined by the GWA as mentioned previously. The interaction between hole–hole and
particle–hole is described by the ladder diagrams which in a Hubbard model study were
found to improve the low-energy satellite (Verdozziet al 1995).
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Figure 20. A diagrammatic expansion for the Green function to second order in the GWA and
the cumulant expansion. The full lines represent non-interacting Green functionsG0, and the
wiggly lines represent the screened interactionW .

The cumulant expansion was applied recently to calculate the photoemission spectra
in Na and Al (Aryasetiawanet al 1996) (figure 21). The experimental spectra consist of
a quasiparticle peak with a set of plasmon satellites separated from the quasiparticle by
multiples of the plasmon energy. The spectra in the GWA shows only one plasmon satellite
located at a too high energy, approximately 1.5ωp below the quasiparticle which is similar
to the core electron case. The cumulant expansion method remedies this problem and
yields spectra in good agreement with experiment regarding the position of the satellites.
The relative intensities of the satellites with respect to that of the quasiparticle are still in
discrepancy. This is likely to be due to extrinsic effects corresponding to the interaction of
the photoemitted electron with the bulk and the surface on its way out of the solid resulting
in energy loss. These are not taken into account in the sudden approximation.

When applied to valence electrons with band dispersions the cumulant expansion does
not yield the exact result anymore as in the core electron case. Surprisingly, the numerical
results show that the cumulant expansion works well even in Al with a bandwidth of∼11 eV.
Considering its simplicity, it is a promising approach for describing plasmon satellites.

8. Summary and conclusions

The GWA has been applied by now to a large number of systems, ranging from atoms,
simple metals, semiconductors, transition metals, clusters, and surfaces and interfaces. In
practically all of these systems, the GWA improves the quasiparticle energies relative to the
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Figure 21. (a) The experimental spectral function of Na (dots). The full curve is a synthetic
spectrum obtained by convoluting the density of states from a bandstructure calculation and the
experimental core level spectrum. BG is the estimated background contribution. After Steiner
et al (1979). (b) The calculated total spectral function of Na for the occupied states. The full
and dashed curves correspond to the cumulant expansion and the GWA, respectively. After
Aryasetiawanet al (1996).
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LDA eigenvalues. The reason for the success of the GWA may be understood qualitatively
by the fact that it is correct in some limiting cases as described in the introduction. The
GWA includes an important physical ingredient in extended systems, namely screening or
polarization of the medium which is absent in the HFA. It is well known that the neglect
of screening leads to unphysical results in metals, such as a zero density of states at the
Fermi level, and in semiconductors and insulators to too large bandgaps. Even in atoms, the
inclusion of polarization effects leads to a significant improvement in the HF eigenvalues.
Since screening is a common feature in all electronic systems, it is perhaps not surprising
that the GWA works in a wide variety of materials. It is also known empirically that
second-order perturbation theory often takes into account most of the physical effects, in
particular the shifting of quasiparticle energies.

Despite the success of the GWA, it has naturally some shortcomings. One of these is re-
lated to satellite structure in the photoemission spectra. Since the GWA describes a coupling
of the electrons to one plasmon excitation, represented byW , multiple plasmon excitations
observed in the alkalis are clearly beyond the scope of the GWA. This problem is remedied
by the cumulant expansion theory described in section 7.3. Apart from plasmon-related
satellites, there is also satellite structure originating from short-range interactions. This type
of satellite appears in strongly correlated materials containing 3d or 4f orbitals. The GWA
is based on the RPA screening which takes into account the dominant part of long-range
(small momentum) screening. Short-range (large momentum) intrasite interactions of mul-
tiple holes usually present in strongly correlated systems are therefore not well described by
the GWA. Here aT -matrix-type approach may be appropriate as has been shown by model
calculations. Apart from problems with the satellite, there are also in some cases discrep-
ancies in the quasiparticle energies. For example, the bandwidth in Na is≈10% too large
within the GWA compared with experiment, but these discrepancies are relatively small.

Another shortcoming is the absence of spin dependence in the screened interactionW

since the screening is purely Coulombic. The spin dependence enters only through the Green
function. One would therefore expect some problems when applying the GWA to magnetic
systems where spin–spin correlations are important as indicated byGW calculations on
transition metal atoms. This area of research has not been explored extensively and it
would require inclusion of vertex corrections to take into account spin–spin correlations. A
T -matrix approach may be a first step in this direction.

MostGW calculations performed so far are not self-consistent, i.e. the Green function
used to calculate the self-energy is not equal to the Green function obtained from the Dyson
equation with the very same self-energy. Only very recently were such self-consistent
calculations performed for the electron gas. The results turned out to be worse than
the straightGW calculations (one iteration) and clearly show a cancellation between the
effects of self-consistency and vertex corrections. In some way it is a blessing, since
fully self-consistent calculations are numerically difficult to perform for real systems. One
interesting aspect of the self-consistent calculations is that the total energies are in very
good agreement with the quantum Monte Carlo (QMC) results. A recent finding shows that
when the total energies are calculated within the Luttinger–Ward functional and its extension
(Almbladh et al 1997) using approximateG andW the results are almost equally good,
which circumvents the need for self-consistent calculations (Hindgren 1997). This could be
due to the variational property of the functional and the fact that the self-consistent GWA is
conserving in the sense of Baym and Kadanoff. Calculating total energies within the GWA
could be an alternative to the QMC method, particularly for extended systems.

Due to computational difficulties, applications of the GWA to large and complex systems
are still not feasible. SimplifiedGW schemes, which are computationally efficient and yet
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maintain the accuracy of the full calculations, are therefore very desirable. Many schemes
have been proposed but most of them are designed for semiconductors. While they give
reliable bandgaps, details of the bandstructure are not fully accounted for. Reliable schemes
must probably take into account non-locality as well as the energy dependence of the self-
energy. With efficient schemes, many interesting problems can then be tackled. These
include chemisorption at surfaces, 3d impurities in semiconductors, interfaces, band off-sets
in heterojunctions and exotic materials such as fullerenes in their diverse forms.
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