Chapter 6

Extension of Molecular Dynamics,
Enhanced Sampling and the
Free-Energy Calculations

The atomistic level MD method as introduced in the previous chapter allows us
to simulate the propagation of a system using a finite time step so that the total
energy of this system is conserved and the temperature is under control. This means
that the propagation needs to be done with a time interval in order of femtosecond,
or even shorter. Processes of real chemical interest, however, happen on a much
longer time-scale. Taking the ab initio MD simulation of some molecules being
adsorbed on a metal surface as an example, currently, it takes a powerful computer
cluster with a few hundreds of processors roughly one month to simulate the MD
propagation of 100 ps [286]. Imagining that we want to see a rare-event chemical
reaction happening with a time-scale of one millisecond, we need to continue this
simulation on this cluster for about 10® years in order to see this event happening
once. Even if the ab initio method is renounced in descriptions of the inter-atomic
interactions, rather, the empirical potentials are used so that the MD simulation
can propagate for, say 100 nano-second a day, reproducing the propagation of 1
millisecond still requires computer simulation of about 30 years. Plus, several times
this event needs to happen in order for the statistics to work. Therefore, from a
statistical point of view, the bruteforce MD technique is completely unacceptable
in practical simulations involving such rare events. A better scheme, in which rare
event like this can be simulated, is highly desired.

During the past years, great effort has been made in order for this purpose to
be fulfilled. One route is to give up the all-atom description and use a coarse-
grained model [287, 288]. In so doing, the time step used for the MD simulation can
be significantly increased so that the time scale accessible to computer simulations
increases, sometimes to a value large enough to complement biological or chemical
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experiments. However, it is worth noting that an a prior: detailed knowledge of the
system to be simulated is required, which unfortunately is often not available.

A different route, which keeps the atomistic feature for the description of the
propagation, is to develop a method so that the frequency with which rave even-
t happens can be significantly increased. Or, in other words, an enhanced sam-
pling efficiency is guaranteed. Over the last almost 4 decades, great success has
been achieved in this direction. A number of methods, e.g. the umbrella sam-
pling [94, 95], the adaptive umbrella sampling [33], the replica exchange [34, 35], the
metadynamics [38, 39|, the multi-canonical simulations [40, 41], the conformation-
al flooding [42], the conformational space annealing [43], the integrated tempering
sampling [44, 45, 46, 47] methods, etc. had been proposed, each having its own
strength and weakness. For example, in the umbrella sampling, adaptive umbrel-
la sampling, metadynamics, and configurational flooding methods, pre-determined
reaction coordinates are required before the simulations were carried out. While in
replica exchange and multi-canonical simulations, different temperature simulations
are needed, which makes the trajectories obtained losing their dynamical informa-
tion. In this chapter, we will take the umbrella sampling, the adaptive umbrella
sampling, and the metadynamics methods as examples of the former class to show
how they work in practice. In addition to this, the integrated tempering sampling
method from the second class will also be discussed.

The enhanced sampling methods as introduced above focus on exploring the free-
energy profile, or otherwise often called potential of mean force (PMF), throughout
the entire conformational phase space of the poly-atomic system under investiga-
tion. In some applications of the molecular simulations, e.g. phase transitions, this
entire PMF exploration can be avoided if the two competing phases are well-defined
meta-stable states in standard MD simulations. In such cases, the free-energy of the
system at each phase can be calculated using methods like thermodynamic integra-
tion, as a certain temperature and pressure. Then, by monitoring the competition
of these two free-energies at different temperatures and pressures, one can find out
which phase is more stable at a certain condition and consequently determine the
phase diagram of this substance under investigation. Since phase transition is also an
important topic in molecular simulations, principles underlying the thermodynamic
integration method will also be explained in this chapter. We note that although this
is the motivation for our explanation of the thermodynamic integration method, the
range of its applications is much wider than this. As a matter of fact, the principles
underlying this idea of thermodynamic integration can be applied to the mapping
of the PMF in a much more general sense, as long as a certain parameter can be
defined to link states of interest whose free-energies are to be calculated.

This chapter is organized as follows. In Sec. 6.1, we introduce principles under-
lying PMF exploration and the umbrella sampling, as well as the adaptive umbrella
sampling methods. Then, we will explain a bit of the metadynamics method in
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Sec. 6.2. The integrated tempering sampling method, as an example of enhanced
sampling in which an a prior: definition of transition coordinate is not required, is
explained in Sec. 6.3. The thermodynamic integration method for the calculation of
the free-energy of a certain phase is introduced in Sec. 6.4. We hope this introduc-
tion can help those graduate student started working on molecular simulations to
set up some concepts before their enhanced sampling simulations were carried out.

6.1 Umbrella Sampling and Adaptive Umbrella
Sampling Methods

A key concept for our understandings of the enhanced sampling method is the PMF
as mentioned in the introduction, which was first given by Kirkwood in 1935 [289]. In
this definition, a reaction coordinate £ is used which is a function of the poly-atomic
system’s nuclear configuration in the Cartesian space. Here, we denote this spatial
configuration of the nuclei as x. It is a 3N dimensional vector composed by x?, with
i going through 1 and N. x’ represents the Cartesian coordinate of the i*" nucleus
and ¢ can be written as £(x). This nomenclature for the nuclear configuration will
also be used for our discussions of the path-integral method in Chapter 7.

From the principles of statistical mechanics, one can first write down the free-
energy profile of the poly-atomic system as a function of £, with the variable denoted

by &, as: .
F(&) = 3 In P(&)

1 fe_ﬁv(x)é(é(x)—ﬁo)dx (61)
=——1In
p Q
Here, § equals 1/(kgT’) and @ is the canonical partition function of the system:
Q = /6_’8V(x)dx. (62)

&o is the variable used to construct the PMF. In the following discussion, we use a
one-dimensional case as an example for simplicity. The extension of the equations
to higher dimensional situations is straightforward. This PMF is a key function in
descriptions of the configurational (or conformational) equilibrium properties as well
as the transition rate of the dynamically activated processes in computer simulations
for the behaviors of poly-atomic systems under finite temperatures.

From this definition of the PMF, one knows that it is closely related to the
Born-Oppenheimer PES since the later, together with the thermal and quantum
fluctuations of the nuclei, determine the probability distribution function P(&g) at a
finite temperature. In other words, one can think of the PMF as a revised version of
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the PES, with the thermal and quantum effects included in addressing the electronic
and nuclear degrees of freedoms. In the introduction of this chapter, one can see that
in cases when there exists multiple deep local minima on the PES, the probability
distribution function P(&p) is far from being ergodic and one needs the enhanced
sampling method to map out the PMF over the entire conformational space relevant
to the problem of interest. Among the various efforts carried out in the last almost
4 decades, the umbrella sampling method first proposed by Torrie and Valleau is
now believed to be one of the most influential [94, 95]. The mathematical basis for
a treatment like this is that in order for an ergodic sampling of the conformational
space relevant to the problem of interest, an additional biased potential V} as a
function £ can be added to the real inter-atomic potential V(x) in the molecular
simulations. With this biased additional potential, a biased PMF can be constructed
using:

Fy(€o) = —= In By (&)
’ (63
L fe—ﬁ %)+ V6 (€(0))3(€ (x)—€0) I :
5 Qv ’
where
O = / BV GOV (EC)) gy (6.4)

Due to the fact that the biased potential can be chosen in a way that V(x)+V;(£(x))
is rather flat as a function of £ (see Fig. 6.1), the probability distribution P,(&p) can
be much better sampled over the whole conformational space relevant to the problem
of interest compared with P(&p) in the MD simulations so that the biased PMF can
be calculated efficiently using MD statistics.

Then, one relates the biased PMF F;, (&) with the unbiased one F'(§y) using the
following equation:

1 [ e BB ECIEC—E) g

Fy(&) = 3 In O
v J e TIO(E(x) = o)dx
Qv
1 [ePVE§(E(x) — &)dx Q 65
= V(&) 3 ln o Qb (6.5)
_ 1 J e PVEI§(g(x) — &)dx Q
= V(&) 3 In 0 -3 1 o
Q

= (&) + F(&) — Eln@

Therefore, from the biased PMF F}, (&), which can be sampled well in practical MD
simulations over the whole conformational space, one can reconstruct the unbiased
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\ ﬁ V(x)+Vi(x)

Vix)

ksT

Figure 6.1: Taking the simplest case, i.e. the system is one dimensional and the
¢ is the same as the x, as an example, the original PES V(x) has a very deep
valley so that the MD simulation can’t go through the whole space in practical MD
simulations. However, if an additional biased potential Vj(x) which roughly equals
—V(x) is added to the original potential, the new potential Vj(z) + V(x) will be
very flat so that in a MD simulation using this potential the particle can through
the whole x axis freely and Fy(z) can be sampled very well. Based on this Fy(z),
the original free-energy profile can be reconstructed using Eq. 6.7. This principle
also applies to system with higher dimensions for the nuclear degree of freedom and
more complex form of the reaction coordinate &.

PMF through:
1. Q
F(&) = Fy(&) = Vol(éo) + - In 5" (6.6)
g Q
We note that this % In % is a constant, which we denote as F'. It is independent of &,
but determined by the choice of V4, (), the conformational space of the poly-atomic
system relevant to the problem of interest, the original inter-atomic potential, and
the temperature. Rewriting of Eq. 6.6 also gives us:

F(&) = Fu(&0) — Vi(&o) + F. (6.7)

As simple as it looks, the addition of a biased potential easily solves the problem
for the ergodic exploration of the conformational space for the mapping of the PMF
in principle in the MD simulations. However, we note that in practical applications,
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the high-dimensional PES function V(x) is always unknown. Therefore, it is im-
possible to define an additional potential in the negative form of it in an a prior:
manner so that the system can go through the entire conformational space relevant
to the problem of interest efficiently using this biased potential. When this is the
case and the chosen additional potential doesn’t compensate the original one, the
system will still be trapped in one local minimum in the MD simulations under the
biased potential (see e.g. Fig. 6.2).

Vix)+Vb(x)

Vx)

ksT

Figure 6.2: The situation is similar to Fig. 6.1. However, one doesn’t know the form
of the original potential and therefore the additional one doesn’t compensate it well.
In this case, the sampling of the system with the biased potential won’t be ergodic
on the conformational space either.

One way to circumvent this problem and ensure that the whole conformational
space relevant to the problem of interest is sufficiently (or even uniformly) sampled
is to separate this conformational space into some boxes using the chosen reaction
coordinates. When there is only one reaction coordinate, this simplified into taking
some values of £ in the region relevant to the problem of interest, say . Then,
a series of MD simulations can be carried out using these biased potentials which
constrain the system in the neighborhood of these £'s so that the conformational
spaces of the system with reaction coordinates in the neighborhood of all these £'s are
all well-sampled. Taking the one-dimensional PMFE associated with two stable states
(reactant and product) separated by a high energy barrier as an example (Fig. 6.3),
in the language of Torrie and Valleau [94, 95], a series of bias potential can be used
along the reaction path between the reactant and the product. At each point along
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this path, a bias potential is used to confine the system to the neighborhood of it and
the corresponding simulation is often called a “biased window simulation”. From
this simulation, one can reconstruct the PMF in this neighborhood from the MD
simulation using the biased potential. Then, by link the PMEF in each region, one
obtains the PMF along the reaction coordinate all over the conformational space
interested. We note that there can be many choices for this additional constraint
potential. Omne of the most often used is the harmonic function with the form
Vi(&) = 3K (& — &')% as shown by the red curves in Fig. 6.3. Due to the fact
that this additional bias potential looks like an umbrella (Fig. 6.3), this method is
called the umbrella sampling in literature. With this treatment, a uniform series
of sample points in the region relevant to the problem of interest will ensure that
the conformational space is sufficiently sampled and consequently the PMF well-
reconstructed.

Figure 6.3: Illustration on how the umbrella sampling is used in simulations of the
transition between a reactant state and a product one separated by high energy
barrier. Along the reaction coordinate, a series of points were taken. At each point
&, a bias potential with the form V4(§) = 3 K(£—&)? is used to constrain the system
to its neighborhood. From this biased simulation, the PMF at this neighborhood
can be obtained from the corresponding probability distribution (indicated by the
blue curve). These series of additional biasing potential ensures that the whole

conformation space relevant to the problem of interest is sufficiently sampled.

A main technical problem related to the reconstruction of the PMF from the
umbrella sampling as mentioned above originates from the fact that in Eq. 6.7
there is a constant which depends on the choice of the additional potential and
the region it explores. This indicates that this constant is different in each of the
biased MD simulations. Consequently, one needs to align the PMF reconstructed
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in each region of the simulation window so that the relative value of the PMF
obtained from different MD simulations make sense. Traditionally, this is done by
adjusting F'(§y) of the adjacent boxes (windows) in which they overlap so that they
match [94, 95, 96], using e.g. least-square method [290]. In so doing, the PMF over
the whole region interested can be constructed. However, we note that there are
serious limitations for this scheme. First, in matching the overlap region between
the PMF of the neighboring windows, a significant overlap is required to ensure
statistical accuracy. This indicates that a lot of sampling in the MD simulations
are superfluous and consequently wasted. And more importantly, when more than
one reaction coordinates are used for the construction of the PMF, the value of
the constant F' in one simulation window allowing the best fit with its adjacent
region in one direction may not ensure the best for others [291]. Therefore, this
scheme is of limited use in practical simulations of complex systems when analysis
of high-dimensional PMF is required.

Among the various attempts to solve these problems [290, 292, 293, 294|, the
weighted histogram analysis method (WHAM) proposed by Kumar et al. is now
the most popular, mainly due to its numerical stability and convenience in addressing
PMF with multiple variables [295]. The central equation for the WHAM method
resides in the optimization of the unbiased distribution function as a weighted sum
over its expression in different windows, as:

Ny o= B(Vi(€0)—Fi)
. n.e b
P(fo) = Pl(ﬁo) : - , 6.8
2 | s o o

where Ny, is the number of windows and P*(§y) represents the unbiased probability
distribution reconstructed from the biased MD simulation in the i*" window using
Vii(&). Same as above discussions, & denotes the variable and Vi (&) = 3K (§—&)*.
P(&) is the optimized overall distribution function obtained from the N, biased
simulations. This definition of P(&;) (instead of a direct sum over P'(&y)) is very
reasonable since not only the relative weights between the number of independent
data points within each window (i.e. n;) is taken into account (more data better
statistics and consequently larger weights in the summation), but also the small
weights of P'(&) in the region with large V;!(£y) — F; means that the error originating
from worse statistics of P*(&) in this region gets numerically well-under-control.
This expression, together with the right values of the Fjs (i goes from 1 to Ny),
gives the unbiased distribution function of P(&y) throughout the regions on the &
axes relevant to the conformational space interested. What one needs to do next is
to optimize the values of F;s in Eq. 6.8.

To understand how this is done in practice, we go back to Eq. 6.7 for the biased
MD simulation in each window. This equation changes to

F'(&) = Fi(&) — Vi(&) + F, (6.9)
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where F'(§) = —5In P'(&) and Fj(&) = —5In Pi(&). P(&o) represents the bi-
ased probability distribution sampled with the biased potential around &, which is
directly obtained from the i*" MD simulations. Statistically, it samples the region
around &' rather well. By imputing the expressions of F'(&y) and F{.(&) into Eq. 6.9,
one gets:

Pi(&) = Pi(g&)e"s @)=+, (6.10)

Therefore, Eq. 6.8 evolves into:

S L L) (6.11)
— [ N e BV (o)—Fn]’ ‘

The free-energies Fjs in Eq. 6.11, on the other hand, satisfy the following equation:

1. Q)
Fi——tIn
o Q
BV )V (€60)
_ 1 e dx (6.12)
p Q

B ‘% 1“/ e PR P(go) déo.

Therefore, Eq. 6.11 and Eq. 6.12 compose a set of equations which define the rela-
tionship between the Fjs and P (). By solving these two equations self-consistently,
one can obtain a much better and more efficient estimate of P(§p) compared with
the traditionally PMF matching method from the statistical point of view. Once
again, we note that the essence of this method, in the language of Roux [96], is “con-
structing an optimal estimate of the unbiased distribution function as a weighted
sum over the data extracted from all the simulations and determining the functional
form of the weight factors that minimizes the statistical error”.

So far about the umbrella sampling method. From this introduction, we know
that a key point on reconstructing the PMF using the biased potential is that a
sufficient sampling, in the best case uniform sampling, of the conformational space
relevant to the problem of interest is guaranteed. To this end, an a prior: set of
umbrella potentials are needed in order for this uniform sampling to be carried out
in a practical manner. For simulations of relatively simple systems, in which the
variable related to the umbrella potential is easy to define, this method works well.
However, for complex systems where this a priori definition of the umbrella potential
is unlikely, which unfortunately is usually true in reactions with more than 1 degree
of freedom, this method often fails.

An alternative method within a similar scheme, which is more often used in
present explorations of the PMF in complex systems, is the so-called adaptive um-
brella sampling method [296, 297, 298]. A key difference between the adaptive
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umbrella sampling method and the umbrella sampling method is that in the for-
mer case the umbrella potentials are chosen and updated in the simulations, while
in the later one the umbrella potentials don’t change. Plus, in the umbrella sam-
pling method, the conformational space is separated into a series of regions and the
MD simulation with bias potential centered at each region have different F;. A key
point to combine the PMF's constructed from the biased MD simulations in umbrella
sampling is to align these different F;s. While in the adaptive umbrella sampling
method, the umbrella potential doesn’t focus a specific region but rather tries to
compensate the original PES. Consequently, the problem related to the treatment
of the constant in Eq. 6.7 transforms into shifting this value during the iterations
so that in the end it equals the free-energy density of the system over the whole
conformation space relevant to the study.

The central idea behind the adaptive umbrella sampling method is that if an
umbrella potential with the form V(&) results in a uniform biased probability dis-
tribution B,(&p), the corresponding umbrella potential satisfies the following equa-
tion:

Val€) = V(&) = %mP(gox (6.13)

where P(&) stands for the unbiased probability distribution we want to simulate.
Based on this equation, the biasing potential can be adapted to the PMF which
is determined using the information from the previous simulations in an iterative
manner [299]. The analysis of the PMF is often carried out using WHAM [295]. To
be more specific, an initial guess of the umbrella potential, which is often taken as
Vil (&) = 0 can be used for the MD simulation and a biased probability distribution
PL(&) is obtained. From this biased probability distribution, one can construct the
unbiased one (P!(&)). Due to the ergodic problem related to the original PES, this
P1(&) will be very different from the final P(&y). However, one can input this unbi-
ased probability distribution into Eq. 6.13 and get a new umbrella potential VjZ(&).
Adding this biasing potential to the original potential and one can perform the sec-
ond biased MD simulation and generate a new P2(&q). From this biased probability
distribution, a normalized unbiased one P?(&,) can be achieved. This unbiased po-
tential will be summed up with the unbiased one in the first round subjecting to
some normalized weighting factors to generate the new input for Eq. 6.13. From
Eq. 6.13, again, one obtains a new umbrella potential. Continue this iteration and
take care of the fact that the input for Eq. 6.13 is always generated using weighted
sum over unbiased probability distributions obtained from earlier iterations, un-
til the conformational space relevant to the problem of interest has been sampled
adequately, one can get a well-converged unbiased PMF. This unbiased PMF can
then be used for later statistical or dynamical studies. We note that this is just a
general description of how the adaptive umbrella sampling works. There are many
numerical details concerning real implementation. For these details, please refer to
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Ref. [299, 300].

6.2 Metadynamics

In the above discussions on the umbrella sampling and adaptive umbrella sampling
methods, Eq. 6.7 is the basis for the analysis to be carried out and rigorous jus-
tification for the construction of the unbiased PMF exists behind the biased MD
simulations. Parallel to this scheme, however, there is another algorithm which (as
pointed by A. Laio, a main founder of this method) didn’t follow from any ordinary
thermodynamic identity but was rather postulated on a heuristic basis and later
verified empirically to be very successful in the enhanced sampling simulations of
many complex systems [301, 302, 303, 304, 305, 306, 307]. This method is so-called
metadynamics [38, 39].

The principles underlying this metadynamics method can be understood pictori-
ally using Fig. 6.4. The first step is to choose a sensible collective variable (labelled
as CV, corresponding to the reaction coordinate used in the earlier discussion) which
in principle, should be able to distinguish the initial, intermediate, and final states
and describe the slow processes relevant to the problem of interest. This is similar
to the umbrella sampling and adaptive umbrella sampling methods as introduced
before. The difference appears afterwards. Imagine that only one CV is chosen and
the Born-Oppenherimer PES looks like the black curve in Fig. 6.4, starting from
one deep valley, the system will take a time which is unacceptably long for atomic
simulations to escape from it using the standard MD method. In the language of
metadynamics, what one can do in order to impose an efficient enhanced sampling
on the PES is to add in some additional potentials so that the deep valley can be
filled up quickly (Fig. 6.4 (a)). This potential can be written in terms of Gaussian
functions, as:

_ () —£@?
Vo€, =w S e (6.14)

t'=71q,27q, - and t/<t

where £(x) stands for the CV coordinate associated with the spatial configuration
of the nuclei x, and £(¢') stands for its instantaneous value at ¢'. It is obvious that
the Gaussian height w, Gaussian width ds, and the time interval 7q at which the
Gaussians are added control the form of this additional potential and consequently
the accuracy and efficiency of the enhanced sampling. Imagine that the Gaussian
potentials are like small stones (size of the stone controlled by w and ds) which
fill up the valley gradually, the difference between the red curve and the black
curve then naturally represents the sum over the Gaussian functions as shown in
Eq. 6.14. And the size of the stones determines the efficiency of accuracy for the
construction of this difference between the red and black curves. After one valley
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Figure 6.4: Illustration on the principles underlying the metadynamics method,
taking the one dimensional case as an example. Imagine that the PES has multiple
deep valleys. In metadynamics, some artificial potentials will be added along the
chosen collective variable coordinates as the system evolves. At a certain valley, this
is similar to the case that a man fails into a deep well. To get out of it, simply
by jumping is unlikely, but imaging that he has an infinite account of stones in his
“magic” pocket, he can throw a stone every few steps he walks. With time going
on, these stones will fill up the well and he can get out of it easily. By remembering
the geometric shape of the space filled up by the stone, intuitively the PMF can be
reconstructed. It is easy to understand that the size of the stone determines the
accuracy and efficiency for the PMF reconstructed. As mentioned in the main text,
this rationalization is postulated on a heuristic basis. However, we note that it has
been verified empirically to be very successful in the enhanced sampling simulations
of many complex systems [301, 302, 303, 304, 305, 306, 307].

was filled up, the walker which describes the evolution of the system in the enhanced
sampling process starts to explore the neighboring one (Fig. 6.4 (b)), until all the
valleys were filled. After that, the system is allowed to travel between the valleys

116



Chapter 6 6.3. Integrated Tempering Sampling

in a free manner (Fig. 6.4 (c)). When the exploration of the walker is controlled
using an ensemble based method, such as the molecular dynamics or the Monte-
Carlo algorithm, the random walking above all the barriers will naturally include
thermal fluctuations and entropy. Consequently, if a canonical ensemble is used, the
difference between the red curve (which is not flat) and the blue curve intuitively
reflects the profile for the PMF. As a result, the following equality exists:

F(g) = = Jim V&, ) (6.15)

This equation serves as the basic assumption of metadynamics. In practice,
many details exist concerning the implementation of the algorithm described above.
The readers please refer to Ref. [39] for a detail explanation. We note that from
the first sight, this metadynamics looks similar to the adaptive umbrella sampling,
due to the fact that the sum of the Gaussian functions gradually gives us the PMF
using Eq. 6.15. In the adaptive umbrella sampling method, a gradual history depen-
dent improvement on the assessment of the PMF also exists by going through the
iterations. However, we note that the philosophy is very different. In the adaptive
sampling method, the update of the PMF using Eq. 6.13 has a rigorous justifi-
cation. While in the metadynamics, the construction of the PMF using Eq. 6.15
is postulated on a heuristic basis. This postulation was later verified empirical-
ly in several systems with increasing complexity, as can be seen for example, in

Refs. [38, 39, 301, 302, 303, 304, 305, 306, 307].

6.3 Integrated Tempering Sampling

In all methods introduced above, one or more reaction coordinates are required in
order to describe the atomistic level evolution of the system in its conformational
space. By increasing the complexity of the poly-atomic system, however, it can eas-
ily happen that the definition of such reaction coordinates becomes difficult or even
impossible. In these cases, another kind of methods, which effectively avoid an «
priori selection of the reaction coordinates, serve as an alternative. In these meth-
ods, a commonly used technical trick is to alter the potential energy landscape using
the temperature or energy itself, so that the the exploration of the conformational
space can be accelerated and the preselection of the transition coordinates is avoid-
ed. One of the earliest example is the Tsallis statistical method proposed in the late
1980s [308]. In this method, a high temperature sampling, which can be viewed as
an exploration of the “potential energy surface scaled by temperature”, does enforce
an enhanced sampling of the rare events. However, due to the relatively primitive
algorithm, the high temperature regions, which do not play an important role at the
targeting temperature of the canonical ensemble under investigation, can be easily
over-sampled [309]. To improve on this, a series of methods were developed in the
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last two decades, with the Wang-Landau [310, 311], replica exchange [34, 35, 36, 37],
integrated tempering sampling (ITS) [44, 45, 46], and selective integrated temper-
ing sampling (SITS) [312] methods being the most prominent successful examples.
Among them, the Wang-Landau method possesses a uniform distribution on the
energy scale, which is very suitable for the Monte-Carlo simulations. The replica
exchange, I'TS, and SITS are presently very often used methods in the MD simula-
tions. A thorough description for all of them is beyond the scope of this chapter.
Here, we will take the ITS method as an example to show how such enhanced sam-
plings are realized when the exploration of the PMF focusses on the energy space
in the MD simulations.

The I'TS method is intrinsically temperature-based, in which a generalized non-
Boltzmann ensemble is used. This generalized non-Boltzmann ensemble allows an
enhanced sampling in a desired broad energy and temperature range. The key
quantity is a distribution function of the inter-atomic potential. It is defined as an
integral or summation of the Boltzmann terms over temperature, through:

M
pU) = npe %Y, (6.16)
k=1

where U stands for the physical inter-atomic interaction potential and 8, = 1/(kg1}).
M is the number of temperatures used for the summation over the Boltzmann dis-
tribution. 7} means the temperature used in each of them, which increases with &
from T to Ty;. The highest temperature used (7)) is determined by the height of
the barrier and the associated time-scale one wants to simulate. ny is a weight. It is
determined through the requirement that each term in the summation in Eq. 6.16
contributes a desired fraction of the system’s Boltzmann distribution (at a given
temperature T}) to the total non-Boltzmann one.

In order to allow a MD based method to sample the distribution function in
Eq. 6.16, one must impose an equality between a Boltzmann-like distribution func-
tion and the non-Boltzmann one in Eq. 6.16, at a targeting temperature 1" (with the
corresponding 8 equals 1/(kgT')). To this end, the inter-atomic potential must be
revised. Let’s assume that this revised form of the inter-atomic potential is U, then,
the requirement that the distribution function p(U) in Eq. 6.16 can be reproduced
by a finite temperature MD simulation imposes:

M
€_ﬁU = p(U) = Z nke_ﬁkU. (617)
k=1

From this equality, one easily obtains:

M
U = L In [Z nke_ﬁ’“U] : (6.18)
o=
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And consequently, the biased force F}, on the i'" atom can be calculated from:

. M —BU
Fi = Zﬁf“ﬁke F (6.19)
B2 =y rne” Y

where F; stands for the Hellmann-Feynman force on the i*" nuclei when the inter-
atomic potential is the physical one (namely U).

From Eqs. 6.17 to 6.19, it is clear that a MD simulation using a Boltzmann-
ensemble (but with an “artificial” inter-atomic potential) can be employed to re-
produce the distribution function associated with the non-Boltzmann ensemble in
Eq. 6.16. Due to the fact that a wide temperature range is included in the summa-
tion over the Boltzmann distribution function in Eq. 6.16 for the non-Boltzmann
ensemble, it is expected that the probability of the rare event, which hardly happens
in a normal MD simulation at the targeting physical temperature, can be increased.
However, one notes that there are still some weighting factors to be determined in
Eq. 6.19. These factors are determined through the requirement that each term
in the summation of Eq. 6.16 contribute to the total distribution with a desired
fraction. In other words, if one defines

P, = ny, / e AU g (6.20)

where x stands for a 3N-dimensional vector in the conformation space (N means
the number of nuclei in the poly-atomic system), each term in the summation of
Eq. 6.16 will contribute to the total distribution with a fraction

Dy

= = (6.21)
k=1 B

Pr =

These pgs should be aimed at some predetermined quantities with which we want our
finite temperature (7) Boltzmann distribution contributes to the non-Boltzmann
one. Let’s label such a fraction as p). In practice, the fraction that all these pQs
equal 1/M is often used.

With these predetermined pis, an initial guess for the numbers n; will be em-
ployed in the first a certain number of, say N, MD steps using the forces generated
by Eq. 6.19. The targeting temperature is 7. At the end of these N, steps, the val-
ues of p, will be calculated using Eqgs. 6.20 and 6.21. It is often true that these pgs
are different from their targeting values ps. To ensure that they fluctuate around
and approach their targeting values with the simulation going on, in the next N
steps, the value of n; will be changed into its original value multiplied by pY/ps. At
the end of these N, steps, the values of py will be calculated again and the values
of ny are updated by the same relation. With the simulation going on, a sufficient
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sampling of the non-Boltzmann in Eq. 6.16 will be guaranteed. We note that this
algorithm reflects only the principles underlying the I'TS method. In practical appli-
cations, there are more reliable algorithms used. For these technical details, please
refer to Gao, Yang, Fan, and Shao’s work in Refs. [44, 46].

6.4 Thermodynamic Integration

In the earlier sections, we have introduced some extensions of the MD method as
presented in Chapter 5, by mainly focussing on the mapping of the PMF. Anoth-
er problem which can be studied using the MD simulation technique concerns the
phase behavior of a given substance, in particular, transitions between two compet-
ing phases obtained from either random structure searching or enhanced sampling
molecular dynamics simulations. Melting from a solid to a liquid phase is one ex-
ample. And evaluation of the relative stability between two competing solid phases
is another one. In these examples, the transition between the two competing phases
is first-order and their transition curve can be calculated from the principle that at
coexistence the Gibbs free-energies of the two phases are equal. Here, we will intro-
duce a method to calculate the free-energy of a given phase at a finite temperature
and pressure so that such phase transitions can be studies in terms of molecular
simulations. We note that continuous transitions, which will not be discussed here,
are by no means simpler. We refer the readers to Ref. [313] if you are interested.

The method we want to introduce here is called the thermodynamic integration
method [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 280]. To be pediatric, we start
by interpreting the principles underlying it and then explain some technical details.
The key point of this method is that it is a general method to determine the free
energy difference F| — Fy between two systems whose total-energy functions are
known, which we denote as U; and Uy. By total energy function, we mean that
for a specific spatial configuration of the nuclei (Ry,---,Ry), the total energy of
the first system is U;(Ry, -+ ,Ry) while the total energy for the second system is
Up(Ry, -+ ,Ry). From the definition of the Helmholtz free-energy, it is determined
by these total energy functions through

1
Fy = —kgTIn {W/de .. 'dRNe_ﬁUl(Rl""’RN)} 7

) (6.22)
FO = _kBT ].n {W / de PR dRNe_BUO(R1’7RN)} ,

where A = h/(2rMkgT)"? is the thermal wavelength and M is the nuclear mass.
For a simple nomenclature, we have assumed that all the nuclei have the same mass,
but we note that the extension of Eq. 6.22 to systems with nuclei of different kinds
is straightforward for the illustration of the principles to be discussed below.
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By thermodynamic integration, we mean that if one imposes a series of fictitious
systems in between the ones with free-energy F; and Fj, with the total energy
function

U)\(Rla T 7RN) = UO(Rla' e 7RN) + )\(Ul(Rh' o 7RN) - UO(Rh' o 7RN))7

(6.23)
F} can be calculated with a thermodynamic integration treatment if Fj is known.
The mathematical foundation underlying this thermodynamic integration treatment
is that for one specific value of A, there is a total energy function Uy(Ry,--- ,Ry)
and a free-energy F\. It is clear from the definition of Uy(Ry,- -, Ry) in Eq. 6.23
that F\ equals Fy if A equals zero, and it equals F} if A equals one. Therefore, one
can plot the evolution of F) as a function of A in between zero and one, with the
value of F) starting from Fj and ending at F). Using this evolution, it is clear that

LdF,
F, — F :/ —2d. 6.24
—R= | 5 (6.24)

This is pictorially shown in Fig. 6.5.

F >
=0 1

Figure 6.5: Ilustration on the evolution of F) in the thermodynamic integration
method. The z axis corresponds to the variable A, which goes from 0 to 1. The y
axis corresponds to the function F), which goes from Fy to Fi. Fjy is known while
F is unknown, which equals Fy + fol AN

Now we look at dF)/d\, similar to Eq. 6.22, F) is defined as

F\ = —kBTln{ / dR,; - - - dRNe‘ﬂU*(Rl"“’RN)} . (6.25)

NIA3N
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Therefore, dF)/d\ equals

dF) 1 dUA(Ry1, -+ RN) 50, Ry Ri)
H = —kBT In {W/de see dRN i € A ’ N (626)

If one resort to the definition of Uy in Eq. 6.23, it further equals

dF: 1
d_;\ - _kBTln {W /de . e dRN(Ul(R17 P 7RN) — UO(R17 e ,RN))e_BUA(Rlv”'yRN)
(6.27)
In other words, by putting Eq. 6.27 and Eq. 6.24 together, one arrives at
1
FieFi= [ V< URL - R = Go(Riy o Ra) >4 (6.28)
0

By <>,, we mean that the thermal average of the quantity to be evaluated is
calculated using an ensemble average this quantity in a system with atomic inter-
actions Uy(Ry, -+ ,Ry). Base on this deduction, it is clear that if the free-energy
of a system with total energy function Up(Ry,--- ,Ry) is known, one can calculate
the free-energy of another system with total energy function U;(R4,--- ,Ry), by
thermodynamically integrating the free-energy difference between F; and Fj.

Now we go to real poly-atomic systems. The definition of the thermodynamic
integration as defined in Eq. 6.28 is robust, which means that as long as one has a
good reference energy Fj, the free-energy of the real system F} can be calculated,
through a continuous and isothermal switching of the total energy function from
Us(Rq, -+ ,Ry) to Up(Rq, -+ ,Ry). However, we note that the efficiency of this
thermodynamic integration sensitively depends on the similarity between the refer-
ence system and the system to be calculated. Mathematically, one can relate this
similarity to the value of Uj(Ry, -+ ;Ry) — Up(Ry, -+, Ry) being evaluated in E-
q. 6.27. The smaller this value, the fewer steps one needs to integrate for the value
of X\ between zero and one in Eq. 6.28.

Traditionally, this thermodynamic integration method has been extensively used
in the molecular simulations with empirical inter-atomic potentials in the 1980s and
1990s [48, 49, 50, 51, 52, 53, 54]. In studies of liquids, this reference system is of-
ten taken as the idea gas with Lennard-Jones potential. While in studies of solids,
this reference system is often chosen as the harmonic lattice. Starting from the
1990s, molecular simulations based on an ab initio treatment of the electronic struc-
tures have overtaken the traditional method in calculations of such free-energies,
due to its power in describing inter-atomic interactions under complex chemical en-
vironments [55, 56, 57, 58, 280]. Since these ab initio calculations are much more
expensive than the empirical potential calculations, it is highly recommended that
one introduces an intermediate state between the idealized system with a rigorous
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analytical expression for the free-energy and the real system [55, 280]. Due to the
fact that a well-designed intermediate state held together by a well-defined empirical
potential can be much similar to the real system compared with the idealized mod-
el, the thermodynamic integration between this intermediate state and the real one
needs less value of X in Eq. 6.28. As a compensate, more thermodynamic integration
steps will be needed from the idealized model to the intermediate state. However,
since the computational load for empirical potential based MD simulations is much
smaller, this treatment can help us to save a lot of computation time, with errors
well-in-control.

Till now, the principles underlying the thermodynamic integrations is clear. In
the following, we use the free-energy of a crystal, with electronic structures deter-
mined by the density-functional theory calculations, as an example to show how this
is done in practice [55, 280]. We note that the treatment of the nuclear motion in this
thermodynamic integration is classical. Its extensions to the quantum nuclei will be
discussed in Sec. 7.3 by resorting to the path-integral method as will be introduced in
Chapter 7. In the ab initio MD based thermodynamic-integration calculations to be
discussed here, the first key quantity is the electronic free-energy U(Ry, - - , Ry; Ta).
Compared with the total energy function U(Ry, - , Ry) we have used in the carlier
discussions, one may notice two differences. The first one is that we prefer the word
“free-energy” here while in the earlier discussions we use the word “total energy”.
The second difference is that there is one more parameter-dependence of this total
energy, on T, which denotes the temperature of the electrons. The physical origin
of these two differences is the thermal electronic excitations in calculations of the
electronic structures, which might be important in some situations [55, 280]. In
many practical calculations of the density-functional theory, a smearing factor is
used to generate partially occupied orbitals so that the electronic structures can be
converged faster. We note that the smearing factor used there is not necessarily re-
lated to the real electron temperature. But here, by 7}, we really mean the electron
temperature which is determined by the environment. The corresponding electronic
structure calculations should resort to the finite-temperature density-functional the-
ory developed by N. D. Mermin in the 1960s [30, 31, 32]. Therefore, the total energy
function U(Ry, -+ ,Ry) becomes the electronic free-energy U(Ry, -+ ,Rn;Ty), s
ince the electronic entropy effects are naturally included in this finite-temperature
density-functional theory. Accordingly, T -dependency of this quantity enters. We
note that this electronic free-energy equals

U(Rh e 7RN;Te1) = E(Rh e 7RN;Te1) — Tel‘s7 (629)
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where

ERy, -+ Ry;Ta) Zfz/drw <—— )%( )+ /”(r)Vext(r)dr

// d dr' + E* [n(r)] + Eionion(R1, - . Ry),

(6.30)
and

S = —2kBTZ [filn fi+ (1= fi) In(1 — f3)]. (6.31)

In Egs. 6.30 and 6.31, f; is the Fermi-Dirac occupation number of the Kohn-Sham
orbital ¢; at Ty and n(r) = Y, fi|¢(r)[2. This Eq. 6.30 can be thought of as a
finite-temperature version of the total-energy functional for the electronic system as
introduced in Eq. 2.30, with nuclei interactions added. Such a treatment ensures that
URy, -+ ,Ry;Ty) includes the electronic entropy effects and corresponds to the
free-energy of the whole system with static nuclei at a certain spatial configuration
(Ry, -+ ,Ry). Therefore, for the nuclear system, it is just the total energy. Since
this energy depends on Ty, we use U(Ry, - ,Ry;Ty) to label this total energy
function of the nuclear configuration, with the free-energy of the electronic system
completely included at the finite-temperature density-functional theory level.

With this total energy function in hand, we can calculate the Helmholtz free-
energy. The first thing we do is to separate the total energy function into two parts,
i.e. the static energy at the perfect-lattice positions U(RY,--- ,R%;7w) and the
remainder, through:

U(Rla T 7RN;T61) = U(R?7 T 7R(])V;Tel) + UVib(Rlv e 7RN;Te1)' (632)

URY, .-+ ,R%;Ty) is a constant which doesn’t depend on (R, - -- , Ry). Therefore,
the free-energy of the crystal, as determined by:

F =—kgTln { /de ... dRNeB(U(Rﬁ’,---7R9V%Tel)+Uvib(R1,---,RN;Tel))} : (6.33)

1
NIA3N

equals

1 vi e -
F = U(R(1)7 te RO ) kBT ln {W / de . e dRNe_ﬂU b(RL, ,RN,Tel)

(6.34)
From this equation, it is clear that the key issue resides in determining the second
term in Eq. 6.34, which we label as FV*. This quantity, again, can be separated
into two terms, 4.e. F'™ which represents the free-energy of a harmonic lattice and
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the deviation of FV* from it. In terms of thermodynamic integration, the reference
state is the harmonic lattice, whose free-energy can be calculated analytically using:

ar 3kgT
thnn — NB Z In [eéﬁfwk,s _ e_%ﬁhwkws] , (635)
k,s k,s

where wy ¢ means the phonon frequency of branch s at reciprocal space point k.
The deviation of F¥P® from F'™ which we label as F2h™ pneeds to be calculated

using thermodynamic integration. From our discussions about, this term equals
1 .
Jranharm: / A\ < U®(Ry,--- ,Ry) — U™™(Ry,--- ,Ry) > . (6.36)
0

Here, UM™(R,, .- - Ry ) means the harmonic potential associated with the Hessian
matrix of the crystal. In some cases, to decrease computational load, an intermediate
state can also be used, but the principles underlying these calculations for the free-
energy of a crystal is already there. For more details, the readers please refer to
Ref. [55].
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