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ABSTRACT
The modular pebble-bed nuclear reactor (PBR) is a candidate Generation IV reactor being devel-
oped. Thepebble flow in the very slowdrainingof fuel pebbles draws attention for its implications
on core physical design and reactor physics analysis. One of the effective and simplifiedmethods
to address this problem is the kinematic model which is based on continuous theory to derive
a diffusion equation for vertical velocity. This paper investigates the appropriate numerical solu-
tions for the kinematic model of pebble flow velocity profiles in PBR geometry. Our method is
based on a previously proposed transformed Cartesian coordinates and uses the implicit Crank–
Nicholson integration scheme with two different treatments of the boundary conditions. Valida-
tions show that this numerical solutiongives preferable agreementswith the experimental results
in the reference. Finally, the simulated velocity profiles are applied in the investigation of two
pebble burnup-related issues, which are the pebble residence time prediction and the channel
scheme in realistic high-temperature reactor pebble-bed modules reactor core geometry.

1. Introduction

The high temperature gas-cooled nuclear reactor
(HTR) is a candidate Generation IV reactor being
developed as one of the most economical, fuel-efficient,
and the safest nuclear powers [1]. In China, large inter-
est has been initiated on modular pebble-bed HTR, in
which the notable uranium-based graphite fuel pebbles
have been introduced. Researches have been focused
on the high-temperature reactor pebble-bed modules
(HTR-PM) being developed byTsinghuaUniversity [2].
The continuous refueling process of fuel pebbles with-
out shutdown during operation is a major advantage
of pebble-bed nuclear reactor (PBR) over other core
designs. In this process, fuel pebbles are introduced
from the top and drain very slowly in the reactor core,
which is typically in the shape of an upper cylindrical
vessel, a bottom funnel and an exit pipe (Figure 1). It is
important to have a clear understanding of the flowpro-
file of fuel pebbles in PBR for its implications on reactor
physical design, such as the geometry dependence of the
mean streamlines and the wall effects [3]. Furthermore,
the pebble flow profile is an essential input in the reli-
able prediction of reactor physics characteristics such as
the fuel burnup, namely the depletion of the fuel in peb-
bles. The subsequent purpose of this research on pebble
flow is to generate the burnup distribution of fuel peb-
bles, which has been revealed to be essentially relevant
to issues in reactor safety as well as economic efficiency
in our previous research [4].

CONTACT Li-guo Zhang lgzhang@tsinghua.edu.cn

The pebble flow research in a realistic dynamic PBR
core, originated from dense slow granular flow study
in silos and hoppers [5], have been mostly investi-
gated with experiments focused on static packing of
spheres and particle tracking [6]. However, it is nec-
essary to further study the pebble flow with numer-
ical approaches, considering the limited information
obtained from experiment and the complexity of dense
slow pebble flow in PBR. The discrete element method
(DEM) and the kinematic model are the two represen-
tative methods to numerically predict the profiles of
dense slow pebble flow [3]. The DEM addresses the
dynamics of the system at the micro-contact level with
establishments of pebble contact model and motion
equations, while it is fairly complicated due to the
large parameter space and some unmeasurable con-
tact parameters [7,8]. The kinematic model ignores the
stress field and attempts a macroscopic continuous dif-
fusion theory of the bulk only with a simplified diffu-
sion equation, and it is simple to use and applicable in
various geometries of dense slow [5,9]. Although DEM
has been used in coupled pebble flow and coolant flow
model to predict PBR core physics [10], the kinematic
model has also drawn attention for its simplicity and
satisfactory results in flow velocity profiles simulation.
Hence, this paper makes use of the kinematic model for
pebble velocity profiles in PBR.

To address this problem numerically, previous
numerical solutions to the kinematic model have been
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Figure . The schematic diagram of a PBR core geometry.

studied, advanced and subsequently validated as appro-
priate in PBR geometry. Furthermore, velocity profiles
derived by the numerical solutions have been applied
to investigate pebble burnup-related issues in realis-
tic HTR-PM geometry. So this paper is organized as
follows. The next section of this paper introduces the
kinematic model and the boundary conditions of PBR
core geometry. Then, the subsequent section introduces
a numerical solution adopting a transformed Carte-
sian coordinates previously proposed in [3], and illus-
trates the discretizations for the diffusion equation with
two boundary treatment schemes. Subsequently, the
numerical solutions in PBR geometry are validated as
appropriate in PBR geometry by comparing the simu-
lated results with published experimental results. Later,
with the obtained velocity profiles, we investigate two
burnup-related applications which are the pebble resi-
dence time prediction and the channel scheme in real-
istic HTR-PM geometry. The last section is conclusions
and discussion.

2. Kinematic model of pebble flow

2.1. The kinematicmodel

The research of pebble flow was initially enlightened
by the study of dense slow granular flow in silos and

hoppers. Nedderman and Tüzün derived a continuum
equation from the constitutive law (Equation (1)) and
the incompressibility condition, and the continuum
diffusion equation for vertical velocity was given as
Equation (2) for dense slow granular flow in a quasi-
two-dimensional silo [9]:

Vx = −B∇⊥Vz, (1)

∂Vz

∂z
= B∇2

⊥Vz, (2)

where ∇2
⊥ is the horizontal Laplacian, the kinematic

constant B refers to the ‘diffusion length,’ as it has
the unit of length. The value of B which indicates the
granule-diffusing ability was thought to be related with
granule material [11,12].

By enforcing that velocity at the side wall must be
tangential to the wall, Equation (3) can be obtained as
boundary condition at side wall, where K is the cotan-
gent value of slope angle (exterior wall angle, which is
30°in Figure 1) in the cone region. Boundary condi-
tion for Vx at side wall can then be derived from Vz as
Equation (4).

∂Vz

∂x

∣∣∣∣
x=R

= −KVz

B
, (3)

Vx|x=R = KVz. (4)

2.2. Numerical discretization of the diffusion
equation

By considering the horizontal Laplacian in the diffusion
equation (Equation (2)) and the axial symmetry of the
PBR core geometry, Vz can be seen as a function of r.
The diffusion equation in cylindrical coordinates can be
given as

∂Vz

∂z
= B

∂2Vz

∂r2
+ B

1
r
∂Vz

∂r
. (5)

To numerically solve the partial differential equation
in the cylinder is straightforward, since we can make
use of the rectangular grid, whereas the radius R of the
reactor core in cone region is the function of z, so a
better numerical method originally proposed in [3] is
used in this study. The Cartesian coordinates which is
transformed from the cylindrical coordinates, let α =
r/R(z), γ = z, is adopted. This allows solving the equa-
tion over the range 0 < α < 1 independent of variable
R. Diffusion equation in the Cartesian coordinates can
then be derived as

∂Vγ

∂γ
= B

R2

∂2Vγ

∂α2 +
(

B
αR2 + αK

R

)
∂Vγ

∂α
. (6)

A mesh strategy is adopted to numerically solve
Equation (6) in a half-size PBR geometry (divided by
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central axis). This quasi-two-dimensional α–γ simu-
lation domain is meshed with grid points of (N + 1)
columns and (M + 1) rows. LetVi

j = V ( j�α, i�γ ) be
the vertical velocity at grid point (j, i), j = 0,1,… , N
(from center to the side walls), i = 0,1,… , M (from
bottom to top of the core), whereN = �α−1, M =
H/�γ (H is the height of the core). With the Crank–
Nicholson integration scheme (or implicit central dif-
ference scheme) applied to Equation (6), the diffusion
equation can be approximated as Equation (7)

Vj
i+1 −Vj

i

�γ
= B

2�α2R2

(
Vi+1

j+1 − 2Vj
i+1 +Vi+1

j−1 +Vi
j+1

− 2Vj
i +Vi

j−1
) +

(
B

4 j�α2R2 + jK
4R

)

× (
Vi+1

j+1 −Vi+1
j−1 +Vi

j+1 −Vi
j−1

)
, (7)

where all R and K are evaluated at γ = �γ (i + 1/2). It
also indicates that the vertical velocity profiles of lower
points at ith row contribute to the vertical velocity of
points at the (i + 1)th row.

Similarly Equation (1) can be numerically integrated
from z= 0 using the central difference scheme to obtain
the horizontal velocity field (let Vx be written as u in
discretization):

uij = − B
2�αR

(
Vi

j+1 −Vi
j−1

)
. (8)

2.3. Numerical discretization of boundary
conditions

In a half-size PBR geometry divided by central axis,
boundary condition for vertical velocity at α= 0 (cen-
tral axis of the core) is set as Equation (9) to ensure the
differentiability.

∂Vz

∂α

∣∣∣∣
α=0

= 0. (9)

Boundary condition at α = 1 (side walls) for ver-
tical velocity in the Cartesian coordinates is given as
Equation (10) according to Equation (3).

∂Vz

∂α

∣∣∣∣
α=1

= −KVzR
B

. (10)

To numerically solve the problem, two boundary
conditions are introduced for vertical velocity in the fol-
lowing part.

... Forward or backward difference scheme
The first one is our originally proposed second-order
accurate forward or backward difference scheme. The
second-order accurate forward difference scheme of
Equation (9) at j = 0 is derived as

−Vi+1
2 + 4Vi+1

1 − 3Vi+1
0

2�α
= 0, (11)

while for j = N, the second-order accurate backward
difference scheme of Equation (10) is

3Vi+1
N − 4Vi+1

N−1 +Vi+1
N−2

2�α
= −KVi+1

N R(β)

B
. (12)

... Central difference scheme
The second one is the central difference scheme [3].
First, Equations (13) and (14) can be generated when
we apply the second-order accurate central difference
scheme on Equations (9) and (10).

Vi
1 −Vi

−1

2�α
= 0, (13)

Vi
N+1 −Vi

N−1

2�α
= −KVi

NR
B

. (14)

When j = 0 is set in Equation (7), and by reference
to Equation (13), boundary condition at α = 0 can be
derived as

Vi+1
0 −Vi

0

�γ
= B

�α2R2 (Vi+1
1 −Vi+1

0 +Vi
1 −Vi

0 ).

(15)

When j = N in Equation (7), and by reference to
Equation (14), boundary condition at α = 1 is obtained
as Equation (16).

Vi+1
N −Vi

N

�γ
= B

�α2R2

(
Vi+1
N−1 −Vi+1

N +Vi
N−1 −Vi

N
)

−
(

(2N + 1)K
2R

+ K2

2B

) (
Vi+1
N +Vi

N
)
,

(16)

whereas without any special treatments to the
boundary conditions for horizontal velocity (Equation
(4)), ui0 = 0 and uiN = KVi

N can be simply generated at
j = 0 and j = N, respectively.

3. Implementations and validations

LetVi = (Vi
0,Vi

1, . . . ,Vi
N )T be the vertical velocity vec-

tor for grid points in row i, then the above numerical
scheme can be written in the formAVi+1 = YVi, where
A and Y are tridiagonal matrices. This system can be
efficiently solved by recursion of M times. The above
scheme is implemented with Matlab (Version: R2014a)
to solve the matrix equation. Since A is a tridiagonal
matrix, the method of forward elimination and back-
ward substitution (or the chasing method) is recom-
mended to solve the matrix equation [13].

The following part will present and compare the
pebble velocity profiles from the two treatments of
boundary conditions for vertical velocity mentioned
previously. Validations of the results are performed by
comparing the simulated results with experimental
results given in reference [5] for certain hopper geome-
tries, which are the same as PBR geometry except for
the elimination of the lower exit pipe. The orifice size
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Figure . The variation of absolute vertical velocity profiles derived with (a) Method  and (b) Method  under different grid schemes
at two heights (.d and .d) for slope angled at ° in geometry.

(Ro = 9 mm) and the radius of the upper cylinder
(Ru = 100 mm) are fixed while the slope angle is varied
to θ = 30°, 45°, 60°. Velocity profiles at two heights, 9.1d
and 29.1d (d is the pebble diameter, 3 mm) are given for
each geometry in the reference. Since the initial veloc-
ity at z = 0 (the bottom of the funnel) is not given,
the relative vertical velocity (vertical velocity normal-
ized by themaximum vertical velocity at a given height)
is calculated and used in the comparisons (see Figure
4). Besides, the experimental results in [5] are gener-
ated under a quasi-two-dimensional silo, which would
generate an expanding and discretization of the diffu-
sion equation different from the three-dimensional one
we introduced before. Therefore, the two-dimensional
transforms are used in the following validation; how-
ever, it would not be given here in detail since it is
almost the same as the one introduced in Section 2.2
except for slight differences in the coefficients of the
equations.

To compare the pebble velocity profiles in Cartesian
coordinates from the two treatments of boundary con-
ditions, the two boundary treatments are used respec-
tively with the implicit Crank–Nicholson integration
scheme of diffusion equation in the Cartesian coordi-
nates in PBR geometry. Here we denote the forward
or backward difference treatment as Method 1 and the
central difference treatment as Method 2.

Before comparison, the grid dependence of the
velocity profiles with the two methods is tested. The
velocity profiles in each geometry of these two meth-
ods are generated using different grid schemes (the
initial velocity at the orifice was set as 5 cm/s). We
have compared the velocity profiles from six differ-
ent grid schemes, which could be notified as (M0,N0),
(M1,N1)…(M5,N5), where M and N are the number of
the vertical and the horizontal grid points. (M0,N0) is
the initial grid scheme which has the least number of
grid points, then the number of grid points in the sub-
sequent grid scheme is set to be doubled. Therefore,
M0/M1 = · · · = M4/M5 = 1/2; N0/N1 = · · · = N4/N5 =
1/2, which also indicates�γ 0 = 2�γ 1 = · · · = 32�γ 5
and �α0 = 2�α1 = · · · = 32�α5. For instance, the

horizontal and vertical grid intervals under the 30°
geometry are set as dr = d/2, dz =√

3 dr in the initial
grid scheme, in which the number of grids are 66 and
346 in the horizontal and vertical directions. The num-
bers of horizontal and vertical grids in the last scheme
(M5,N5) are 2112 and 11,072, which correspond to dr=
d/64, dz =√

3 dr/32. Figure 2 shows the variation of
absolute vertical velocity profiles derived under differ-
ent grid schemes with Method 1 and Method 2 in 30°
geometry. Figure 3 gives the variation rate of the average
vertical velocity under different grid schemes for these
two methods in 30° geometry. For 45° and 60° geome-
tries, figures and details of the grid tests on the veloc-
ity profiles are not given here since the basic tendency
keeps the same as the 30° geometry. Figure 2(a) shows
that the velocity profiles of Method 1 would decrease
when grid number increases, and would gradually sta-
bilize at the last (M5,N5) scheme. This could be seen
muchmore clearly in the small plot in the figures, which
gives the zoomed-out plot of the tails of the velocity pro-
file at z= 9.1d. It could also be indicated by Figure 3(a),
which reveals that the variation rate of the average ver-
tical velocity would decrease with higher grid scheme
and would finally result at a rate of less than 0.5% under
the final scheme (M5,N5). Figure 2(b) shows that lit-
tle instabilities appear in the tails of the velocity pro-
files generated by Method 2, especially for the velocity
at z = 9.1d. The instability would gradually decrease
with increased grid number, but it does not get fully
smoothed even at the (M5,N5) scheme, and this is also
well demonstrated by the zoomed-out plot of velocity
tails at z = 9.1 in Figure 2(b). In general, there is no
big change in the velocity profiles of Method 2 when
grid number increases, which could also be reflected by
the steady velocity variation rate in Figure 3(b). Due to
the computing capability, higher grid scheme with grid
number being 64 times of the initial grid number has
not been applied here, but it could be estimated that the
tendency in Figures 2 and 3 would still be the same.
Besides, when comparing the stabilized velocity pro-
file in Figure 2(a,b), it is found that the absolute value
of the velocity profiles of the two methods are almost



JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY 5

Figure . The variation of the decreasing rate of the average vertical velocity (at z = .d) under different grid schemes with (a)
Method  and (b) Method  for ° geometry.

the same. This could also be verified by the overlap
of the relative velocity profiles of the two methods in
Figure 4.

Therefore, based on the above tests, the twomethods
perform differently on grid dependence. Although the
results from Method 1 have a higher grid dependence
regarding the velocity variation rate, it could finally sta-
bilize at the (M5,N5) scheme. While Method 2 has a
smaller velocity variation dependence on grid num-
ber, it would still show instabilities at the velocity tail
under the (M5,N5) scheme. Thus, in the view of the
grid dependence, Method 1 is more preferable than
Method 2. However, in the real PBR application, the

realistic boundary for pebble flow is actually the trajec-
tories of the center of the boundary pebble, so there is at
least a separation of a pebble radius between the realis-
tic pebble flow boundary and the physical core bound-
ary. Thus, the velocity profiles beyond the realistic flow
boundary, where the velocity instabilities in Method
2 appear, would not make sense in the real applica-
tion and could be ignored. Therefore, both themethods
could be worth trying in the following validation of the
simulated results with the grid scheme (M5,N5).

With different diffusion lengths B best fitted from
corresponding experimental profiles (see legends in
Figure 4), the relative velocity profiles from Method 1

Figure . The relative vertical velocity profiles derived with Method  and Method  (coincide) at two heights, .d (dotted line) and
.d (solid line), for slope angled at (a) °, (b) ° and (c) °in reactor geometries, with comparisons to the experimental results in
reference [] (x-dotted line).
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and Method 2 are obtained and compared with the
experimental results in [5]. Relative profiles from the
two methods are confirmed to be almost the same in
core geometry, indicated by the coincidence of the rel-
ative velocity curves from the two methods.

Figure 4 also shows that the two numerical solu-
tions predict smooth velocity profiles, free of shock-like
discontinuities, quite consistent with the experiments.
This reveals that the two numerical solutions give rea-
sonable qualitative prediction of flow velocity profiles.
Besides, we can see that vertical velocity is maximum at
the center and declines along the increasing radius in a
nearly parabolic form, showing a highly dynamic flow
at the center while stagnant pebbles by the side walls.
Moreover, the pebble fuel mass flow flux (here equiva-

lent to
∫ ⇀

V · d
⇀

S , where
⇀

S is the directed area) at the two
different heights is confirmed to be almost the same,
briefly verifying the conservation of mass flow flux in
the kinematic model.

In addition to the transformed Cartesian coordi-
nates, the cylindrical coordinates is attempted in sim-
ulation as well, because cylindrical form equation
matches physical geometry better and may be easily
integrated into grid scheme of physics and thermal-
hydraulics calculation. We find that velocity profiles
derived under cylindrical coordinates demonstrate big
shock-like instabilities in 45° and 60° core geometry
(steeper wall slope), while it predicts velocity profiles
free of shock-like discontinuities under 30° core geom-
etry (gentler wall slope), and the results are quite con-
sistent with the experiments. Therefore, the cylindrical
coordinates may be good for the PBR 30° core geome-
try, but due to its poor geometry universality, it would
not be discussed more here. Further study on the cylin-
drical coordinates is expected to fulfill the numerical
methods in a more realistic physical scheme for the
kinematic model.

With the previous grid dependence test and the
above validation, it can be briefly concluded at present
that under the Cartesian form transition, Method 1
(the second-order accurate forward or backward dif-
ference scheme) is more preferable than Method 2
(the central difference scheme) in the perspective of
grid dependence. But more generally, Method 1 and
Method 2 could both give satisfied results in PBR appli-
cation. Therefore, both of the boundarymethods can be
recommended as appropriate numerical solutions for
any PBR geometry when their own inherent defects are
well treated such as the grid dependence.

In addition to the experimental results, simulated
velocity profiles derived by kinematic model, although
through different numerical solution, are also given in
[5]. The different diffusion lengths B in the model are
best fitted from corresponding experimental profiles
(see legends in Figure 4). In the original model, B is
constant in a determined geometry and depends on the

pebble property [11,12], and the value of Bwas thought
to be typically in the range of one to three times of the
granule diameter in silos in the early studies.However, it
is found that a single fitting B does not suffice to repro-
duce the entire flow field [14,15]. Later studies found
that B is also related with the height and the geome-
try angle. This could be also concluded with the lim-
ited data given by [5], in which Figure 4 certifies clearly
that B increases with the height in a given geometry and
depends on the slope angle. Nowadays, the imprecise
prediction of kinematic model is still a common con-
cern in simulations and experiments. Several researches
focused on the velocity profiles in silos using kine-
matic model as well as experiments [14,16], in which
they give similar conclusions and even nonlinear func-
tions on the height dependence of B value. However,
there are few investigating the B value in a hopper
(PBR) geometry, and the experiments-generated func-
tions in [14,16] based on the silo geometries could not
be directly applied to give a certain B value in PBR
geometry. Therefore, later in this paper, we are more
focused on the B effects on the velocity profiles predic-
tion and its further impacts on the core physics analy-
sis in PBR applications, which will be discussed later in
Section 4.

Further work has been under plan to give the func-
tional relation between B and the geometrical parame-
ters in HTR geometry and to improve the accuracy of
the kinematic model. Moreover, there are some other
advanced continuum-based theories/models [17,18]
proposed to describe the stress/strain of the granular
flow and may give a better description of the general
field. It is worth trying to obtain and compare the mean
flow profile of the kinematic, constitutive and DEM
methods, which could also help investigating themicro-
scopic justification of B.

4. Applications of pebble velocity profiles in
PBR

The subsequent purpose of this research on pebble flow
is to generate the burnup distribution of fuel pebbles.
The fuel pebble burnup is thought to be closely relevant
to the pebble velocity profile and the nonuniformdistri-
bution of neutron flux. The time-dependent analysis of
burnup can be performed by using the batch-tracking
method [19]. In this method, the core is first divided
into several axial flow channels by mean pebble resi-
dence time of each channel, which is the average time
a pebble takes to pass the reactor channel from top to
bottom. Then, with different fluxes and residence times
given in different channels, Monte Carlo codes for par-
ticle transport and the burnup calculation are carried
out to track the fuel pebble burnup. In this section, we
investigate issues of pebble residence time and channel
scheme, which rely on pebble flow velocity profile as an
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initial and essential input and eventually contribute to
the pebble burnup assay.

Although the geometrical parameters of the ref-
erenced geometry in the validation section are not
exactly the same as the HTR-PM geometry, the geom-
etry construction in the validation part is almost the
same as HTR geometry. Therefore, the two numeri-
cal methods validated in the reference geometry could
be directly used for generating the velocity profiles
in HTR-PM geometry without any further validation
tests. The realistic HTR-PM geometry consists of 6-cm-
diameter spherical pebbles, an upper cylindrical con-
tainer approximately 1150 cmhigh and 300 cm across, a
conical funnel region with a slope angled at 30°, and an
exit pipe with a radius of 25 cm and a height of 650 cm.
Let z= 0 be at the bottom orifice, and the initial velocity
be 6.25 × 10−3 cm/s, which is estimated from the real-
istic drainage of approximately 6000 pebbles per day.

4.1. Pebble residence time

Setting to predict the pebble residence time, a previ-
ous pebble streamline depiction work is required. The
streamlines could be computed by the integration of the
velocity profile. First, both the vertical and horizontal
velocity data could be bilinear-interpolated to construct
amore detailed picture of the velocity field. Then, a par-
ticular streamline could be solved by numerically inte-
grating dX/dt = V(X(t)), where X(t) = (r(t), z(t)) is the
position in the streamline at a certain time step;V(X(t))
is the vector velocity (composed by the vertical and hor-
izontal) at X(t).

Figure 5 shows the streamlines of pebble flow in
HTR-PM. It also indicates the overall shape of pebble
flow in PBR, quite consistent with the standard engi-
neering picture of silo drainage [3], with uniform plug
flow in the upper cylindrical region, a transition from
plug flow to nonuniform converging flow in the cone
region and plug flow again in the exit pipe. This rapid
transition from plug flow to converging flow could also
be explained by the velocity profiles in the core (Figure
6).

We find that the generated horizontal and vertical
velocity profiles (u and V ) behave differently at differ-
ent heights near boundary as shown in Figure 6. The u
profile shows a small rise and fall over α, and it is much
smaller than V profile in most radial range, especially
the upper cylindrical region u is smaller than V over
the entire range of α (dash-dotted line). However, in
the transition section of the funnel and the upper cylin-
der, u profile coincides with V profile near boundary
(solid line), and in funnel region it turns to be slightly
higher than V around boundary (dashed line). Thus,
the higher u causes bigger horizontalmovement around
boundary, which could well explain the flow regime
transfer in the transition region.

Figure . The brief depiction of pebble streamlines in HTR-PM
(B= d) (the outermost line is physical core boundary).

Figure . Vertical (heavy lines) and horizontal (thin lines) veloc-
ity profiles over α at some certain heights in reactor core when
B= d.

Because of the uniformplug-flow velocity which ‘dif-
fuses’ from the initial velocity given at the bottom of
the pipe, the pebble residence times of different stream-
lines in lower exit pipe are almost the same and have
little impact on reactor physics analysis. Therefore, we
approximate the pebble residence time T as the time of
pebble to travel along streamline only in the upper
cylinder and funnel, stated as Equation (17),

T =
∑

i=L...M

dz/Vi
j , (17)

where dz is the grid spacing in the z direction, L is the
starting point of the funnel region. The solid line in
Figure 7 shows a general picture of residence times of
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Figure . The variance of pebble residence times along stream-
lines over the range of α for different values of diffusion length
B.

streamlines over the range of α when diffusion length
B = 3d, displaying a steady phase in the center and
a rapid growth around boundary. The mean residence
time of streamlines is generated as 78.31 days, and it
is close to the corresponding pebble residence time in
HTR-PM, which is estimated at approximately 70 days.

In Section 2, the diffusion length B has been con-
firmed as inconstant in a certain geometry, and pre-
dictions have been made that the uncertainty would
consequently impact the core physics analysis in PBR
applications. Here, we perform this impact on pebble
residence times with comparisons of results derived
from different B values, as shown in Figure 7. It reveals
that the residence times in central core region, which
is approximately in the range of 0 < α < 0.6, increase
slightly with the diffusion length, whereas for stream-
lines in the boundary region, α > 0.6, the residence
times decrease fairly substantially with B, especially
near the boundary. We calculate the pebble residence
times in the upper cylinder and lower funnel, respec-
tively; analysis shows that residence times in the upper
cylinder and the lower funnel both increase mildly with
B in the central core region and decrease with B in the
boundary region. A reasonable implication of ups and
downs of residence times with B in the upper cylin-
der and lower funnel is that diffusion length influences
velocity differently in different radial regions. This can
be verified by simulation results that an increased B
derives higher vertical velocity in the central core region
and lower vertical velocity in the boundary region, and
thus an increased B would generate a more gentle and
uniform vertical velocity field. In general, pebble resi-
dence time can be influenced by the undetermined B,
and this will lead to changes in channel scheme which
will be discussed in Section 4.2.

4.2. Channel scheme of core region

Since the pebbles are not in a flow of uniform speed,
dividing the container into channels which are equally

spaced in radius is unsatisfactory [8]. Therefore, most
of the pebble flow models have been divided into a cer-
tain number of channels with unfixed width accord-
ing to the flow velocity distribution. The THTR reac-
tor core was divided into nine axial channels in pebble
flow model [20]. Kim et al. tried to divide the annular
core region of PBMR into six channels with respect to
an angular direction [21]. The Jüelich Research Center
used flowmodels with reactor core divided into 17 axial
channels in the VSOP code, which has been recognized
as the standard for most PBR analysis [22].

Previous researches on HTR-PM in China generated
a channel scheme, in which the half-size core is divided
into eight axial channels, and derived a mean residence
time ratio (the mean residence time of each channel
normalized by the mean residence time of the first cen-
tral channel) as: 1:1:1:1:1.125:1.125:1.125:1.5. Accord-
ing to this ratio, we propose and compare two different
axial eight-channel schemes.

... Channel scheme 
Channel scheme 1 starts from the principle that the fluc-
tuations in residence times of streamlines within each
channel should be within a certain range. Thus, the
scheme confirms that the times along any streamline
within the channel do not vary too much. In the pre-
vious research on HTR-PM, the eight channels can be
basically grouped into three primary channels accord-
ing to themean residence time ratio: the first four chan-
nels, the subsequent three channels and the last chan-
nel. On the basis of this scheme, we propose an iden-
tical but advanced channel scheme. Since the residence
times of streamlines keep stable in central region while
increase much near boundary (already shown in Figure
7), the streamlines are first divided into four primary
channels, with one more channel set in the bound-
ary region compared to the previous research. The
division of the four primary channels requires that the
relative standard deviation (RSD) of the streamline resi-
dence times within the primary channel should be basi-
cally the same. Therefore, the residence time RSD for
the four primary channels are derived as approximately
6.5% as B equals to 2.5d. Then, the first and the second
primary channels are, respectively, divided into four
and two sub-channels. It is also required that the RSD
of the streamline residence times of the sub-channels in
a primary channel should be basically the same. Hence,
the residence time RSD of the sub-channels in the first
primary channel is obtained as about 1.6%, while the
residence time RSD of the sub-channels in the second
primary channel is around 3.4%. The third and the
fourth primary channels would not be divided into sub-
channels due to their fairly narrow radial range (see
Table 1). Thus, the half-core has been divided into eight
channels.

As the impacts of inconstant B on pebble residence
time have been analyzed in Section 4.1, its subsequent
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Table . Channel scheme  of a half-size HTR-PM core.

Ch.

B        

.d R/cm .–. .–. .–. .–. .–. .–. .–. .–.
Ti/day . . . . . . . .
R* . . . . . . . .

R/cm .–. .–. .–. .–. .–. .–. .–. .–.

.d Ti/day . . . . . . . .
R* . . . . . . . .

R/cm .–. .–. .–. .–. .–. .–. .–. .–.

.d Ti/day . . . . . . . .
R* . . . . . . . .

R is the radius range of each channel in the upper cylinder region.
Ti is the mean residence time of each channel.
R* is the general mean residence time ratio of each channel.

influences on channel scheme are focused as well. We
propose three similar eight-channel schemes making
use of the obtained residence time when B is varied to
2.5d, 3d and 3.5d (see Table 1). Except for the case ofB=
2.5dmentioned above, we also derive the residence time
RSD for primary channel as B equals to 3.0d and 3.5d,
which are 4.5% and 3.0%. Table 1 gives the acquired
radius range of each channel in the upper cylindri-
cal region, which also confirms that the channels
are not equally spaced given the nonuniform velocity
profiles.

Table 1 also shows the influence of B on chan-
nel scheme and corresponding mean residence time
of each channel. An increased B would result in a
more inward-concentrated channel scheme with differ-
ent radius range. Themean residence time of each chan-
nel decreases with B except for the first two channels,
inducing a decreased generalmean residence time ratio.
In general, an increased Bwould give a more gentle and
uniform picture of the mean residence time over the
radius range; the residence time RSD values indicate
that this eight-channel scheme is more appropriate and
accurate for a big B case.

... Channel scheme 
Channel scheme 2 is proposed on the principle that
each axial channel should be of equal volume, which has
been used already in previous research. We first calcu-
late the radius range of each equal-volume channel in
the eight-channel scheme, and then generate the corre-
sponding mean residence times of each channel with B
being 2.5d, 3d and 3.5d, respectively (Table 2).

Table 2 shows that B has an impact on the mean res-
idence time of each channel, even though the channel
scheme is determinedwith fixed radius range. Similarly,
with the scheme 1, an increased B gives a longer mean
residence time in the central region and a shorter mean
residence time in the boundary region, eventually gen-
erating a more uniform mean residence time picture.

Although radius of channels in scheme 1 would vary
with B while the radius range in scheme 2 is fixed and
constant, the mean residence time of each channel in
both channel schemeswould be influenced byB. In gen-
eral, scheme 1 gives higher mean residence time ratio
than scheme 2.

Although B is still undetermined for its complex
dependence on pebble property and core geometry,

Table . Channel scheme  of a half-size HTR-PM core.

Ch.

B        

R/cm .–. .–. .–. .–. .–. .–. .–. .–.
.d Ti/day . . . . . . . .

R* . . . . . . . .

.d Ti/day . . . . . . . .
R* . . . . . . . .

.d Ti/day . . . . . . . .
R* . . . . . . . .

R is the radius range of each channel in the upper cylindrical region.
Ti is the mean residence time of each channel.
R* is the general mean residence time ratio of each channel.
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the B influences on pebble residence time and chan-
nel scheme are concerned in this section. This impact
can be eventually attributed to the conclusion proposed
in Section 4.1 that vertical velocity increases with B in
the central region but decreases with B in the boundary
region.

5. Conclusions and discussion

This paper investigates numerical solutions for the
kinematic model of pebble flow velocity profiles in PBR
geometry. The method is based on a previously pro-
posed transformed Cartesian coordinates and uses the
implicit Crank–Nicholson integration scheme with two
different treatments of the boundary conditions. One
is the second-order accurate forward or backward dif-
ference scheme (Method 1) which is our first original
attempt; another is the referenced central difference
scheme (Method 2). Eventually, the matrix equation
generated by the above discretized equations is solved
by the chasing method. The grid dependence of the
velocity profiles with the two methods is tested. The
simulated velocity profiles are compared and validated
by experimental results from the reference. It can be
briefly concluded at present that under the Cartesian
form transition, Method 1 is more preferable than
Method 2 in the perspective of grid dependence. But
more generally,Method 1 andMethod 2 could both give
satisfied results in PBR application. Therefore, both of
the boundary methods can be recommended as appro-
priate numerical solutions for any PBR geometry.

It is noticed that the introduced Cartesian coor-
dinates allow to solve the problem over the range
0<α < 1 independent ofR, being a function of z, which
would otherwise further complicate the mesh scheme
in the non-rectangular simulation domain. Besides the
shock-like boundary, velocity instabilities for steep cone
geometry in cylindrical coordinates should be further
studied, because cylindrical form equation matches
physical geometry better and may be easily applied in
reactor physics or thermal hydraulics. Besides, although
the recommended methods give preferable agreements
with the referenced experimental results, the agree-
ments of relative vertical velocity do not suffice to val-
idate the absolute value of vertical velocity in reality,
hence explicit experiments are expected for a better val-
idation.

Two pebble burnup-related issues, which are the
pebble residence time prediction and the channel
scheme in the realistic HTR-PM geometry core, are
investigated with the velocity profiles. The pebble res-
idence times along streamlines are calculated out with
the streamlines depicted by the integration of the veloc-
ity profile. By reference to the mean residence time
ratio in previous research, two different axial eight-
channel schemes, which are respectively based on the
similar streamline residence time principle and the

equal-volume channel principle, are proposed and
compared. Furthermore, due to the complex evaluation
of diffusion length B in reactor core, the impacts of var-
ied B on pebble residence time and channel scheme are
investigated. It is concluded that an increased B would
give a more gentle and uniform picture of mean res-
idence time in both schemes, and the eight-channel
scheme 1 is more accurate and appropriate for a big B
case. This B impact could be eventually attributed to
the fact that vertical velocity increases with B in the
central core region but decreases with B in the bound-
ary region. The two channel schemes give identical
general mean residence time ratio, but they differ in
basic principles and final results, and no conclusions on
the scheme preference are made. Moreover, both chan-
nel schemes are proposed by previous experience and
will be adjusted to be more appropriate and complete
according to subsequent burnup calculation.

In spite of the advantages of mathematical simplicity
and completeness, however, the kinematic model with
the only fixed parameter for certain geometry cannot
exactly simulate some regions. It is found that the dif-
fusion length not only depends on the pebble property,
but also increases with the height and varies with the
slope angle. As the solution for precisely determining B
is still lacking, B-induced inaccuracy can impact core
physics analysis in PBR applications as verified in this
paper. Future work on the functional relation between
B and the geometrical parameters is expected to better
describe the general field with our future DEM results
on HTR-PM. Studies on other advanced continuum-
based theories/models are planned to help investigate
the microscopic justification of B as well.
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