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Agenda

• Can Machine Learn from Source Code, and Why
– Be Inspired by Natural Language, Naturalness

• How Machine learns from Source Code
– Source Code Comprehension
– Capture Features of Source Code

• Learn What
– Learn Task-Specific Knowledge and/or tacit knowledge
– AiXCoder: a programming assistant

• What Next
– Long Way to Go for Learning Knowledge what we Mean
– Combine with Knowledge Graph



Human Exchange Knowledge using 
Natural Language

• Human beings communicate and exchange knowledge 
with each other
–Teaching, reading, speaking, ……, sharing knowledge

• The system of communication and knowledge 
exchanging among human beings is natural language
–which is an ordinary, instinctive part of everyday life

• Human being Gain most of the Knowledge via 
Learning from Natural Language



• Although natural languages have complex forms of 
expressive
–Most human utterances are far simpler and much more 

repetitive and predictable

• That leads to the revolution in NLP with rich 
resources and advanced techniques
–help to automatically extract knowledge from natural 

language documents

Naturalness of Natural Language led to 
Revolution of NLP



Techniques for the NLP

• 60s, Dictionary and grammar-based efforts
• 70s-80s, logic and formal semantics
– That shows: dealing with NLP from the first principles is 

too cumbersome to perform practical tasks at scale
• 80s, corpus-based statistically rigorous method
• Later, lots of deep techniques …..



• Use advanced NLP to analyze text and extract meta-
data from content such as concepts, entities, 
keywords, categories, sentiment, emotion, relations, 
and semantic roles. 

• Apply custom annotation models developed using 
Watson Knowledge Studio to identify industry/domain 
specific entities and relations in unstructured text 
with Watson NLU.

Natural Language Understanding - IBM Cloud



• Natural language was invented in human social life and 
evolves with the evolution of human social life 
– Inherent naturalness

• While, Program languages, artificial languages
– instead of being an act of communication, from one human to 
another
– they are ways to tell computers what to do

Natural Language and Program 
Language

A. Hindle, E. T. Barr, M. Gabel, Z. Su and P. Devanbu, On the Naturalness of 
Software, Communication of the ACM, 59(5): 122-131, 2016



Communication with both Human and 
Machine

Let us change our traditional attitude 
to the construction of programs: 

Instead of imagining that our main 
task is to instruct a computer what 
to do, let us concentrate rather on 
explaining to human beings what we 

want a computer to do

Knuth, D. E. Literate programming, Comput. J. 1984

A. Hindle, E. T. Barr, M. Gabel, Z. Su and P. Devanbu, On the Naturalness of 
Software, Communication of the ACM, 59(5): 122-131, 2016

Program

Exchanging 
Knowledge ?



Techniques for the NLP Transformed to Program 
Language Process

• Source code in program languages exhibits a good level of 
repetitive and predictability
– e.g. “for (int := 0, i<n, i++)” occur frequently, name convention, …

• Code regularities / patterns can also be captured by like 
the n-gram statistical language model ?
– at lexical level
– at semantic level in the sense of 

• semantic annotations, e.g. date types, 
• sematic roles, e.g. variable, operator, keyword, function call, …
• pairwise association, e.g. begin-end, ……
• etc.



Motivation of Learning from the Source 
Code

Code Intent

Business 
Requirements

Embedding Business 
Strategies to fulfill 
the Requirements 

Be Separated or the Intent is ignored

The problems:
• The code is not easily understandable
• The business strategies are `lost’
• The software is hard to maintain
• ……



Code Intent

Code Comprehension

Code Generation

The Purpose to Learn from Source Code

Business 
Requirements

Embedding Business 
Strategies to fulfill 
the Requirements 



Agenda

• Can Machine Learn from Source Code, and Why
– Be Inspired by Natural Language, naturalness

• How Machine learns from Source Code
– Code/Program/Software Comprehension
– Find the Features of Source Code

• Learn What
– Learn Task Specific Knowledge and tacit knowledge
– AiXCoder: A programming assistant

• What can Do Next
– Combine with Knowledge Graph



Big Code Base

Code Representation Model

COde Intent

The Possibilities

Open source 
movement

Legacy 
software

Out Sourcing 
Annotation



Code
Representa
tion Model

Sequence
Model

Token Sequence

AST Sequence

API Sequence

Character
Sequence

Structure
Model

Tree Structure

Graph Structure

Execution
Sequence

Types of Code Representation Models



Code GenerationCode Comprehension

Code Recognition
Code Pattern Detection

Code to NL

————

——————-———
———

——————

• Code Clone Detection

• Code Classification

• Bad Smell Detection
• Code Defect Detection
• Bug Localization • Code Completion

• Code Refactoring
• Bug Auto-fixing

• Commit Message Generation

• Code Comments Generation

• Code Summarization

Code Representation Model

• Code Generation
————

————

• Malicious Code Detection

Usage Scenarios of Code Representation Models



• Vocabulary: In natural language, the vocabulary is 
usually limited to the most common words, e.g., 30,000 
words, and words outside the vocabulary are treated as 
unknown words

• But for source code,

The Challenges and Opportunities to Use 
Techniques for NLP in Source Code Learning

85% identifiers and 
30% tokens will be 
treated as <UNK>, if 

using the most 
common 30000 

tokens
That may make the 
techniques useless.



• Structure: Source code is strong structured while 
natural language text is weakly structured
– Program contains explicit and hierarchical structure
• How to take advantage of rich and unambiguous structure information 
of source code to boost effectiveness

– Program contains code blocks of different granularity, e.g. 
statements, loops, methods, classes, etc.
• They are nested and composable. The nesting can be very deep, 
leading to long dependency
• There are differences in semantics between code blocks

The Challenges and Opportunities to Use 
Techniques for NLP in Source Code Learning



• Not only the sequence of the sentences / tokens / 
characters, Different Flows imply Semantics: 
– e.g. control flow, data flow, these capture the executive 

semantics of program, which is closer to the functionalities
• But these flows led to the graphical structure that is 

much more difficult to deal with

The Challenges and Opportunities to Use 
Techniques for NLP in Source Code Learning



(1) task oriented: build a 
model via training for 
specific tasks, like 
translation,  cloze, dialog, 
etc.

(2) general purpose: 
build a model for 
entity/relation 
identification to build like 
knowledge graph for 
human

For machine 
learning 
from 

Natural 
Language

(1) task oriented: build a 
model via training for 
specific tasks, like code 
summarization,  code 
searching, code clone 
detection, code bad smell 
detection, etc.

(2) general purpose: 
build a model for what ? 

For machine 
learning 

from Source 
code:

The Purpose of Learning from Language



Source
Code

Representation
Model

Distributed
Representation

Source Code
Data Set

Learning Target
/Labels

Learning
Target

Train

Apply Source Code
Sample Target

Code Comprehension Deep Learning
Paradigm



Requirement

Representation
Model

Distributed
Representation

Code

Code

Train

Apply Input

Input

Code

Generation
Model

Distributed
Representation

Code Generation Deep Learning Paradigm
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Code Summarization: 
compared with machine translation

Research Questions:
1) Source code is structured, 
e.g. AST; How to sequencialize
the AST tree ?
2) How to deal with the 
problem of Out of vocabulary ?
3) Is external knowledge useful 
to make improvement ?



Xing Hu, Ge Li, Xia Xin, David Lo, Zhi Jin, Deep Code Comment Generation, ICPC 2018 (ACM Distinguish Paper Award)
Xing Hu, Ge Li, Xin Xia, David Lo, Zhi Jin, Deep Code Comment Generation with  hybrid lexical and syntactical 
information, Empirical Software Engineering, 25(3): 2179-2217 (2020)

Code Summarization: 
Structure and Out-of-Vocabulary

1) Source code is structured;
How to sequencialize the AST tree
2) Out of vocabulary: Using `type’ 

instead of <UNK> token



Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, Zhi Jin, Summarizing Source Code with 
Transferred API Knowledge, IJCAI 2018

Code Summarization: 
with API Knowledge Argumentation

What we learn here: Integrating external 
knowledge is beneficial and effective. That makes 

the approach significantly outperforms others.

1) Training a model that builds the mappings 
from API sequence to its corresponding natural 

language description;
2) Transferring the API knowledge to the code 

summarization task



Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, Zhi Jin, Code Generation as a Dual Task of Code 
Summarization, NeurIPS 2019

Code Summarization: 
Code Generation as a Dual Task of Code Summarization

Translate 
code to 

comments

Translate natural 
language 

description to 
source code 

snippet

adding regularization terms in 
the loss function to constrain 

the duality between two 
models
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Code Completion:
Self-Attention Architecture with Multi-Task Learning

ü How to capture the hierarchical structural 
information

• the path from the predicting node to the root 
node

ü How to deal with very long-term dependency
• Adopt transformer-XL as the base language 

model
ü Code completion is not a single task

• need multiple task learning



Fang Liu, Ge Li, Yunfei Zhao, Zhi Jin, Multi-task Learning based Pre-trained Language 
Model for Code Completion, ASE 2020, Accepted.

Code Completion:
Multi-task Learning based Pre-trained Language Model

Masked bidirectional language 
model: mask the identifiers. 
The objective is learning to 
predict the masked tokens 
based on the bidirectional 

context.

Next Code Segment Prediction: 
understand the relationships 
between code segments by 
pre-training a binarized next 

code segment predicting task

Unidirectional Language 
Modeling: left-to-right 

language modeling task 
because for the generation 
(completion), only leftward 

contextual tokens are allowed



Wenhan Wang, Ge Li, Bo Ma, Xin Xia, Zhi Jin, Detecting Code Clones with Graph 
Neural Network and Flow-Augmented Abstract Syntax Tree,. (SANER 2020)

Code Clone Detection:
Graph Neural Network and Flow-Augmented AST

The challenge is Detect the semantic 
similarity on the implementation of 

functionalities
Explicitly augment the control/data flow 
with AST to capture the execution traces

Are they similar?
Both syntactic 
and semantic 



Lili Mou, Ge Li, Lu Zhang, Tao Wang, Zhi Jin, Convolutional Neural Networks over Tree Structures for 
Programming Language Processing, AAAI 2016
Lili Mou, Zhi Jin, Tree-Based Convolutional Neural Networks: Principles and Applications, Springer 2018.

CNN over Tree Structure, AST



Modular Tree Network for Source Code Representation
Learning

different types have 
different meanings on the 
structure
The idea is different 
neural modules for 
different subtrees

AST contains 
multiple subtree 
types: For, While, 
If…

Wenhan wang, Ge Li, Sijie Shen, Xin Xia and Zhi Jin, Modular Tree Network 
for Source Code Representation Learning, ACM TOSEM (accepted)



aiXcoder2.0上线一个月
国际下载量超过13万！





智能代码补全引擎



智能代码搜索引擎



24 Keystrokes
With aiXcoder

84 Keystrokes
With TabNine

Source Code: https://www.kite.com/

vs. Others





Agenda

• Can Machine Learn from Source Code, and Why
– Be Inspired by Natural Language, naturalness

• How Machine learns from Source Code
– Code/Program/Software Comprehension
– Find the Features of Source Code

• Learn What
– Learn Task Specific Knowledge and tacit knowledge
– AiXCoder

• What Left and What are Next



• From finest grain to coarser 
and coarser, until be able 
to extract entity/concept 
level tokens
–Character level
– Identifier/keyword token level
–Structure level
–Execution flow level
–……

Software Automation, Long Way to Go

Code
Inten
t

Code Comprehension

Code Generation



Software Automation, Long Way to Go

Can we across the 
boundary and build  the 
real link between the 
digital world and the 
business/real world ? 

If yes, how ?

Code Intent
Code Comprehension

Code Generation

Code Generation

Code 
Comprehension

What are 
missing ?

Still in Source 
Code Program 

Language Domain



Software Automation, Long Way to Go

Code Intent
Code Comprehension

Code Generation

Code Generation

Code 
Comprehension

From Button to Up
Character level
Identifier/keyword token level
Structure level
Method level
Class level
……

From Static to Dynamic
Data Flow
Control Flow
Execution Flow
……

From Intent to Code: 
Specialization and Decomposition

From Code to Intent: 
Abstraction and Composition

?

The Answers: 
Domain Knowledge;

The Combination;
Open Assets: Source Code, 

Model, Design, ……;
……..



Thank you for your attention!


