
Learning from Source Code

Prof. Dr. Zhi Jin

Key Laboratory of High Confidence Software Technologies (MoE),
Peking University, China

zhijin@pku.edu.cn

30 Aug. 2020, KSEM2020, Hangzhou

Agenda

• Can Machine Learn from Source Code, and Why
– Be Inspired by Natural Language, Naturalness

• How Machine learns from Source Code
– Source Code Comprehension
– Capture Features of Source Code

• Learn What
– Learn Task-Specific Knowledge and/or tacit knowledge
– AiXCoder: a programming assistant

• What Next
– Long Way to Go for Learning Knowledge what we Mean
– Combine with Knowledge Graph

Human Exchange Knowledge using
Natural Language

• Human beings communicate and exchange knowledge
with each other
–Teaching, reading, speaking, ……, sharing knowledge

• The system of communication and knowledge
exchanging among human beings is natural language
–which is an ordinary, instinctive part of everyday life

• Human being Gain most of the Knowledge via
Learning from Natural Language

• Although natural languages have complex forms of
expressive
–Most human utterances are far simpler and much more

repetitive and predictable

• That leads to the revolution in NLP with rich
resources and advanced techniques
–help to automatically extract knowledge from natural

language documents

Naturalness of Natural Language led to
Revolution of NLP

Techniques for the NLP

• 60s, Dictionary and grammar-based efforts
• 70s-80s, logic and formal semantics
– That shows: dealing with NLP from the first principles is

too cumbersome to perform practical tasks at scale
• 80s, corpus-based statistically rigorous method
• Later, lots of deep techniques …..

• Use advanced NLP to analyze text and extract meta-
data from content such as concepts, entities,
keywords, categories, sentiment, emotion, relations,
and semantic roles.

• Apply custom annotation models developed using
Watson Knowledge Studio to identify industry/domain
specific entities and relations in unstructured text
with Watson NLU.

Natural Language Understanding - IBM Cloud

• Natural language was invented in human social life and
evolves with the evolution of human social life
– Inherent naturalness

• While, Program languages, artificial languages
– instead of being an act of communication, from one human to
another
– they are ways to tell computers what to do

Natural Language and Program
Language

A. Hindle, E. T. Barr, M. Gabel, Z. Su and P. Devanbu, On the Naturalness of
Software, Communication of the ACM, 59(5): 122-131, 2016

Communication with both Human and
Machine

Let us change our traditional attitude
to the construction of programs:

Instead of imagining that our main
task is to instruct a computer what
to do, let us concentrate rather on
explaining to human beings what we

want a computer to do

Knuth, D. E. Literate programming, Comput. J. 1984

A. Hindle, E. T. Barr, M. Gabel, Z. Su and P. Devanbu, On the Naturalness of
Software, Communication of the ACM, 59(5): 122-131, 2016

Program

Exchanging
Knowledge ?

Techniques for the NLP Transformed to Program
Language Process

• Source code in program languages exhibits a good level of
repetitive and predictability
– e.g. “for (int := 0, i<n, i++)” occur frequently, name convention, …

• Code regularities / patterns can also be captured by like
the n-gram statistical language model ?
– at lexical level
– at semantic level in the sense of

• semantic annotations, e.g. date types,
• sematic roles, e.g. variable, operator, keyword, function call, …
• pairwise association, e.g. begin-end, ……
• etc.

Motivation of Learning from the Source
Code

Code Intent

Business
Requirements

Embedding Business
Strategies to fulfill
the Requirements

Be Separated or the Intent is ignored

The problems:
• The code is not easily understandable
• The business strategies are `lost’
• The software is hard to maintain
• ……

Code Intent

Code Comprehension

Code Generation

The Purpose to Learn from Source Code

Business
Requirements

Embedding Business
Strategies to fulfill
the Requirements

Agenda

• Can Machine Learn from Source Code, and Why
– Be Inspired by Natural Language, naturalness

• How Machine learns from Source Code
– Code/Program/Software Comprehension
– Find the Features of Source Code

• Learn What
– Learn Task Specific Knowledge and tacit knowledge
– AiXCoder: A programming assistant

• What can Do Next
– Combine with Knowledge Graph

Big Code Base

Code Representation Model

COde Intent

The Possibilities

Open source
movement

Legacy
software

Out Sourcing
Annotation

Code
Representa
tion Model

Sequence
Model

Token Sequence

AST Sequence

API Sequence

Character
Sequence

Structure
Model

Tree Structure

Graph Structure

Execution
Sequence

Types of Code Representation Models

Code GenerationCode Comprehension

Code Recognition
Code Pattern Detection

Code to NL

————

——————-———
———

——————

• Code Clone Detection

• Code Classification

• Bad Smell Detection
• Code Defect Detection
• Bug Localization • Code Completion

• Code Refactoring
• Bug Auto-fixing

• Commit Message Generation

• Code Comments Generation

• Code Summarization

Code Representation Model

• Code Generation
————

————

• Malicious Code Detection

Usage Scenarios of Code Representation Models

• Vocabulary: In natural language, the vocabulary is
usually limited to the most common words, e.g., 30,000
words, and words outside the vocabulary are treated as
unknown words

• But for source code,

The Challenges and Opportunities to Use
Techniques for NLP in Source Code Learning

85% identifiers and
30% tokens will be
treated as <UNK>, if

using the most
common 30000

tokens
That may make the
techniques useless.

• Structure: Source code is strong structured while
natural language text is weakly structured
– Program contains explicit and hierarchical structure
• How to take advantage of rich and unambiguous structure information
of source code to boost effectiveness

– Program contains code blocks of different granularity, e.g.
statements, loops, methods, classes, etc.
• They are nested and composable. The nesting can be very deep,
leading to long dependency
• There are differences in semantics between code blocks

The Challenges and Opportunities to Use
Techniques for NLP in Source Code Learning

• Not only the sequence of the sentences / tokens /
characters, Different Flows imply Semantics:
– e.g. control flow, data flow, these capture the executive

semantics of program, which is closer to the functionalities
• But these flows led to the graphical structure that is

much more difficult to deal with

The Challenges and Opportunities to Use
Techniques for NLP in Source Code Learning

(1) task oriented: build a
model via training for
specific tasks, like
translation, cloze, dialog,
etc.

(2) general purpose:
build a model for
entity/relation
identification to build like
knowledge graph for
human

For machine
learning
from

Natural
Language

(1) task oriented: build a
model via training for
specific tasks, like code
summarization, code
searching, code clone
detection, code bad smell
detection, etc.

(2) general purpose:
build a model for what ?

For machine
learning

from Source
code:

The Purpose of Learning from Language

Source
Code

Representation
Model

Distributed
Representation

Source Code
Data Set

Learning Target
/Labels

Learning
Target

Train

Apply Source Code
Sample Target

Code Comprehension Deep Learning
Paradigm

Requirement

Representation
Model

Distributed
Representation

Code

Code

Train

Apply Input

Input

Code

Generation
Model

Distributed
Representation

Code Generation Deep Learning Paradigm

Agenda

• Can Machine Learn from Source Code, and Why
– Be Inspired by Natural Language, naturalness

• How Machine learns from Source Code
– Code/Program/Software Comprehension
– Find the Features of Source Code

• Learn What
– Learn Task Specific Knowledge and tacit knowledge
– AiXCoder: A programming assistant

• What can Do Next
– Combine with Knowledge Graph

Code Summarization:
compared with machine translation

Research Questions:
1) Source code is structured,
e.g. AST; How to sequencialize
the AST tree ?
2) How to deal with the
problem of Out of vocabulary ?
3) Is external knowledge useful
to make improvement ?

Xing Hu, Ge Li, Xia Xin, David Lo, Zhi Jin, Deep Code Comment Generation, ICPC 2018 (ACM Distinguish Paper Award)
Xing Hu, Ge Li, Xin Xia, David Lo, Zhi Jin, Deep Code Comment Generation with hybrid lexical and syntactical
information, Empirical Software Engineering, 25(3): 2179-2217 (2020)

Code Summarization:
Structure and Out-of-Vocabulary

1) Source code is structured;
How to sequencialize the AST tree
2) Out of vocabulary: Using `type’

instead of <UNK> token

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, Zhi Jin, Summarizing Source Code with
Transferred API Knowledge, IJCAI 2018

Code Summarization:
with API Knowledge Argumentation

What we learn here: Integrating external
knowledge is beneficial and effective. That makes

the approach significantly outperforms others.

1) Training a model that builds the mappings
from API sequence to its corresponding natural

language description;
2) Transferring the API knowledge to the code

summarization task

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, Zhi Jin, Code Generation as a Dual Task of Code
Summarization, NeurIPS 2019

Code Summarization:
Code Generation as a Dual Task of Code Summarization

Translate
code to

comments

Translate natural
language

description to
source code

snippet

adding regularization terms in
the loss function to constrain

the duality between two
models

O

O

Task-specific output layers

Partial AST encoder

h hh ... h

h hh ... h Pconcat

concat

concat

Path2root encoder

p p p p

1

2
t

t

潮 潮 潮 潮

潮潮潮潮

...

...

Y1
t

Y2
t

FunctionDefbodyReturnBinOp

(predicting next type)

(predicting next value)

t
1

t
2

t
3

t
1

t
2

t
3

t
m-2

t
m-1

t
m

t
m

t
1

t
m

m
t

...

...

...

...

x1 x2 x3 xt

FunctionDef identifier name[add] NameLoad[a]Type Value

xL xL+2xL+1

...

...

...

...

body Return BinOp

...

ht
nhL+2

nhL+1
nhL

nh3
nh2

nh1
n

...

Code Completion:
Self-Attention Architecture with Multi-Task Learning

ü How to capture the hierarchical structural
information

• the path from the predicting node to the root
node

ü How to deal with very long-term dependency
• Adopt transformer-XL as the base language

model
ü Code completion is not a single task

• need multiple task learning

Fang Liu, Ge Li, Yunfei Zhao, Zhi Jin, Multi-task Learning based Pre-trained Language
Model for Code Completion, ASE 2020, Accepted.

Code Completion:
Multi-task Learning based Pre-trained Language Model

Masked bidirectional language
model: mask the identifiers.
The objective is learning to
predict the masked tokens
based on the bidirectional

context.

Next Code Segment Prediction:
understand the relationships
between code segments by
pre-training a binarized next

code segment predicting task

Unidirectional Language
Modeling: left-to-right

language modeling task
because for the generation
(completion), only leftward

contextual tokens are allowed

Wenhan Wang, Ge Li, Bo Ma, Xin Xia, Zhi Jin, Detecting Code Clones with Graph
Neural Network and Flow-Augmented Abstract Syntax Tree,. (SANER 2020)

Code Clone Detection:
Graph Neural Network and Flow-Augmented AST

The challenge is Detect the semantic
similarity on the implementation of

functionalities
Explicitly augment the control/data flow
with AST to capture the execution traces

Are they similar?
Both syntactic
and semantic

Lili Mou, Ge Li, Lu Zhang, Tao Wang, Zhi Jin, Convolutional Neural Networks over Tree Structures for
Programming Language Processing, AAAI 2016
Lili Mou, Zhi Jin, Tree-Based Convolutional Neural Networks: Principles and Applications, Springer 2018.

CNN over Tree Structure, AST

Modular Tree Network for Source Code Representation
Learning

different types have
different meanings on the
structure
The idea is different
neural modules for
different subtrees

AST contains
multiple subtree
types: For, While,
If…

Wenhan wang, Ge Li, Sijie Shen, Xin Xia and Zhi Jin, Modular Tree Network
for Source Code Representation Learning, ACM TOSEM (accepted)

aiXcoder2.0上线一个月
国际下载量超过13万！

智能代码补全引擎

智能代码搜索引擎

24 Keystrokes
With aiXcoder

84 Keystrokes
With TabNine

Source Code: https://www.kite.com/

vs. Others

Agenda

• Can Machine Learn from Source Code, and Why
– Be Inspired by Natural Language, naturalness

• How Machine learns from Source Code
– Code/Program/Software Comprehension
– Find the Features of Source Code

• Learn What
– Learn Task Specific Knowledge and tacit knowledge
– AiXCoder

• What Left and What are Next

• From finest grain to coarser
and coarser, until be able
to extract entity/concept
level tokens
–Character level
– Identifier/keyword token level
–Structure level
–Execution flow level
–……

Software Automation, Long Way to Go

Code
Inten
t

Code Comprehension

Code Generation

Software Automation, Long Way to Go

Can we across the
boundary and build the
real link between the
digital world and the
business/real world ?

If yes, how ?

Code Intent
Code Comprehension

Code Generation

Code Generation

Code
Comprehension

What are
missing ?

Still in Source
Code Program

Language Domain

Software Automation, Long Way to Go

Code Intent
Code Comprehension

Code Generation

Code Generation

Code
Comprehension

From Button to Up
Character level
Identifier/keyword token level
Structure level
Method level
Class level
……

From Static to Dynamic
Data Flow
Control Flow
Execution Flow
……

From Intent to Code:
Specialization and Decomposition

From Code to Intent:
Abstraction and Composition

?

The Answers:
Domain Knowledge;

The Combination;
Open Assets: Source Code,

Model, Design, ……;
……..

Thank you for your attention!

