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We prepare and study strongly interacting two-dimensional Bose gases in the superfluid, the classical

Berezinskii-Kosterlitz-Thouless (BKT) transition, and the vacuum-to-superfluid quantum critical regimes.

Awide range of the two-body interaction strength 0:05< g< 3 is covered by tuning the scattering length

and by loading the sample into an optical lattice. Based on the equations of state measurements, we extract

the coupling constants as well as critical thermodynamic quantities in different regimes. In the superfluid

and the BKT transition regimes, the extracted coupling constants show significant down-shifts from

the mean-field and perturbation calculations when g approaches or exceeds one. In the BKT and the

quantum critical regimes, all measured thermodynamic quantities show logarithmic dependence on

the interaction strength, a tendency confirmed by the extended classical-field and renormalization

calculations.
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Two-dimensional (2D) Bose gases are an intriguing
system to study the interplay between quantum statistics,
fluctuations, and interaction. For noninteracting bosons in
2D, fluctuations prevail at finite temperatures and Bose-
Einstein condensation occurs only at zero temperature.
The presence of interaction can drastically change the
picture. With repulsive interactions, fluctuations are
reduced and superfluidity emerges at finite temperature
via the Berezenskii-Kosterliz-Thouless (BKT) mechanism
[1,2]. Interacting Bose gases in two dimensions and BKT
physics have been actively investigated in many condensed
matter experiments [3–7]. In cold atoms, the BKT transi-
tion and the suppression of fluctuations are observed based
on 2D gases in the weak interaction regimes [8–11].

Extensive theoretical research on 2D Bose systems
addresses the role of interactions in the superfluid phase
[12–17] and near the BKT critical point [18,19]. In the
weak interaction regime, the classical �4 field theory
[18,19] predicts the logarithmic corrections to the critical
chemical potential �c ¼ kBTðg=�Þ lnð13:2=gÞ and the
critical density nc ¼ ��2

dB lnð380=gÞ for small two-body

interaction strength g < 0:2. Here, kBT is the thermal
energy and �dB is the thermal de Broglie wavelength.
The classical-field predictions are consistent with weakly
interacting 2D gas experiments [9–11,20].

Intriguing dependence on the interaction strength g is
also predicted in the ground state properties of interacting
2D Bose gases. Popov showed that the ground state
chemical potential � deviates from the mean-field result
�MF¼@

2gn=m logarithmically [13]. Here, m is the mass
of the boson, n is the density, and 2�@ is the Planck
constant. Defining the superfluid coupling constant as G¼
m=ð@2�Þ, where �¼@n=@� is the compressibility, we can
summarize the perturbation expansion result of G as [12]

G¼ g

1þAg lngþBgþCg2 lngþDg2þ��� ; (1)

where A ¼ �1=4� [13], B ¼ ðln4� 2�� 2Þ=4� [14],
C ¼ �1=16�2 [12], the value of D remains controversial
[15,16], and � is Euler’s constant. To the best of our
knowledge, there is no systematic experimental study test-
ing Eq. (1).
Beyond perturbation, calculations based on the renor-

malized classical Ginzburg-Landau theory [21,22] at finite

temperature yield the result G ¼ 2�g
2�þg [23]. A recent non-

perturbative renormalization-group (NPRG) calculation
also provides complete thermodynamic calculations.
Near the vacuum-to-superfluid quantum critical point,
where the chemical potential � ¼ 0 and the temperature
T ¼ 0, dimensionless pressure ~P is approximated to be
~P ¼ g2ðe�ðg=9:1ÞWð9:1=gÞÞ, where g2ðxÞ ¼

P1
k¼1 x

k=k2 is

the Bose function. WðxÞ is the Lambert function satisfy-

ing WðxÞeWðxÞ ¼ x, and the dimensionless density is

~n ¼ � lnð1� e�ðg=3:8ÞWð3:8=gÞÞ [24,25].
In this Letter, we extend our previous work on weakly-

interacting 2D Bose gases [11] into the strong interaction
regime. We test the above theoretical predictions in differ-
ent regimes (see Fig. 1) and our measurements show
significant deviations from the mean-field theory as well
as the logarithmic dependence on the interaction strength.
A continuous evolution of a 2D quantum gas from the

weak interaction (g � 1) to the strong interaction (g * 1)
regime is achieved by tuning the magnetic field near a
Feshbach resonance [26] and by combining experiments
with and without an optical lattice. Optical lattices enhance
the interaction strength by increasing the on site density
and the effective mass m�. The definition of g for a 2D gas
(no lattice) is given in Refs. [27–29] and for a 2D lattice gas
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given in Ref. [30]. Both definitions are mutually consistent
and can be connected to the 2D interaction strength
g ¼ 4�=j lnna22Dj, where a2D is the scattering length in

two dimensions [31].
We start our experiment by preparing a degenerate Bose

gas of cesium atoms in a two-dimensional optical trap
[11,30]. The atoms are polarized in the lowest hyperfine
ground state jF ¼ 3; mF ¼ 3i, where F is the total angular
momentum and mF is its projection. The radial and
axial angular trap frequencies are ð!x;!y;!zÞ ¼
2�� ð8; 10; 1900Þ Hz. The sample contains 2� 104

atoms with temperature T ¼ 13–20 nK, well below the
excitation energy in the z direction such that the sample
is in the quasi-2D regime [27]. We use a magnetic field to
tune the atomic scattering length a ¼ 40–580a0 � lz near
a low field s-wave Feshbach resonance where scattering
length crosses zero at 17 G [32]. Here, a0 is the Bohr radius
and lz ¼ 200 nm is the harmonic oscillator length in
the z direction. The corresponding interaction strength is
g ¼ 0:05–0:77.

To further enhance the interaction, we load the 2D gas
into an optical lattice. A 2D square lattice is formed with
a lattice constant of 532 nm, and the depth is set to be
V ¼ 7:1ER ¼ kB � 450 nK, where the tunneling energy is
t ¼ kB � 2:5 nK, the effective mass is m� ¼ 2:9ð1Þm, ER

is the recoil energy, and kB is the Boltzmann constant. At
this lattice depth, the system is far from the unity-filling
Mott insulator phase and, for all interaction strengths

we study, the ground state of the system remains in the
superfluid phase. For 2D lattice gases, we can tune the
interaction strength up to g ¼ 2:8.
To ensure thermal equilibrium, we prepare the gases at

different interaction strengths by adiabatically ramping the
magnetic field and the lattice potential. For all 2D gas
experiments, we use a 200 ms magnetic field ramp which
is slow compared to the time scale of the radial motion. For
the 2D lattice experiments, we adopt an adiabatic lattice
potential ramp of 400 ms [33]. The magnetic field ramp is
performed within the first 200 ms of the lattice ramp. For
both the 2D gas and the 2D lattice gas, we monitor the
subsequent density distribution for up to 200 ms after the
ramp and observe no detectable dynamics and insignificant
atom loss [34].
We determine the equations of state by measuring in situ

atomic density profiles based on absorption imaging with
a high resolution objective (numerical aperture ¼ 0:5).
Imaging aberrations are carefully characterized [35]. As
a result, we achieve a spatial resolution of 1:0 �m. The
atomic density is calibrated by the number fluctuation of a
normal gas [11]. The measured density profiles are then
converted into the equation of state nð�; T; gÞ based on
local density approximation [36], where � and T are
determined by fitting the density tail [11,30,37]. Note
that we define the zero of the chemical potential to be
the energy of the lowest available single particle state in
order to compare the equations of state of both 2D gases
and 2D lattice gases.
We plot the equations of state of 2D gases and 2D lattice

gases in the dimensionless form ~n�ð ~�Þ, where ~n� ¼ n��2
dB is

the phase space density, ��
dB ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�m�kBT

p
is the ther-

mal de Broglie wavelength, and ~� ¼ �=kBT is the dimen-
sionless chemical potential [38]. For 2D gases,
the effective mass is m� ¼ m. Samples of the measured
equations of state are shown in Fig. 1. In particular, two
equations of state with a similar g � 0:4, one from a 2D gas
with a ¼ 310a0 and one from a 2D lattice gas with
a ¼ 40a0, are compared in the inset of Fig. 1. The overall
matching behavior of the two equations of state justifies our
use of optical lattices to enhance the interaction. The small
discrepancy near ~� � 0 will be discussed below.
In the superfluid regime, we extract the coupling

constant GSF ¼ m�=ð@2�Þ by evaluating the superfluid
compressibility � ¼ @n=@�; see Fig. 2. The coupling con-
stants show significant down-shifts from the mean-field
prediction when the system enters the strong interaction
regime. Similar tendency is also shown in the Ginzburg-
Landau calculation [22] as well as in a recent work [39]
which includes effective three-body interactions.
In the BKT transition regime, we use the universal

critical behavior of the equations of state to determine
the critical parameters [11,30]. By rescaling and overlap-
ping [40] all the equations of state in the transition regime
according to

FIG. 1 (color online). Equations of state for 2D Bose gases and
2D lattice gases with 0:05 � g � 2:8. The filled circles represent
measurements of 2D gases with (from left to right) g ¼ 0:05
(black), 0.15 (red), 0.24 (blue), 0.41 (green), and 0.66 (purple).
The open circles represent measurements of 2D lattice gases
with (from left to right) g ¼ 0:45 (black), 0.85 (red), 1.2 (blue),
1.9 (green), and 2.8 (purple). The upper blue shaded area is the
superfluid regime, and the red boundary corresponds to the BKT
transition regime. The black dashed line ~� ¼ 0 indicates where
we evaluate the density and pressure for a vacuum-to-superfuid
quantum critical gas. The inset compares the equations of state
of a 2D gas and a 2D lattice gas with an almost identical g � 0:4.
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~n� � ~n�c ¼ H

�
~�� ~�c

Gc

�
; (2)

we obtain the critical phase space density ~n�c, the critical
chemical potential ~�c, and the critical coupling constant
Gc; see Fig. 3. HðxÞ is a generic function that describes the
universal behavior near the BKT transition regime [11].
Remarkably, equations of state of all 2D gas and 2D lattice
gas measurements overlap excellently; see Fig. 3(a) inset.

The extracted critical coupling constants Gc are consis-
tently lower than the mean-field values G ¼ g. On the
other hand, the extracted scaled critical chemical potentials
~�c and scaled critical densities ~n�c follow the logarithmic
dependence on g predicted by the classical-field calcula-
tions [18,19,22]. Our results confirm the crucial role of
interactions in 2D Bose gases and suggest that the exten-
sions of the above theories into the strong interaction
regime capture the general behavior of the thermodynamic
quantities.

Finally, we investigate the pressure and density in the
quantum critical regime. In the lattice, atoms reach the
vacuum-to-superfuid quantum critical regime when
the chemical potential matches the lowest single particle
state, and when the thermal energy is below the ground
band bandwidth [30]. We extend the definition of quantum
criticality to 2D gases [28]. To determine the pressure,
we integrate the density over the chemical potential,
~P�
0 ¼

R
0
�1 ~n�d ~�. The extracted ~P�

0 in 2D gases and 2D

lattice gases are compared with the mean-field and NPRG
calculations [24]; see Fig. 4(a). Here, we observe overall
agreement between experiment and theories. For lattice

gases, in particular, the slightly higher ~P�
0 even in the

weak interaction regime is discussed in Ref. [24] as the
result of finite temperature effect. The densities in
the quantum critical regime ~n�0 also show the expected

logarithmic dependence on the interaction strength. Here,
we observe small systematic deviations from the theories.
To conclude, we report the preparation and thermody-

namic study of stable strongly interacting 2D gases.
Dimensionless coupling constant g as high as 2.8 is
reached by Feshbach tuning in an optical lattice. In the
strong interaction regime, coupling constants show clear
deviations from the mean-field theory. Other thermo-
dynamic quantities in the classical and quantum critical
regimes show strong dependence on g and can be captured
well by extensions of the classical-field theories and the
NPRG calculation. Our results provide new insight into the

FIG. 2 (color online). Coupling constant GSF of strongly
interacting 2D superfluids. We determine GSF by fitting the slope
of the equations of state in the superfluid region for 2D gases
(filled circles) and 2D lattice gases (open circles). Extensions of
theoretical predictions into the strong interaction regime based
on the third-order perturbation expansion [12] (upper green line)
[see Eq. (1)], the mean-field theory (middle red line), and the
Ginzburg-Landau theory [22] (bottom black line) are shown for
comparison. The error bars are dominated by the uncertainty of
the density calibration.

FIG. 3 (color online). Critical coupling constant (a), scaled
critical chemical potential (b), and scaled critical density (c)
determined in the BKT transition regime. By overlapping all
scaled equations of state in the transition regime, shown in the
inset in (a), critical parameters are determined from Eq. (2). The
results from 2D gases (filled circles) and 2D lattice gases (open
circles) are compared to the predictions from the mean-field
theory (red line), the perturbation theory [12] (green line), the
classical-field theory [18] (blue line), and the Ginzburg-Landau
theory [22] (black line).
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crucial role of interactions in the thermodynamics of 2D
gases as well as potential connections to other 2D con-
densed matter systems such as 2D Bose-Einstein conden-
sates of spin triplets [3] and superfluid helium films [4].
Further enhancement of the interaction strength can poten-
tially lead to crystallization of the 2D gas [41].
Investigation on the fluctuation and correlation of strongly
interacting 2D gases will be reported elsewhere.
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