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Observation of scale invariance and universality in
two-dimensional Bose gases
Chen-Lung Hung1, Xibo Zhang1, Nathan Gemelke1{ & Cheng Chin1

The collective behaviour of a many-body system near a continuous
phase transition is insensitive to the details of its microscopic phys-
ics; for example, thermodynamic observables follow generalized
scaling laws near the phase transition1. The Berezinskii–
Kosterlitz–Thouless (BKT) phase transition2,3 in two-dimensional
Bose gases presents a particularly interesting case because the
marginal dimensionality and intrinsic scaling symmetry4 result in
a broad fluctuation regime and an extended range of universal
scaling behaviour. Studies of the BKT transition in cold atoms have
stimulated great interest in recent years5–10, but a clear demonstra-
tion of critical behaviour near the phase transition has remained
elusive. Here we report in situ density and density-fluctuation
measurements of two-dimensionalBose gases of caesiumatdifferent
temperatures and interaction strengths, observing scale-invariant,
universal behaviours. The extracted thermodynamic functions con-
firm the existence of a wide universal region near the BKT phase
transition, and provide a sensitive test of the universality predicted
byclassical-field theory11,12 andquantumMonteCarlo calculations13.
Our experimental results provide evidence for growing density–
density correlations in the fluctuation region, and call for further
explorations of universal phenomena in classical and quantum
critical physics.
In two-dimensional (2D) Bose gases, critical behaviour develops in

the BKT transition regime, where an ordered phase with finite-range
coherence competes with thermal fluctuations and induces a continu-
ous phase transition from normal gas to superfluid with quasi-long-
range order3. In this fluctuation region, a universal and scale-invariant
description of the system is expected through the power-law scaling of
thermodynamic quantities with respect to the coupling strength and a
characteristic length scale12,14—for example, the thermal de Broglie
wavelength (Fig. 1a). Especially for weakly interacting gases at finite
temperatures, the scale invariance prevails over the normal, fluctuation
and superfluid regions because of the density-independent coupling
constant15 and the symmetry of the underlying Hamiltonian4.
In this Letter, we verify the scale invariance and universality of

interacting 2D Bose gases, and identify BKT critical points. We test
the scale invariance of in situ density and density fluctuations of 2D
gases of 133Cs at various temperatures. We study the universality near
the BKT transition by tuning the atomic scattering length using a
magnetic Feshbach resonance16 and observing a universal scaling
behaviour of the equation of state and the quasi-condensate density.
Finally, by comparing the local density fluctuations and the compres-
sibility derived from the density profiles, we provide strong evidence of
a growing density–density correlation in the fluctuation regime.
We begin the experiment by loading a nearly pure 133Cs Bose con-

densate ofN5 23 104 atoms into a single pancake-like optical poten-
tial with strong confinement in the vertical (z) direction and weak
confinement in the horizontal (r) direction17,18. The trapping potential,
V(r,z)~mv2

r r
2=2zmv2

zz
2=2,hasmeanharmonic trapping frequencies

vr5 2p3 10Hz and vz5 2p3 1,900Hz. Here, r denotes the radial
distance to the trap centre and m is the caesium atomic mass. In this

trap, the gas reaches temperatures as low as T5 15 nK and amoderate
peak chemical potential, m0, kBT. The ratio Bvz/m0. Bvz/kBT< 6
indicates that the sample is deeply in the 2D regime with,1% popu-
lation in the vertical excited states. Here, B5 h/2p, h is the Planck
constant, and kB is the Boltzmann constant. The 2D coupling constant
is evaluated according to g~

ffiffiffiffiffi
8p

p
a=lz (ref. 15), where a is the atomic

scattering length and lz5 200nm is the vertical harmonic oscillator
length.We control the scattering length a in the range 2–10 nm, result-
ing in weak coupling strengths g5 0.05–0.26. Here, the density-
dependent correction to g (refs 15, 19) is expected to be small and
negligible (,2%).
We obtain in situ density distributions of 2D gases by performing

absorption imaging perpendicular to the horizontal plane with a com-
mercial microscope objective and a CCD camera18 (see Fig. 1b for
sample images). About 50 images are collected for each experiment
condition, and the average density n and the density variance dn2 are
evaluated pixel-wise (Methods). We obtain the radial density n(r) and
variance dn2(r) profiles (Fig. 2 insets) by accounting for the cloud
anisotropy and performing azimuthal averaging17.
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Figure 1 | Illustration of scale invariance and universality in 2D quantum
gases. a, Scale invariance links any thermodynamic observable at different m
and T via a simple power-law scaling. In a 2D Bose gas with coupling constant
g=1, atomic density n measured at different temperatures (red lines) can be
scaled through constant m/T and n/T contours (dashed lines). Near the BKT
phase transition boundary (green plane), systems with different g5 g1, g2, ...
(blue planes) scale universally. b, In situ density measurements of trapped 2D
gases provide crucial information to test the hypotheses of scale invariance and
universality. Sample images at different scattering lengths a are obtained from
single shots.
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We obtain the equation of state n(m,T) from the averaged density
profile by assigning a local chemical potential m(r)5m02V(r,0) to
each point according to the local density approximation. Both T and
m0 can be determined from the low density wing where the sample is
assumed normal and the density profile can be fitted to a mean-field
formula n(m,T)~{l{2

dB ln½1{ exp (m=kBT{gnl2dB=p)� (ref. 9),
where ldB~h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
is the thermal de Broglie wavelength.

We confirm the scale invariance of a 2D gas by first introducing the
dimensionless, scaled forms of density ~n~nl2dB (phase space density),
fluctuation d~n2~dn2l4dB, and chemical potential ~m~m=kBT , and
showing that the equation of state and the fluctuation satisfy the fol-
lowing forms:

~n~F(~m) ð1Þ

d~n2~G(~m) ð2Þ
where F andG are generic functions. This suggests that both energy and
length scales are set solely by the thermal energy and the de Broglie
wavelength, respectively. An example at g5 0.26 (a5 10nm) is shown
in Fig. 2. Here we show that while the original density and fluctuation
profiles are temperature dependent (Fig. 2 insets), all profiles collapse to
a single curve in the scaled units. At negative chemical potential ~mv0,
the system is normal and can be described by a mean-field model
(dashed lines). In the range0v~mv0:3, the systementers the fluctuation
regime and deviation from themean-field calculation becomes evident.
Crossing from normal gas to this regime, however, we do not observe a

sharp transition feature in the equation of state. At even higher ~mw0:3,
the system becomes a superfluid and the density closely follows amean-
field prediction12 ~n~2p~m=gz ln (2~ng=p{2~m). We notice that the
mean-field theory in the superfluid limit cannot also accurately describe
the system in the fluctuation regime. Transition into theBKT superfluid
phase is most easily seen in the scaled fluctuation d~n2, which crosses
over to a nearly constant value due to the suppression of fluctuation in
the superfluid regime20. In the density profile ~n, a corresponding transi-
tion feature can be found when one computes the derivative L~n=L~m,
that is, the scaled compressibility ~k, as suggested by the fluctuation-
dissipation theorem discussed below. Finally, our measurement sug-
gests that the validity of scale invariance extends to all thermal,
fluctuation and superfluid regimes, a special feature of weakly interact-
ing 2D gases4 which underlies the analysis of a recent experiment21.
We associate the crossover feature in the density fluctuations d~n2 and

the scaled compressibility ~kwith theBKT transition20,22. To estimate the
location of the transition point, we apply an empirical fit to this feature
and determine the critical chemical potential ~mc and the critical phase
space density ~nc (OnlineMethods). Results at different values of g in the
range 0.05 to0.26 are shown inFig. 3c, d andcompared to the theoretical
prediction of ~nc~ ln (j=g) and ~mc~(g=p) ln (jm=g) (ref. 23), where
j5 380 and jm5 13.2 are determined from a classical-field Monte
Carlo calculation11. Our results show good agreement with the theory,
apart from a potential systematic error from the choice of the fit func-
tion, which can account for a down shift of 10% in the fitted values of ~mc
and ~nc.
Further comparisonbetweenprofiles at different interaction strengths

allows us to test the universality of 2DBose gases. Sufficiently close to the
BKT critical point with j~m{~mcjvg, one expects the phase space density
to show a universal behaviour12:

~n{~nc~H(
~m{~mc
g

) ð3Þ

where H is a generic function. Here, density and chemical potential are
offset from the critical values ~nc and ~mc, which remove thenon-universal
dependence on the microscopic details of the interaction12,14.
To test the universality hypothesis, we rescale ~m to ~m=g and look for

critical values ~nc and ~mc such that the equations of state at all values of g
display a universal curve in the phase transition regime (Online
Methods). Indeed, we find that all rescaled profiles can collapse to a
single curve in the fluctuation region{1v(~m{~mc)=gv0 and remain
overlapped in an extended range of j~m{~mcj=gƒ2 (Fig. 3a), which
contrasts with the very different equations of state ~n(~m) at various g
shown in the inset of Fig. 3a. Our result closely follows the classical-
field prediction12 and quantumMonte Carlo calculations13 assuming a
strictly 2Dmean-field contribution; and the fitting parameters (critical
density ~nc and chemical potential ~mc) show proper dependence on g
and are in fair agreement with the prediction of theory11 (Fig. 3c, d).
We emphasize that critical values determined from the density fluc-
tuations (Fig. 3c, d) match well with those determined from the uni-
versal behaviour, indicating that universality is a powerful tool to
determine the critical point from a continuous and smooth density
profile. Similar agreement with the theory of critical densities has also
been reported on the basis of different experiment techniques6,8,10.
Further universal features near the phase transition can be revealed

in the growth of the quasi-condensate density nq~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2{dn2

p
across

the phase transition11,12,24. The quasi-condensate density is a measure
of the non-thermal population in a degenerate Bose gas. A finite quasi-
condensate density does not necessarily imply superfluidity, but can be
responsible for a non-Gaussian distribution observed in momentum
space8. The quasi-condensate density is predicted to be universal near
the critical point, following12

~nq~Q(
~m{~mc
g

) ð4Þ

where Q is a generic function and ~nq~nql
2
dB.
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Figure 2 | Scale invariance of density and its fluctuation. a, Scaled density
(phase space density) ~n~nl2dB as a function of the scaled chemical potential
~m~m=kBT measured at five different temperatures: T5 21nK (filled black
circles), 37 nK (red squares), 42 nK (green triangles), 49 nK (blue diamonds) and
60nK (magenta stars), and coupling strength g5 0.26. Mean-field expectations
for normal gas (dashed line) and superfluid (solid line) are shown for
comparison. Inset, radial density profiles before scaling. b, Scaled fluctuation
d~n2~dn2l4dB at different temperatures.Dashed line is themean-field calculation
basedon the fluctuation-dissipation theorem25. Solid line is an empirical fit to the
crossover feature from which the critical chemical potential ~mc is determined.
Inset, radial fluctuation profiles before scaling. The shaded area marks the
fluctuation region 0v~mv~mc. Error bars, s.d. of the measurement.
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We use both our density and our fluctuation measurements to
evaluate ~nq at various g. Adopting ~mc determined from the universal
behaviour of the density profile, we immediately find that all measure-
ments collapse to a single curve in the range j~m{~mcj=gƒ2with apparent
growth of quasi-condensate density entering the fluctuation region
(Fig. 3b). The generic function Q we determined is in good agreement
with the classical-field12 andquantumMonteCarlo13 calculationswithno
fitting parameters. Both our density and fluctuationmeasurements show
universal behaviours throughout the fluctuation region where a mean-
field description fails, and confirm universality in a 2D Bose gas near the
BKT phase transition12,13.
The generic functions we describe above offer new avenues to inves-

tigate the critical behaviour of the 2D gas. Following the framework of
scale invariance, we compare the dimensionless compressibility
~k~L~n=L~m~F’(~m) and the fluctuation d~n2~G(~m) extracted from the
measurements at g5 0.05 and 0.26 (Fig. 4). In the normal gas regime at
low phase space density (G(~m),F’(~m)v3), a simple equality G5 F9 is
observed. This result is consistent with the fluctuation-dissipation
theorem for a classical grand canonical ensemble25, which gives
kBT LN

Lm ~dN2, where N is the particle number in a detection cell.

In the fluctuation and the superfluid regimes at higher phase space
density, our measurement shows that density fluctuations drop below
the compressibility, G, F9.
Natural explanations for the observed deviation include non-van-

ishing dynamic density susceptibility at low temperature26 and the
emergence of correlations in the fluctuation region27.While the former
explanation is outside the scope of this Letter, we show that the cor-
relation alone can explain our observation. Including correlation, the
compressibility conforms to27,28:

~k(r)~l{2
dB

ð
hd~n(r)d~n(rzr’)id2r’ ð5Þ

~d~n2(r)(1zz) ð6Þ
where h:::i denotes ensemble average and z~
1zn(r)

Ð
½g(2)(r,rzr’){1�d2r’

1zn(r)
Ð
v½g(2)(r,rzr’){1�d2r’

{1 is the relative strength of correla-

tion to local fluctuation d~n2 (ref. 27).Here g(2) is the normalized second-
order correlation function29 and v denotes the effective area of the
resolution limited spot. When the sample is uncorrelated, we have
z5 0; non-zero z suggests finite correlations in the sample. In the fluc-
tuation region shown inFig. 4, observing a lower fluctuation thanwould
be indicated by the compressibility, with z approaching 2, suggests that
the correlation length approaches or even exceeds our imaging cell
dimension,

ffiffiffi
v

p
<2mm. This observation is in agreement with the

expected growth of correlation when the system enters the fluctuation
region. Similar length scales were also observed in the first-order
coherence near the BKT phase transition using an interferometric
method8 and near the superfluid phase transition in three dimensions30.
In summary, based on in situ density measurements at different

chemical potential, temperature and scattering length,wehave explored
and confirmed the global scale invariance of a weakly interacting 2D
gas, aswell as the universal behaviour near the critical point. Our results
provide a detailed description of critical thermodynamics near the BKT
transition, and offer new opportunities to investigate other critical
phenomena near classical or quantum phase transitions. In particular,
we present experimental evidence of the growing correlations in the
fluctuation region through the application of the fluctuation-dissipa-
tion theorem. Further investigations into the correlations will provide

15

10

5

0

–5

15

10

5

0

–2 20

Superfluid

0.0 0.1 0.2 0.3

0.2

0.4

0.0 0.1 0.2 0.3

5

10

–0.5 0.0 0.5

0

15

30

g g

S
c
a
le

d
 q

u
a
s
i-

c
o

n
d

e
n

s
a
te

 d
e
n

s
it
y,

 ñ
q

 ñ
 –

 ñ
c

 ñ

μ̃

 ñ
c

a

b

c d

(   –   
c 
)/gμ̃  μ̃

μ̃ c

Figure 3 | Universal behaviour near the BKT critical point. a, Rescaled
density profiles ~n{~nc measured at various coupling strengths, g5 0.05 (filled
green triangles), 0.13 (blue diamonds), 0.19 (red circles) and 0.26 (magenta
squares). Inset, original equations of state, ~n(~m). b, Scaled quasi-condensate
density ~nq~
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at different interaction strengths. In both plots, Monte

Carlo calculations from ref. 12 (open circles) and ref. 13 (a, open squares for
g5 0.07 and open triangles for g5 0.14; b, open squares) are plotted for
comparison. The shaded area marks the superfluid regime and the solid line in
b shows the superfluid phase space density calculation12. c, d, Critical values ~mc
and ~nc determined from the following methods: universal scaling as shown in
a (see Online Methods; red squares), density fluctuation crossover (see text;
black circles), and Monte Carlo calculations from ref. 11 (solid line).
Experiment values coincide at g5 0.05 identically, as a result of our analysis
(Online Methods). Error bars, s.d. of the measurement.
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new insights into the rich critical phenomena near the transition
point—for instance, critical opalescence and critical slowing.

METHODS SUMMARY
Preparation anddetectionof caesium2DBose gases are similar to thosedescribed in
ref. 18. We adjust the temperature of the sample by applying magnetic field pulses
near a Feshbach resonance to excite the atoms.We then tune the scattering length to
a designated value, followedby 800-mswait time to ensure full thermalizationof the
sample.
Absorption imaging is performed in situ using a strong resonant laser beam,

saturating the sample to reduce the optical thickness. Atom–photon resonant
cross-section and atomic density are independently calibrated. Averaged atom
number Ni and number fluctuation dN2

i at the ith CCD pixel are evaluated
pixel-wise based on images taken under identical experiment conditions. The
photon shot-noise, weakly depending on the sample’s optical thickness, is cali-
brated and removed from themeasured number variance.We correct for the effect
of finite imaging resolution on the remaining number variance using calibration
from dilute thermal gas measurements. The density fluctuation dn2i is obtained
from the recovered atom number variance using dn2i l

2
dB~dN2

i =A, which replaces
the dependence on the CCD pixel area A by a proper area scale l2dB (details in
Online Methods).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Calibration of the atomic surface density and the atom number fluctuation.
Detection of caesium 2D Bose gases is detailed in ref. 18 and the atomic surface
density n is evaluated with schemes similar to those discussed elsewhere31, where
the resonant cross-section s0 is independently calibrated using a thin 3D Bose
condensate with similar optical thickness and the known atom number-to-
Thomas-Fermi radius conversion. The calibrated value of s0 can be compared
to that determined from the atom shot-noise amplitude in dilute 2D thermal gases,
where the noise is evaluated using binned CCD pixels to remove finite resolution
effects. For dilute thermal gases, we expect dN25N, where N is the mean atom
number; we compare the fluctuation amplitude to the mean and extract the value
of s0. Two results agree to within 10% and the residual nonlinearity in the density
calibration is negligible.
WeevaluatetheatomnumbervariancedN2pixel-wisebasedonimagestakenunder

identical experiment conditions. The photon shot-noise contribution dN2
p , which

weakly depends on the sample’s optical thicknessns0, is calibrated and removed from
the atom number fluctuation using dN2

p~(dN2
0=2)½1z

(1zce{ns0 )2

(1zc)2
ens0 �, where dN2

0
is thephotonshot-noisewithoutatomsandc is the ratioof the imagingbeamintensity
to the saturation intensity. Both dN2

0 and c are experimentally calibrated. We then
correct for the effect of finite resolutionon thenumber fluctuation17 by comparing the
atom number variance in a dilute thermal cloud to its mean atom number, using
dN2~N , and applying this calibration to all fluctuationsmeasured at lower tempera-
tures and higher densities.
Density–density correlation in the fluctuationmeasurement. In the fluctuation
measurement, we determine dn2 from the pixel-wise atom number variance using
the formula dn2l2dB~dN2=A, which replaces the dependence on the pixel areaA by
a natural area scale l2dB. This definition, however, does not fully eliminate the
dependence on the imaging resolution spot size v< (2mm)2. In particular, when
the density–density correlation length j approaches or exceeds the resolution, the
measured fluctuation candependon the fixed length scale

ffiffiffi
v

p
, which can complicate

the scaling behaviour.However, we donot see clear deviation of scale invariance and
universality within our measurement uncertainties (Figs 2b and 3b). We attribute
this to the small variation of the non-scale-invariant contributionwithin our limited
range of sample temperature. Further analysis of the correlations and fluctuations is
in progress and the result will be published elsewhere.
Determination of the BKT critical values from the fluctuation data.We use a

hyperbolic function y(~m)~s(~m{~mc){
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2(~m{~mc)

2zw2
q

to empirically fit the
crossover feature of the density fluctuation near the transition region, assuming
d~n2(~m)~Dey(~m), where the critical chemical potential ~mc, the fluctuation in the
superfluid regime D, the slope of the exponential rise s, and the width of the
transition region w are fitting parameters. The critical phase space density is then
determined from the density profile as ~nc~~n(~mc). Other choices of fit functions
give similar results, contributing only small systematics from the choice of different
models.
Obtaining the universal function.H(x): we use the density profiles in the inset of
Fig. 3a to look for critical values ~nc and ~mc such that the equations of state at all
values of g collapse to a single universal curve H(x)~~n(~m){~nc, where
x~(~m{~mc)=g is the rescaled chemical potential. To do this, we take the profile
measured at g5 0.05; gr as the reference, evaluate Hr(x)~~n(grxz~mc,r){~nc,r
using the critical values ~nc,r and ~mc,r determined from the fluctuation crossover
feature, and smoothly interpolate the data to make a continuous reference curve
Hr(x) in the range of jxjƒ1. Using this model, we performminimum x2 fits to the

profilesmeasured at all other values of g according to ~n(~m)~~nczHr(
~m{~mc
g

), with

only ~nc and ~mc as free parameters. This procedure successfully collapses all density
profiles (see Fig. 3a), and is independent of any theoretical model. The resulting
critical values ~nc and ~mc are plotted in Fig. 3c, d.

31. Reinaudi, G., Lahaye, T., Wang, Z. & Guéry-Odelin, D. Strong saturation absorption
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RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2011


	Observation of scale invariance and universality in two-dimensional Bose gases
	Main
	Methods Summary
	Online Methods
	Calibration of the atomic surface density and the atom number fluctuation
	Density–density correlation in the fluctuation measurement
	Determination of the BKT critical values from the fluctuation data
	Obtaining the universal function

	Acknowledgements
	References


