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Abstract. Critical behavior developed near a quantum phase transition,
interesting in its own right, offers exciting opportunities to explore the
universality of strongly correlated systems near the ground state. Cold atoms
in optical lattices, in particular, represent a paradigmatic system, for which the
quantum phase transition between the superfluid and Mott insulator states can
be externally induced by tuning the microscopic parameters. In this paper, we
describe our approach to study quantum criticality of cesium atoms in a two-
dimensional (2D) lattice based on in situ density measurements. Our research
agenda involves testing critical scaling of thermodynamic observables and
extracting transport properties in the quantum critical regime. We present and
discuss experimental progress on both fronts. In particular, the thermodynamic
measurement suggests that the equation of state near the critical point follows
the predicted scaling law at low temperatures.
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1. Introduction

A quantum phase transition occurs in a many-body system at absolute zero temperature when
a new order smoothly emerges in its ground state [1, 2]. Even though a quantum phase
transition occurs at zero temperature, the transition influences the finite-temperature properties
of the many-body system, which leads to possible experimental observations. Near a quantum
phase transition, the many-body system shows universal scaling behaviors, termed as quantum
criticality, with characteristic scaling exponents determined by basic properties of the system,
such as symmetry and dimensionality [1]. Quantum criticality is of wide research interest
because both spatial and temporal correlations in such systems are expected to follow intriguing
universal relations. Understanding quantum criticality represents a major challenge to our
knowledge of many-body physics.

In contrast to classical phase transitions driven by the competition between energy and
entropy of a system, quantum phase transitions are driven by the competition between different
quantum energy scales [1, 3, 4]. In a system of bosonic atoms confined to optical lattices, the
superfluid (SF)-to-Mott insulator (MI) transition, described by the Bose–Hubbard model [3], is
ideal for studying quantum criticality. In this system, the two competing energy scales are the
tunneling energy t and the on-site interaction U . At zero temperature, two phases are predicted:
the superfluid and Mott insulator phases, as shown in figure 1. In the tunneling-dominated
regime (g ≡ t/U � 1), the system forms a superfluid at low temperatures; in the interaction-
dominated regime (g � 1), the system assumes a Mott insulator phase in the ground state.
When g equals the critical value gc, the ground state of the system is neither a superfluid nor a
Mott insulator. At finite temperatures, the critical point expands into a V-shaped regime where
universal scaling behaviors are expected [1, 5, 6] (see figure 1).

The flexible control of cold atoms and the lattice potential provide essential tools to
study quantum phase transitions and quantum criticality. In optical lattices, the two competing
energy scales, tunneling and on-site interaction energies, can be controlled precisely by tuning
parameters of optical lattices or the magnetic field near a Feshbach resonance [7]. Using
evaporative cooling [8, 9] and other techniques [10, 11], one can reach a temperature low enough
that the thermal fluctuations are largely suppressed. Furthermore, high-resolution imaging
techniques have been recently developed to measure the density profiles and fluctuations of
the trapped atomic gas [9, 11, 12].
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Figure 1. Illustration of the phase diagram of the superfluid-to-Mott insulator
quantum phase transition. The phase diagram is shown as a function of the
temperature T and coupling constant g = t/U , where t is the tunneling energy
and U is the on-site interaction. At zero temperature, the phase transition happens
at the critical point (T = 0, g = gc); at finite temperatures, the system shows
universal behaviors in the V-shaped quantum critical regime. The two graphs
of atomic distributions in optical lattices illustrate the Mott insulator state (left)
and the superfluid state (right). Our methods to probe quantum criticality are
based on studying the universal scaling behaviors by changing the temperature
of the system, indicated by the vertical arrow, and on studying quantum critical
dynamics by ramping g across the quantum phase transition, indicated by the
horizontal arrow.

In addition to the optical lattice, atoms are typically confined by an external harmonic
potential, which adds new perspectives for experimental observations. Because of this potential,
the system has a higher density as one moves toward the trap center [3, 12]. This density profile
can reveal the phase diagram of a homogeneous system with different chemical potentials at a
fixed coupling constant g, as shown in figure 2(a). At zero temperature, a system with a large
and negative chemical potential is in a vacuum state. As one increases the chemical potential, the
system evolves into the superfluid state. For small enough g and larger chemical potential, the
system can enter the Mott insulator state with unit occupation number. Typically, the harmonic
potential is slowly varying compared to the optical lattice potential, and the density distribution
is expected to be slowly varying over the length scale of the lattice constant. With a weak
harmonic confinement, the local density approximation (LDA) applies, and every point in the
system can be viewed as a homogeneous subsystem with a local chemical potential. Therefore,
a measured density profile probes a line in the phase diagram along the chemical potential
direction. Near the phase boundary, the line crosses the quantum critical regime of our research
interest, as shown in figure 2.

The main goal of this paper is to describe two possible ways of observing quantum
criticality in optical lattices. One is through the analysis of equilibrium atomic density profiles,
and the other is through the dynamics of the sample in the quantum critical regime. We start
in section 2 with a brief review of the theoretical basis of critical universality in a system
of ultracold atoms in optical lattices. In section 3, we present progress toward observing this
critical regime from analyses of in situ atomic density profiles. Also, our observations on the
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Figure 2. Illustrations of phase diagrams of the Bose–Hubbard model. (a) Zero-
temperature phase diagram in the µ/U–t/U plane. Here, MI denotes the Mott
insulator state, SF denotes the superfluid state, and vacuum denotes the state
with no atoms occupying the lattice sites. Density profiles of trapped gases probe
lines in the phase diagram along the chemical potential µ direction (with fixed
t/U ), shown by the dashed lines. Points A, B and C are the specific critical
points on the phase boundaries referred to in the text. At finite temperatures,
these critical points expand to quantum critical regions. (b) Finite-temperature
phase diagram along the fixed-t/U line going through the vacuum-to-superfluid
transition point A. Here, vac. denotes the vacuum state and QC denotes the
quantum critical region. (c) Finite-temperature phase diagram along the fixed-
t/U line going through the vacuum-to-superfluid transition point B and the tip of
the occupation number N = 1 Mott insulator lobe (point C) at zero temperature.

mass flow in optical lattices demonstrate the possibility of observing dynamics in the quantum
critical regime.

2. Probing quantum criticality in the density profiles and dynamics of ultracold atoms

We explore the quantum critical behaviors of ultracold atoms near the superfluid-to-Mott
insulator transition in a 2D optical lattice. Based on high-resolution in situ absorption imaging,
we can record the density profiles and fluctuations of the sample in equilibrium, which allows
us to identify critical scaling laws of thermodynamic observables and compare with the
theoretical predictions. Another direction is to initiate a dynamic passage to the quantum critical
regime, from which we attempt to extract dynamical critical exponents and quantum transport
coefficients. In this section, we will discuss the ‘scaling’ and the ‘dynamics’ approaches
separately.

2.1. Scaling of equation of state

Sufficiently near the quantum critical point, thermodynamic quantities, such as the atomic den-
sity n, obey universal scaling relations [13]–[16]. Consider the equation of state n = n(µ, T ),
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where n is the density, µ is the chemical potential and T is the temperature. Near the superfluid-
to-Mott insulator phase boundary, finite temperature leads to excitations in the Mott-insulating
domain, and the occupation number nd2 deviates from the non-negative integer occupation num-
ber n0d2

= 0, 1, 2, . . . in the zero-temperature limit. Here, d is the optical lattice constant, and
the n0d2

= 0 state corresponds to the vacuum state. After the non-universal part n0 is subtracted
from n, the remaining part nu is expected to satisfy the following scaling form in the critical
regime [13]–[15],

nu(µ, T ) = n(µ, T ) − n0(µ, T ) = d−D

(
kBT

t

)(D/z)+1−(1/zν)

F

(
µ−µc

t

( kBT
t )

1
zν

)
, (1)

where D is the spatial dimension, F is a generic function, z is the dynamical exponent, ν is
the correlation length exponent, kB is the Boltzmann constant and µc is the chemical potential
where the zero-temperature phase transition takes place. The scaling form equation (1) holds
when the dimensionality D is below the upper critical dimension Dc = 4 − z, where z will be 1
or 2 depending on what part of the phase boundary the critical point resides at. Near the generic
vacuum-to-superfluid transition points (see points A and B in figure 2(a)) and the superfluid-
to-Mott insulator transition points (other than the tip of the Mott insulator lobe), the equations
of state are expected to scale according to the dilute Bose gas universality class with critical
exponents z = 2, ν = 1/2; at the tip of the Mott insulator lobe (see point C in figure 2(a)), the
equation of state scales according to the O(2) rotor universality class with critical exponents
z = 1, ν = 1 [1, 13, 15, 16].

We study the critical scaling relations based on in situ absorption imaging of atomic density
profiles. Applying the LDA enables deduction of the properties of homogeneous systems from
the observed properties of non-uniform trapped atoms [14, 17]. Each density profile corresponds
to a line along the chemical potential direction in the phase diagram (for example, see the
two red dashed lines in figure 2(a)). Sufficiently close to the quantum critical point, when the
scaled equation of state (n−n0)d D

(kBT/t)(D/z)+1−(1/zν) is plotted versus the chemical potential µ for different
temperatures, all curves should intersect at the same point µ = µc. Once µc is determined,
one can plot the scaled equation of state versus the scaled chemical potential (µ−µc)/t

(kBT/t)1/zν , and
all curves for different temperatures should collapse into a single curve given by the generic
function F [14].

Finally, we point out important issues on observing quantum criticality in optical lattice
experiments. First of all, since quantum critical scaling laws are valid only at sufficiently low
temperatures, it remains an interesting question to determine and understand the deviation from
the expected scaling laws due to finite-temperature effects [6, 16]. Recent quantum Monte Carlo
simulations suggest that universal scaling laws can be observed at temperatures as high as
kBT ∼ 6t for atoms in a two-dimensional (2D) lattice, where the width of the ground band
is 8t [16]. Secondly, inhomogeneity of the trapping potential can suppress the quantum critical
behavior at low temperatures when the correlation length is restricted by the length scale of
the trapping potential [18]. The finite-temperature and trap effects require the temperature to
be small compared with the ground band width and large compared with the characteristic
energy scale of the trapping potential. Finite-size scaling algorithms, which have been applied
to improve the accuracy of analysis in quantum Monte Carlo simulations [19], have also been
proposed for the experiments (see [14, 20] and references therein).
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2.2. Quantum critical dynamics

We discuss some prospects of studying quantum critical dynamics using cold atoms in optical
lattices. Prominent dynamic phenomena include quantum critical transport of mass and entropy,
and dynamics of defect generation across the quantum critical point as described by the
Kibble–Zurek mechanism (KZM) [21, 22].

2.2.1. Quantum critical transport. Mass and heat transport across the quantum critical regime
provide important tests for quantum critical theory [1]. Sufficiently close to the critical
point, one expects that transport coefficients obey universal scaling relations independent of
microscopic physics [1, 23]. In two dimensions, in particular, we expect that the static mass
transport exhibits universal behavior, analogous to the prediction on electrical conductivity
[24, 25], and static mass conductivity at the critical point is given by

σ =
m

h̄
8σ , (2)

which only depends on the fundamental constants m/h̄ and a dimensionless, universal number
8σ determined from the universality class of the underlying phase transition. Here, h̄ is the
reduced Planck constant, and m is the atomic mass. Analytic predictions on the transport
coefficients in the quantum critical regime were recently reported on the basis of anti-de
Sitter/conformal field theory duality [25, 26]. Measurements of transport coefficients in general
can be of fundamental interest in quantum field theory [25]; the relation between mass and
thermal conductivities is in close analogy to the Wiedemann–Franz relation between charge
and thermal transport coefficients in electronic systems, which is shown to break down near the
quantum critical point in a recent experiment [27].

Mass and heat transport are induced by generalized forces such as chemical potential
gradient and temperature gradient. A natural approach to studying the dynamics of atoms in
optical lattices is to first create non-equilibrium density distributions in the sample and then
measure the subsequent evolution of density profiles.

Non-equilibrium density distributions can be induced in various ways. For example, one
can create a controlled perturbation in the local chemical potential and induce transport by
dynamically changing the envelope trapping potential in an equilibrated system or by changing
the on-site interaction U near a Feshbach resonance [7]. On the other hand, applying slow lattice
ramps compared to local microscopic time scales can still violate global adiabaticity and induce
macroscopic mass and heat flow [28]. This is aggravated by the pronounced difference in the
equilibrium density and entropy profiles between superfluid and Mott insulator phases, as shown
in figure 3. In a non-equilibrated system, we expect quantum critical dynamics to take place near
integer site occupation numbers.

While measuring the evolution of the density profile is straightforward using our in situ
imaging technique [12, 28], heat or entropy measurement in the quantum critical regime
remains a challenging task. Nevertheless, the entropy profile is readily measurable deeply in the
Mott-insulating regime by counting occupancy statistics using single-site resolved fluorescence
imaging in combination with on-site number filtering [9, 11], or can be extracted from counting
average site occupancies before and after on-site number filtering processes [28]. Since the local
equilibration time scale (of the order of h̄/U [11]) is sufficiently decoupled from the global
dynamics [29], a locally isentropic projection from the quantum critical regime deeply into the
MI regime can be achieved and the local entropy profile measured.
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Figure 3. Sketch of density and entropy profiles of a trapped, finite-temperature
gas in the tunneling-dominated regime where the center of the cloud is a
superfluid (SF), and in the interaction-dominated regime where the cloud shows
a Mott-insulating domain (MI) with unit occupation number. The calculation
is done with the same particle number and total entropy for the two regimes.
The gray shaded area marks an extended region near unit site occupation
number (nd2

= 1) where quantum critical transport can take place when global
adiabaticity breaks down during the lattice loading process. d = 532 nm is the
lattice constant.

From the density and entropy profile measurements, we can determine their current
densities through the application of a generic continuity equation ∂ρ

∂τ
+ ∇· EJρ = 0ρ . Here, ρ( Ex, τ )

represents experimentally measured mass or entropy density, EJρ is the corresponding current
density and 0ρ is a source term that characterizes, for example, particle loss (0ρ < 0) or entropy
generation (0ρ > 0).

Mass conductivity σ and thermal conductivity κ can be determined by relating the mass and
entropy current densities, EJ n and EJ s , as functions of position Ex and time τ , to the generalized

forces: the local chemical potential gradient E∇µ, the potential energy gradient E∇V and the
temperature gradient E∇T . They obey the following transport equations [30],

EJn( Ex, τ ) = −σ E∇[µ( Ex, τ ) + V ( Ex, τ )] −
mLnq

kB

E∇T ( Ex, τ ), (3)

EJ s( Ex, τ ) = −
Lqn

kB

E∇[µ( Ex, τ ) + V ( Ex, τ )] −
κ

T
E∇T ( Ex, τ ). (4)

Here, Lnq and Lqn are phenomenological coefficients similar to the Seebeck and Peltier
coefficients in the thermoelectric effect and can be related via the Onsager reciprocity
relation [31].

Finally, to obtain precise information about the spatially resolved chemical potential
gradient and temperature gradient, we resort to the equilibrium properties of the sample that
can be determined from measurements of the equilibrium density and density fluctuation.
The complementary knowledge of the equation of state n(µ, T ) and its fluctuation δn2(µ, T )

in equilibrium can be inverted to obtain µ(n, δn2) and T (n, δn2). We propose that, in a
sample driven out of equilibrium globally but remaining locally equilibrated, local density
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and fluctuation measurements can still be used to extract its local chemical potential and
temperature. This assumption can be further examined by comparing local compressibility to
density fluctuation and extracting local temperature through the application of the fluctuation-
dissipation theorem [32].

2.2.2. The Kibble–Zurek mechanism (KZM). Based on general critical scaling arguments, the
KZM predicts the formation of topological defects after a system dynamically crosses through
a second-order thermodynamic [33, 34] or quantum phase transition [21, 22]. For optical lattice
experiments, the KZM applies when the system is quenched from a gapped Mott insulator state
to a gapless superfluid phase, and predicts that the density of defects scales with the ramp rate
of the coupling strength g [22].

The scaling behavior can reveal critical exponents of the underlying quantum phase
transition [22, 35, 36]. When the coupling strength g is adiabatically ramped close to gc, the
many-body gap 1 scales as 1 ∝ |g − gc|

zν
= |λ(τ)|zν , where λ(τ) = g(τ ) − gc characterizes

the time dependence of the ramp. The adiabaticity criterion breaks down at a time τ = τa when
the gap 1 becomes small enough and the ramp rate violates d1

dτ

h̄
1
61, yielding excitations

with a characteristic energy scale 1a ∝ |λ′(τa)|
zν/(zν+1) or length scale ξa ∝ 1−1/z

a . The density
of defects nex should therefore scale universally as [22, 35]

nex ∝ ξ−D
a ∝ γ Dν/(zν+1)

a , (5)

where γa = |λ′(τa)| is the magnitude of the ramp rate at which adiabaticity fails.
In a 2D superfluid, topological defects are vortices. Observing vortices in an optical lattice

using in situ imaging is challenging, largely due to the smallness of a typical vortex core size
(< 1 µm) compared with the imaging resolution (> 5 µm) available in most experiments. While
the latter can be technically improved, increasing the vortex core size by reducing the atomic
interaction can also be achieved experimentally through either tuning a magnetic Feshbach
resonance [7] or releasing atoms for a short time-of-flight time [37, 38].

Further extensions of the KZM consider finite-temperature and finite-size effects [36]. In
general, the scaling of excitations also depends on the pathway of quenching [22, 36, 39], and
the system can enter the Landau–Zener regime in nearly defect-free processes [21]. Detailed
experiments could reveal the wealth in the dynamics of quantum critical phenomena as well
as the intriguing connection between quantum mechanics and thermodynamics in genuine
quantum systems [40, 41].

3. Experimental progress

3.1. Scaling of density profiles

We study quantum critical scaling relations based on in situ imaging of atomic density profiles.
Our experimental procedure follows three steps. First, we prepare a quantum gas of 104 cesium
atoms in a 2D trap with an aspect ratio of 200 to 1 by loading a 3D Bose–Einstein condensate
into a single site of a vertical lattice with a lattice constant of 4 µm. Secondly, we transfer the
2D quantum gas into a 2D optical lattice (with lattice constant d = 532 nm), which induces the
superfluid-to-Mott insulator transition in sufficiently deep lattices. Finally, we perform high-
resolution absorption imaging to record the atomic density profiles. Details of the apparatus and
experimental sequence can be found in earlier reports [12, 28, 42].
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Previously, we observed scale invariance and universality in 2D Bose gases with different
temperatures and interaction strengths [42]. This observation motivates us to verify the universal
scaling relations near the quantum phase transition for atoms in optical lattices. We work with
scattering length a = 300aB, lattice depth VLat = 6.8ER, where ER = h × 1,326 Hz is the recoil
energy and h is Planck’s constant. At this lattice depth, the energy gap between the ground
and first excited bands is much larger than the temperature of the system, and the system is
governed by ground-band physics; we can reach a temperature as low as T = 4t/kB, where
t = kB × 2.7 nK is the tunneling parameter.

Near the vacuum-to-superfluid transition point A in figure 2, the non-universal part of the
density, n0, introduced in equation (1), equals zero, and the density profile n is expected to obey
the scaling relation of the dilute Bose gas universality class [13, 15],

nd2

kBT/t
= f

(
µ − µc

kBT

)
, (6)

where f is a universal function: the exponents are z = 2, ν = 1/2. We expect the zero-
temperature vacuum-to-superfluid transition in 2D lattices to happen at a critical chemical
potential µc = −4t , which can be understood in the following picture. The ground band of a 2D
lattice has a width of 8t , with the middle of the band chosen as the chemical potential zero point.
At zero temperature, when the chemical potential is below the bottom of the band (µ < −4t),
atoms are not allowed in the lattice and the ground state is a vacuum; as soon as the chemical
potential reaches −4t , atoms are allowed to occupy the lowest energy state and will form an
superfluid. Thus the zero-temperature phase boundary is µc = −4t for the vacuum-to-superfluid
transition. At sufficiently low temperatures, we expect that the constant-temperature traces of
the scaled equation of state, when plotted as functions of the chemical potential µ at different
temperatures, should have a common crossing point at µc, as is suggested by equation (6).

To verify this scaling relation, we take a series of atomic density profiles at different
temperatures, shown in figure 4(a). We extract the temperature and peak chemical potential
by fitting the low-density tails according to the following formula, which is originally derived
for non-interacting gases [43] and is here modified to include the mean-field interaction effect,
and to include all orders in the fugacity expansion [44],

n( Ex) =
1

d2

∞∑
l=1

[I0 (2 lβt)]2 elβ[µ0−2geffn( Ex)−V ( Ex)], (7)

where n is the 2D atomic density, d = 0.532 µm is the 2D lattice constant,
I0(x) =

∫ π

−π
dθ

2π
exp (x cos θ) is the zeroth-order Bessel function with purely imaginary

argument, β =
1

kBT , µ0 is the peak chemical potential, geff = Ud2 [44] is the effective
interaction strength for a 2D thermal gas in a 2D lattice and V is the trapping potential.

By plotting the scaled equation of state as a function of the chemical potential µ, shown in
figure 4(b), we see that the constant-temperature traces of the scaled equation of state at different
temperatures cross at different chemical potentials. We study this temperature dependence by
finding the crossing point for each pair of constant-temperature traces of the scaled equation
of state, and plot the chemical potential at the crossing point as a function of the average
temperature of the pair, shown in figure 5(a). As the temperature decreases, the crossing points
move toward higher chemical potentials. We take the data with the lowest four temperatures,
and plot the scaled equation of state nd2

kBT/t as a function of the scaled chemical potential µ−µcr,0

kBT ,
where µcr,0 = −4t is the expected zero-temperature transition point, shown by the red dashed
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Figure 4. Measured density profiles and the scaled equation of state at different
temperatures (at VLat = 6.8ER, t/U = 0.18). (a) Occupation number as a
function of radius measured at different temperatures: T = 29 nK (black circles),
26 nK (red triangles), 24 nK (green triangles), 18 nK (blue diamonds), 15 nK
(cyan triangles) and 11 nK (yellow hexagons, with a lower particle number).
Each profile is based on an average of 20–30 in situ images. (b) Scaled equation
of state as a function of local chemical potential. When kBT ≈ 10t , the constant-
temperature traces of the scaled equation of state cross at µ ≈ −10t ; when
kBT ≈ 5t , the curves cross at µ ≈ −5t , shown by the two arrows.

line in figure 5(a). Taking µcr,0 = −4t , we can test the scaling law, equation (6), by rescaling
the density and chemical potential. At low temperatures (10 nK 6 T 6 24 nK), the rescaled
data, shown in figure 5(b), are much closer to each other than they are in figure 4(b), which is
consistent with the critical scaling law given by equation (6), near the critical point µcr,0 = −4t .

At low temperatures, our preliminary measurement on the equation of state is consistent
with the expected critical scaling law given by equation (6). To test the critical scaling law more
quantitatively, it is important to determine the peak chemical potential and temperature of the
sample accurately in the fitting. Further analysis is underway to reduce the systematic errors in
the fitting, and to test scaling laws near points B and C in the phase diagram (see figure 2).

3.2. Dynamics

Our recent experiment studied global mass transport and statistical evolution in a 2D sample
across the SF-MI phase boundary [28]. We discovered slow equilibration dynamics with time
scales more than 100 times longer than the microscopic time scales for the on-site interaction
and tunneling energy. This suggests that transport can limit the global equilibration process
inside a sample traversing a quantum critical point.

In figures 6(a)–(c), we plot the evolution of the density profiles of a 2D gas containing
N = 2 × 104 atoms after a short 50 ms ramp from zero to a final lattice depth of 10 ER. At this
lattice depth, U/t = 11 is below the critical point U/t = 17 for the Mott insulator state with
unit occupation number [19]. We record density profiles after holding the sample at the final
lattice depth for various hold times τ . With an equilibration time scale around 180 ms, the cloud
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Figure 5. Crossing points and overlapping of the constant-temperature traces
of the scaled equation of state (at VLat = 6.8ER, t/U = 0.18). In (a), the
chemical potential at the crossing points defined in figure 4 (b) is plotted as
a function of the average temperature (black solid circles). The asymptote in
the zero-temperature limit, µcr,0 = −4t , and the mean-field predictions based on
equation (7) are shown as the red dashed line and the blue dashed line,
respectively. In (b), the scaled equation of state is plotted against the scaled
chemical potential based on µcr,0 = −4t for the low-temperature data: 11 nK
(yellow hexagons), 15 nK (cyan triangles), 18 nK (blue diamonds) and 24 nK
(green triangles). Here, the ground band in a 2D optical lattice potential has a
width of 8t = 21 nK.

gently expands and the peak density slowly decreases due to the increase in repulsive atomic
interaction during the lattice ramp. This equilibration time scale can depend on the sample size
and the local properties of the coexisting phases in an inhomogeneous sample.

We further extract the evolution of local mass current density, leading to detailed local
transport properties beyond a single equilibration time scale. We compute the mass current
density EJn by comparing the density profiles taken at adjacent hold times (1τ = 10–50 ms)
and applying the continuity equation, m 1n

1τ
+ ∇· EJn(r, τ ) = 0, to evaluate EJn(r, τ ). Here, we

assume no atom loss in the analyses for short hold times τ < 500 ms. Assuming that mass flow
only occurs in the radial direction (r̂ ) due to azimuthal symmetry of the sample, we write the
mass current density as EJn(r, τ ) = mj (r, τ )r̂ . The number current density j (r, τ ) is computed
according to

j (r, τ ) = −
1

2πr

N (r, τ + 1τ) − N (r, τ )

1τ
, (8)

where N (r, τ ) =
∫ r

0 n(r ′, τ )2πr ′dr ′ is the number of atoms located inside a circle of radius r at
hold time τ . Positive j means a current flowing toward larger radius r , and vice versa.

In figure 6(d), we show j (r, τ ) computed from density profiles measured near hold times
shown in figures 6(a)–(c). We observe overall positive mass flow, which is consistent with the
picture of an expanding sample inside the optical lattice. The mass current density varies across
the sample. Shortly after the lattice ramp at τ = 10 ms, mass transport is most apparent inside
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Figure 6. Evolution of the density profile and the atom number current density
after a short 50 ms lattice ramp from zero depth to a final depth of 10 ER

(U/t = 11). The upper figure shows the density profile after holding the sample
at a constant final depth for hold times τ = (a) 10, (b) 150 and (c) 350 ms (black
circles). In each figure (a–c), the near-equilibrated density profile measured at
long hold time τ = 500 ms (gray triangles) is plotted for comparison. Each
profile is based on an average of 20 to 30 in situ images. Panel (d) shows the atom
number current density at hold time τ = 10 (black squares), 150 (red circles) and
350 (blue triangles) ms, derived from the density profiles measured near hold
times shown in (a–c) using equation (3).

a radius r = 40d, where the occupation number nd2 > 1 and the atoms respond to the increase
in on-site repulsion. The current density peaks around an annular area 20d < r < 30d when the
occupation number is in the range 2 < nd2 < 3; outside this annular area, the current density is
suppressed when the occupation number is in the range nd2 > 3 or nd2 < 2. At a larger hold
time τ = 150 ms, similar transport continues to take place but with smaller amplitude. At a long
hold time τ = 350 ms when the sample is closer to equilibration, the current density j becomes
smaller than our measurement noise.

In this section, we have shown that spatially resolved mass current density is readily
measurable using our in situ imaging technique. We expect that local transport coefficients
can be extracted using equation (3), from further measurements of local temperature gradients
and chemical potential gradients. Our interest lies in mass transport in the quantum critical
regimes near integer occupation numbers, where the static mass conductivity is predicted to be
universal (equation (2)). Measurements of local entropy density are under future investigations,
with details outlined in section 2.2.
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