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Abstract This study explores the controlling factors of the uncertainties and error growth at different spatial and temporal
scales in forecasting the high-impact extremely heavy rainfall event that occurred in Zhengzhou, Henan Province China on 19
−20 July 2021 with a record-breaking hourly rainfall exceeding 200 mm and a 24-h rainfall exceeding 600 mm. Results show
that the strengths of the mid-level low-pressure system, the upper-level divergence, and the low-level jet determine both the
amount of the extreme 24-h accumulated and hourly rainfall at 0800 UTC. The forecast uncertainties of the accumulated
rainfall are insensitive to the magnitude and the spatial structure of the tiny, unobservable errors in the initial conditions of the
ensemble forecasts generated with Global Ensemble Forecast System (GEFS) or sub-grid-scale perturbations, suggesting that
the predictability of this event is intrinsically limited. The dominance of upscale rather than upamplitude error growth is
demonstrated under the regime of k−5/3 power spectra by revealing the inability of large-scale errors to grow until the amplitude
of small-scale errors has increased to an adequate amplitude, and an apparent transfer of the fastest growing scale from smaller
to larger scales with a slower growth rate at larger scales. Moist convective activities play a critical role in enhancing the overall
error growth rate with a larger error growth rate at smaller scales. In addition, initial perturbations with different structures have
different error growth features at larger scales in different variables in a regime transitioning from the k−5/3 to k−3 power law.
Error growth with conditional nonlinear optimal perturbation (CNOP) tends to be more upamplitude relative to the GEFS or
sub-grid-scale perturbations possibly owing to the inherited error growth feature of CNOP, the inability of convective para-
meterization scheme to rebuild the k−5/3 power spectra at the mesoscales, and different error growth characteristics in the k−5/3

and k−3 regimes.
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1. Introduction

Wide-spread torrential rainfall hit Henan province on 17−22
July 2021. The most intense episode of rainfall occurred on
19−20 July 2021 in Zhengzhou, the capital city of Henan

Province, and the surrounding area. The 24-h accumulated
rainfall from 0000 UTC 20 July to 0000 UTC 21 July
(LST=UTC+8) exceeded 600 mm and several stations re-
corded their respective historically highest daily accumu-
lated rainfall (Ran et al., 2021; Shi et al., 2021). The highest
hourly rainfall of 201.9 mm in metropolitan Zhengzhou city,
which occurred from 0800 UTC to 0900 UTC 20 July, marks
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a new record for hourly rain rate in Chinese mainland (Shi et
al., 2021; Sun et al., 2021; Zhuang and Xing, 2022). Asso-
ciated hazards on that day, especially inland flash flooding,
leading to 380 casualties.
The geographical locations and topographical features of

Henan Province make it prone to many different types of
heavy-rain-producing weather systems (e.g., Liang et al.,
2020). The devastating rainfall event on 19−20 July 2021 has
been found to be contributed by various environmental for-
cing such as liftings associated with upper-level troughs and
mid-level vortices, moisture transportations associated with
the subtropical high to the east, Typhoon In-Fa to the
southeast, and Typhoon Cempaka to the south, as well as
low-level convergence associated with low-level jet and lo-
cal topography (Ran et al., 2021; Sun et al., 2021). Many
dynamical and thermodynamical parameters during this
event deviated significantly from the climatology of major
torrential rainfall events in this area, especially low-level
vorticity and column-integrated precipitable water (Zhang et
al., 2021).
In spite of the extremeness of this event, operational

weather forecast offices of Henan Province and Zhengzhou
predicted the occurrence of this extreme rainfall event a few
days before and issued several warnings for a vast region in
Henan Province in the following days prior to this event.
However, the most intense rainfall centers in the operational
forecasts are several hundred kilometers away from the ac-
tual epicenter. Similarly, forecasts from several global and
regional numerical weather prediction (NWP) models show
large variations in terms of the location and the intensity of
the highest accumulated rainfall (Shi et al., 2021). This work
aims to understand these discrepancies between forecasted
and observed rainfall in this record-breaking rainfall event
by examining the forecast uncertainties and the associated
error growth mechanism.
The extent of accuracy in numerical weather forecasting is

often referred to as “atmospheric predictability” and was first
proposed by Lorenz (1963). Lorenz (1996) categorized this
problem into practical predictability (Lorenz, 1982), or the
forecast capability given currently available knowledge and
techniques, and intrinsic predictability (Lorenz, 1969), or the
longest possible forecast extent given nearly perfect
knowledge and techniques. One important aspect of practical
predictability originates from uncertainties in representing
key environmental forcing. Key environment forcing for a
heavy rainfall event is generally identified using ensemble-
based sensitivity analysis (ESA), which measures linear re-
lationships between a scalar forecast metric and atmospheric
state variables through ensemble statistics (Hakim and Torn,
2008), or the conditional nonlinear optimal perturbation
(CNOP; Mu and Duan, 2003) method, which is an adjoint-
based method that takes nonlinear processes into account. By
diagnosing key environmental factors in extreme rainfall

events, understanding of the rainfall forecast uncertainties
can be improved (e.g., Hawblitzel et al., 2007; Lynch and
Schumacher, 2014; Yu and Meng, 2016; Zhang and Meng,
2018). Based on ESA, Zhang and Meng (2018) revealed the
importance of well-forecast low-level jet locations in de-
termining the performance of ensemble rainfall forecast
during a persistent heavy rainfall event in Guangdong, Chi-
na, in early spring of 2014. Based on both ESA and CNOP,
Yu and Meng (2016) consistently demonstrated the essential
role of the mid-level trough in the westerly flow and the
associated low-level low in the high-impact rainfall event in
Beijing, China, on 21 July 2012. Yu and Meng (2022) found
that the CNOP with moist physics identified the sensitive
areas at both the lower levels and upper levels for four typical
heavy rainfall events in north China. The upper-level sensi-
tive area, which corresponds to the upper-level weather
systems, is associated with high baroclinicity, while the
lower-level sensitive area, which corresponds to the lower-
level weather systems, is associated with moist physics.
Although there have been studies revealing weather systems
that may have affected this record-breaking extremely heavy
rainfall in Henan (e.g., Ran et al., 2021; Sun et al., 2021), the
key environmental factors and their associated forecast un-
certainties remain unknown.
Unlike practical predictability, which is primarily con-

trolled by uncertainties in NWP models and initial condi-
tions, intrinsic predictability is primarily limited by error
growth mechanisms that are inherently embedded in the
dynamical and thermodynamical processes of the weather
(e.g., Melhauser and Zhang, 2012; Sun and Zhang, 2016).
Zhang et al. (2007) presented the conceptual model of how
tiny, unobservable errors will limit the predictability at the
mesoscales: those small-amplitude small-scale errors will
grow upscales and rapidly spread with the help of moist
convective processes, saturate at smaller scales and transfer
to progressively larger scales through geostrophic adjust-
ments, and eventually limit the predictability of mesoscale
and synoptic scales. This conceptual model has been proved
by many following studies (e.g., Judt, 2018; Selz, 2019; Selz
and Craig, 2015; Sun and Zhang, 2016, 2020; Sun et al.,
2017; Zhang et al., 2016; Zhang et al., 2019).
Several studies argue that large-scale errors are just as

important as, if not more than, small-scale errors (Durran and
Gingrich, 2014; Durran and Weyn, 2016; Nielsen and
Schumacher, 2016; Zhang, 2021), and errors grow upam-
plitude at all model-resolved scales simultaneously rather
than transfer upscales (Weyn and Durran, 2017; Judt, 2018,
2020). It should be noted that these different disagreements
are essentially equivalent: small-scale errors are more im-
portant if the errors are governed by upscale growth, because
the upscale growth of small-scale errors will dominate the
existing large-scale errors (Zhang et al., 2007); while large-
scale errors are more important if the errors are governed by
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upamplitude growth, because large-scale errors can grow to
greater amplitudes owing to the greater base energy at these
scales (Durran and Weyn, 2016). Understanding the relative
importance of errors at different spatial scales will facilitate a
better understanding of the error growth mechanisms.
Therefore, many of the previous studies have used high-
resolution, convection-permitting ensemble forecasts that
incorporate initial condition uncertainties of different am-
plitudes and/or spatial scales to examine the error growth
mechanisms (e.g., Melhauser and Zhang, 2012; Nielsen and
Schumacher, 2016; Zhang et al., 2016; Weyn and Durran,
2019). However, previous studies either examined the sen-
sitivity of the forecast error growth to different amplitudes
and horizontal scales of homogeneous initial uncertainties or
did not examine this sensitivity when flow-dependent initial
uncertainties were imposed, while how sensitive the forecast
error growth is to different amplitudes and horizontal scales
of flow-dependent unobservable initial uncertainties in a
high-resolution convection-permitting ensemble forecast on
a real-world high-impact rainfall event remains unknown.
In addition to the scale and amplitude, the structure of

initial perturbations may influence the forecast uncertainty
and error growth features as well. Initial perturbations with
different structures are mainly generated through breeding
vectors, singular vectors, and random sampling from a cli-
matologically based background error covariance such as
CV3 from the WRFDA package, and the CNOP method. Mu
et al. (2007) found that CNOP-type error tends to have a
seasonal dependent evolution and produces the most con-
siderable negative effect on the forecast results. Adding
CNOP to the initial condition yields a spring predictability
barrier phenomenon, while adding perturbations with the
same magnitude but a different structure from the CNOP
does not. How sensitive the forecast error growth is to dif-

ferent structures of initial uncertainties in a real-world ex-
tremely heavy rain event is also one interesting question to
answer.
Therefore, to explore the uncertainties and error growth in

forecasting this high-impact torrential rainfall event at dif-
ferent spatial and temporal scales, we present a suite of
analyses using forecasts from numerical models ranging
from global models to regional, convection-permitting
models in this study. This includes ESA using the Observing
System Research and Predictability Experiment (THOR-
PEX) Interactive Grand Global Ensemble (TIGGE; Bou-
geault et al., 2010), the CNOP method using coarse-
resolution simulations from the Pennsylvania State Uni-
versity–National Center for Atmospheric Research (PSU–
NCAR) fifth-generation Mesoscale Model (MM5; Grell et
al., 1995), and high-resolution convection-permitting en-
semble simulations from the Weather Research and Fore-
casting (WRF) model with initial perturbations of different
amplitudes and spatial scales.

2. Data and methodology

2.1 Observed 24-h accumulated rainfall

Hourly rain gauge data provided by the China Meteor-
ological Administration with an average site spacing of
~5–10 km was interpolated to a 0.1°×0.1° grid using a
Cressman interpolation method (Cressman, 1959). Figure 1a
shows the 24-h accumulated rainfall from 1200 UTC 19 July
to 1200 UTC 20 July 2021. The accumulated rainfall in-
tensely concentrated over northern Henan Province, with a
maximum of 505.54 mm, a considerable area that exceeds
400 mm, and an area-average of 74.49 mm over the inner
box of Figure 1a.

Figure 1 Rainfall distribution in observation and the mean of ensemble forecasts. (a) Observed 24-h accumulated rainfall from 1200 UTC 19 July to 1200
UTC 20 July 2021 (shading; units: mm) and terrain height (grey contour; units: m). (b) Same as (a) but for ensemble mean rainfall forecast initialized at 0000
UTC 19 July based on 4 best-performed models (BoM, NCMRWF, UKMO, and KMA; see text for details). The black box denotes the focused region, and the
area-averaged 24-h accumulated rainfall is given on the top left of the box. The location of Zhengzhou City is marked as black cross and Henan Province is
outlined in solid black.
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2.2 The TIGGE ensemble and the ensemble sensitivity
analysis

Forecasts on the 24-h accumulated rainfall from 1200 UTC
19 July to 1200 UTC 20 July over the focused region given in
Figure 1a were quantitatively evaluated using the TIGGE
ensembles, with a forecast initialization of 0000 UTC 19
July. Twelve global models from TIGGE evaluated in the
present study are listed in Table 1. The TIGGE-derived fields
were interpolated into a 0.1°×0.1° grid to facilitate the
comparison with observations.
Four global models with better forecast performances (see

Section 3 for details) were then selected to identify the key
factors for extremely heavy rainfall using ESA. We calcu-
lated the area-averaged 24-h accumulated rainfall over the
focused regions (32.5°–36.5°N, 111°–115°E, the inner box in
Figure 1a) from 1200 UTC 19 July to 1200 UTC 20 July as
the forecast metric (P). The Pearson correlation coefficient
(R) was used to measure the correlation between the forecast
metrics and the variables of interest (X) at different forecast
times and pressure levels, and was calculated as follows
(Hakim and Torn, 2008):
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where the overbar represents the ensemble mean and n is the
ensemble size (73 herein combining the 4 selected models).

2.3 Configurations and experiment design of the re-
gional convection-permitting ensemble

High-resolution convection-permitting ensemble simulations
using the Advanced Research WRF (ARW/WRF; Skamar-
ock et al., 2021) dynamical core were used to examine the
intrinsic predictability and error growth in forecasting this
event. Three one-way nested domains using the ARW/WRF
model, version 4.2, are configured with horizontal grid spa-
cings of 27, 9, and 3 km, and 210×130, 340×280, and
301×301 horizontal grids, respectively. There are 51 hybrid
terrain-pressure levels, and the upper-most level is located at
50 hPa. Physical parameterization schemes are selected after
trial-and-error tests, including the aerosol-aware Thompson
and Eidhammer (2014) microphysics scheme, modified
Tiedke cumulus scheme (Zhang and Wang 2017; only ap-
plied in the 27-km domain), revised MM5 scheme for surface
layer processes (Jiménez et al., 2012), thermal diffusion
scheme for land surface processes, Yonsei University PBL
scheme (Hong et al., 2006), and RRTMG schemes for
longwave and shortwave radiation (Iacono et al., 2008).
In order to examine the influence of the amplitude and

scale of the initial uncertainties on the intrinsic predictability
of this event, a total of four ensemble forecasts, each con-

taining 40 ensemble members that run from 0600 UTC 19
July to 1200 UTC 20 July, are designed. Two of them in-
corporate initial uncertainties from relatively large scales.
We first derive the perturbations from the 20-member
0.5°×0.5° Global Ensemble Forecast System (GEFS) ana-
lyses valid at 0600 UTC 19 July and the 20-member GEFS 6-
h forecasts from 0000 UTC 19 July (also valid at 0600 UTC
19 July) by subtracting their respective ensemble mean from
each of the respective 20 members. Temperature, water va-
por mixing ratio, and the two components of the horizontal
wind are processed. Then, the 40 perturbations are scaled by
a factor of 0.1 and added to the GFS analysis valid at 0600
UTC 19 July to generate 40 initial conditions (ICs) with
uncertainties that are an order of magnitude smaller than
current global model analysis uncertainties, which is neces-
sary because intrinsic predictability examines error growth
mechanisms resulted from tiny, unobservable initial un-
certainties. These 40 ICs are used to initialize the “LARGE”
ensemble forecast. The initial perturbations of the LARGE
ensemble are further scaled by a factor of 0.1 (therefore a
0.01 factor from their original values) to form the ICs that
initialize the “LARGE0.1” ensemble forecast.
The other two ensembles contain initial uncertainties that

are concentrated at smaller scales. To facilitate this purpose,
we first run a short-term deterministic forecast from the GFS
analysis valid at 0600 UTC 19 July 2021 using a config-
uration of model domains that cover exactly the same region
but using horizontal grid spacings that are 1/3 of their ori-
ginal values (i.e., 9, 3, and 1 km for the three domains). Then,
values of temperature, water vapor mixing ratio, and the two
horizontal components of the wind at each grid point of the
original model domains are replaced by randomly, non-
repetitively selected values from the adjacent 3×3 grid points

Table 1 Descriptions of TIGGE models used in the studya)

Model Original resolu-
tion (km) Ensemble size

1 BoM 30–45 17

2 CMA 50 30

3 DWD 40 40

4 ECCC 39 21

5 ECMWF 16/32 (after day
10) 51

6 IMD 12 21

7 JMA 139 51

8 KMA 33 26

9 Météo France 7.5–37 35

10 NCEP 25 31

11 NCMRWF 13 12

12 UKMO 21 18

a) More details about the TIGGE models can be found at https://con-
fluence.ecmwf.int/display/TIGGE/Models. The models in italics are used
by ESA.
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in the higher-resolution 9-3-1-km simulation, similar to the
generation of initial perturbations of Zhang et al. (2016).
Since each grid point in the original model domain corre-
sponds to 8 surrounding grid points in the 9-3-1-km domain
(excluding the grid point that are collocated), each 9-3-1-km
simulation output can be used to generate 8 different per-
turbations. Five model outputs from 0655 to 0700 UTC 19
July 2021 (when small-scale structures are sufficiently de-
veloped while no significant precipitation occurs) from the
9-3-1-km simulation, each 72 s apart, are used to generate 40
ICs (8 for each output) that contain uncertainties that re-
present flow-dependent features that the original model re-
solutions are not able to resolve, and these ICs are used to
initialize the “SMALL” ensemble forecast. Similar to the
LARGE0.1 ensemble, the initial perturbations of the
SMALL ensemble are also multiplied by 0.1 to initialize the
“SMALL0.1” ensemble forecast. Although the perturbations
in SMALL and SMALL0.1 are drawn from simulation out-
puts close to 0700 UTC, they are nonetheless added to the
GFS analysis valid at 0600 UTC 19 July, consistent with
LARGE and LARGE0.1.

2.4 Description of CNOP and its experiment design

CNOP is the initial perturbation that maximizes the cost
function under certain initial constraint conditions (Mu and
Duan, 2003). The cost function is defined as

( ) ( )J x M x x M x= + ( )0 0 0 0 , and the initial perturbation
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the nonlinear operator. x0 is the state vector x at the initial
time and the M x( )0 represents the value of x at forecast time
t. is used to constrain the values of the initial perturbations.
The norm used to constrain the cost function and the initial

perturbations is the total moist energy (TME) norm (Eh-
rendorfer et al., 1999), which is calculated as follows:
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where Cp(1005.7 J kg
−1 K−1) is the specific heat at constant

pressure, Tr(270 K) is the reference temperature,
Ra(287.04 J kg

−1 K−1) is the gas constant of dry air,
L(2.5104×106 J kg−1) is the latent heat of condensation per
unit mass, Pr(1000 hPa) is the reference pressure, and u, v, T,
q and Ps are the two horizontal wind components, tempera-
ture, water vapor mixing ratio, and surface pressure, re-
spectively. The sensitive area, in which area the weather
systems can be regarded as the key weather systems to the
heavy rainfall (Yu and Meng, 2016, 2022), is defined as the
location of the top 1% vertically integrated TME of the entire
model simulation domain.
In this study, the CNOP is calculated based on the MM5

model (Grell et al., 1995) and its tangent linear and adjoint
models (Zou et al., 1997) using the spectral projected gra-
dient 2 (SPG2; Birgin et al., 2001) optimization algorithm.
The model domain has 90×65 horizontal grids with a hori-
zontal resolution of 60 km and 21 terrain-following levels in
the vertical from the surface to 50 hPa. The initial and
boundary conditions are provided by the National Centers
for Environmental Prediction (NCEP) final analysis (FNL)
of 1°×1° at a 6-h interval. The large-scale precipitation
scheme, the Anthes-Kuo cumulus parameterization scheme,
and the bulk planetary boundary layer scheme are used. In
order to reveal the sensitive areas of the extreme hourly
rainfall at 0800 UTC 20 July, the starting and ending times
are 0600 UTC 19 July and 0800 UTC 20 July 2021, re-
spectively. The verification area covers the location of the
heavy rainfall (the inner green box in Figure 2a).
In order to examine the evolution of initial perturbations

with different structures and their impact on the rainfall
forecast, the starting time of CNOP is the same as that in the
convection-permitting ensemble forecast experiments. In
detail, the perturbations of CNOP and three random members
from the LARGE ensemble are added to the GFS analysis at
0600 UTC 19 July 2021 as initial conditions to calculate the
perturbation development using the WRF model with the
same physical parameterization schemes as those used in the
LARGE ensemble, except for using a domain coverage and
horizontal grid spacing the same as those for the MM5 model
used to calculate the CNOP. The perturbations of the three
random members from the outer-most domain of the high-
resolution LARGE ensemble (see Section 2.3) are inter-
polated to the CNOP model grid, and the magnitude of the
CNOP perturbations is scaled down to be the same as the
LARGE perturbations in terms of the mean TME in the area
of interests (the black inner box in Figure 2a).

3. Key environmental factors related with the
forecast uncertainties of the rainfall

3.1 Evaluation of rainfall forecast in TIGGE ensembles

Due to the relatively coarse horizontal resolutions of the
global models (Table 1), the TIGGE ensemble forecast
generally underestimates the rainfall amount (Figure 3a).
Nevertheless, BoM, NCMRWF, UKMO, and KMA stand out
from the 12 TIGGEmodels with higher P (Figure 3a) and are
utilized for further ESA. Ensemble mean rainfall of the 4
models generally reproduces the rainfall distribution at the
threshold of 50 mm (Figure 1b), with a much smaller max-
imum of 186.88 mm located more to the south compared
with observation (Figure 1a). In terms of forecast skills,
KMA has the highest equitable threat score (ETS; Wilks
1995) at thresholds of 100 mm and 150 mm, while
NCMRWF still retains some skills at higher thresholds such
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as 250 mm and 300 mm (Figure 3b–3e).
Typical members with good and poor rainfall forecasts are

selected based on ETSs of individual members (Appendix
Figure S1, https://link.springer.com) and subjective com-
parison with the observed rainfall pattern. Members 01, 17,
49, and 71 are eventually chosen as good members, while
members 35, 42, 72, and 40 are chosen as poor members
(Figure S2). Comparisons are then performed between good
and poor members to obtain more physical insights into the
correlation patterns of the ESA.

3.2 Results from ensemble-based sensitivity analysis

Synoptic circulation systems in mid-troposphere are highly
correlated with the extremely heavy rainfall. There are pro-
minent negative correlations between 500-hPa Z and P in

central China, especially in northern Henan Province from
0600 UTC 19 July to 1200 UTC 20 July, with the strongest
negative correlation of ~−0.8 occurring at 1800 UTC 19 July
(Figure 4a, 4d). Consistently, the composite of good mem-
bers is characterized by a deeper mid-level low compared
with that of poor members (Figure 4e, 4f). This result sug-
gests that the mid-level low significantly contributes to a
large rainfall accumulation. We thus choose 1800 UTC 19
July to examine the key environmental forcing for the 24-h
accumulated rainfall. Figure 4a also shows positive corre-
lation over the subtropical high as well as the ridge region
near the southwest periphery of the subtropical high, but with
a much smaller area with a confidence level of 95% and
above. Together with the comparison on 500 hPa between
typical members (Figure 4b, 4c), these results consistently
suggest that a stronger subtropical high with a deeper ridge

Figure 2 (a) Sensitive areas (shading) identified by the CNOP and (b) the vertical distribution of hTME (units: m2 s−2) over sensitive area A (black line), B
(red line) and C (green line) in panel (a). Wind (vector; units: m s−1), Z (contour; units: gpm), and TME (shading; units: m2 s−2) of CNOP at (c) 300 hPa, (d)
500 hPa, and (e) 850 hPa. The blue line in (c) denotes the trough extending from the cold vortex, and the blue line in (d) and (e) denotes the shear line from
the low vortex. The inner green square box in (a), (c), (d), (e) denotes the verification area, and the inner black box in (a) denotes the area for the scale
analysis.
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on its southwestern flank is favorable for a larger rainfall
accumulation, possibly through preventing the low pressure
vortex from rapidly moving to the east.
The upper-level jet stream also plays an essential role in

the extremely heavy rainfall process. In the correlation map
between 200-hPa Z and P (Figure 5a), there are significant
positive correlations of ~0.4 to the north of Henan Province
and negative correlations of ~−0.3 downstream. This result
indicates that a deeper ridge and trough on 200 hPa, namely,
a wavier upper-level circulation is beneficial for the rainfall
accumulation. The deeper ridge is associated with a stronger
upper-level northwesterly jet stream to the north of the fo-
cused region (Figure 5b), which may provide more sufficient
upper-level divergence that favors the heavy rainfall process.
The correlation map between 850-hPa Z and P (Figure 5c,

5e) is generally similar to that on 500 hPa (Figure 4a, 4d),

reinforcing that lower geopotential height (herein a deeper
low-level trough) over the focused region and a stronger
subtropical high to the east are favorable for the rainfall
accumulation. In the correlation map between 850-hPa hor-
izontal wind speed (Figure 5d, 5f), there are positive corre-
lations of ~0.6 to the south and east of the focused region, as
well as over the northern periphery of Typhoon In-Fa. This
result implies that the southerly and southeasterly low-level
jets upstream of the focused region, which could be
strengthened by the warm ridge extending southwestward
from the subtropical high (Ran et al., 2021), are essential
during the extremely heavy rainfall process by providing
abundant moisture from the south.
The locations of the two tropical cyclones are remotely

relevant to the heavy rainfall accumulation. The difference in
the composite 850-hPa relative vertical vorticity between

Figure 3 Quantitative precipitation evaluation of ensemble forecasts. (a) Boxplot of area-averaged 24-h accumulated rainfall of ensemble members from
the 12 TIGGE models. NCMRWF is denoted by its first four letters (NCMR) owning to the limited space on the x axis. Boxplot of ETSs of ensemble
members from (b) BoM, (c) NCMRWF, (d) UKMO, and (e) KMA models at different thresholds from 100 to 300 mm over the focused region. The whiskers
extend to the most extreme data points that are not considered outliers. Points are identified as outliers if they are larger than q3+1.5(q3−q1) or smaller than q1
−1.5(q3−q1), where q1 and q3 are the 25th and 75th percentiles.
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good members at 1800 UTC 19 July are given in Figure 6a.
Compared with poor members, the good members are
characterized by stronger vorticity over the focused region,
which is corroborated by the deeper low-level vortex sug-
gested in Figure 5c. Moreover, there are dipoles of vorticity
differences over two tropical cyclones (Figure 6a), and the
dipoles become stronger (~6×10−5 s−1) later on at 0000 UTC
20 July (Figure 6b), indicating the locations of tropical cy-
clones are associated with the rainfall accumulation over the
focused region. Consistently, the composite of good mem-
bers is featured with a Cempaka located more to the south-
east and an In-Fa located slightly more to the south, which is
especially true at 0000 UTC 20 July in Figure 6b. These
variations of tropical cyclone locations may be closely re-
lated to the southwestward intrusion of the subtropical high.
The southwestward intrusion of the subtropical high may
increase the geopotential height gradient over the northern
area of Typhoon In-Fa, which enhances the low-level east-
erlies as revealed in Figure 5d and thus facilitates more
moisture transportation to the focused region.

3.3 Results from CNOP

Key environmental forcings for the 24-h accumulated rain-
fall identified using ESA are generally consistent with those
for the hourly extreme rainfall at 0800 UTC 20 July identi-

fied using CNOP. Three sensitive areas are identified by the
CNOP (Figure 2a). The vertical distribution of the horizon-
tally integrated TME of CNOP (hereafter referred to as
hTME) over the sensitive area B, which is located in the
middle of the verification area, peaks at the middle (~500
hPa) and upper level (~300 hPa, Figure 2b). This sensitive
area corresponds to the low pressure vortex and its associated
shear line at 500 hPa (Figure 2d) and the ridge at 300 hPa
(Figure 2c). The hTME over the sensitive area A, which is
located to the south of the verification area (Figure 2a), peaks
at lower (~850 hPa) and middle levels (~500 hPa, Figure 2b).
This sensitive area corresponds to the southeasterly flow to
the south of the shear line extending from the low vortex at
850 hPa (Figure 2e) and 500 hPa (Figure 2d). The environ-
mental systems in sensitive areas A and B identified by
CNOP are consistent with those identified by ESA. The
CNOP also identifies the sensitive area C in the northwest of
the verification area (Figure 2a) at ~300 hPa (Figure 2b),
which corresponds to the westerly trough (Figure 2c)
neighboring the ridge.

4. Error growth features and their sensitivities
to different scales, amplitudes, and structures

All four convection-permitting ensemble forecasts show

Figure 4 (a) Correlation coefficients (shading; magenta contours for 95% confidence) between the 500-hPa Z at 1800 UTC 19 July and the area-averaged
24-h accumulated rainfall, with ensemble mean 500-hPa Z at respective time contoured in bold black (in gpm); the green box denotes the focused region same
as the black one in Figure 1; the grey box denotes the spatial range of (d)–(f). (b) Composite of good members on 500-hPa Z at 1800 UTC 19 July contoured
in black (in gpm). (c) is the same as (b) but for composite of poor members. (d)–(f) are the same as (a)–(c) but zoomed in over the grey box given in (a)–(c).
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very similar distribution, structure, and values of the accu-
mulated rainfall as well as the uncertainties across their en-
semble members, and higher accumulated rainfall amounts
are generally collocated with greater uncertainties (Figure 7).
On the one hand, the similarity of rainfall region across all
ensemble forecasts suggests that the general location of
where rainfall will occur is quite predictable. However, the
large uncertainties of the 24-hour accumulated precipitation
in these forecasts with minute initial perturbations, as well as
the insensitivity of these forecast uncertainties to the spatial
scale or amplitude of the initial perturbations, suggest that

the predictability of the extreme rainfall during this event is
intrinsically limited and highly unpredictable in a determi-
nistic forecasting system.

4.1 Overall power spectrum and error growth features
with respect to different scales and amplitudes

Although all ensemble forecasts show very similar un-
certainties for their 24-hour accumulated precipitation fore-
casts as well as the power spectra of various state variables at
the end of the ensemble forecast at 1200 UTC 20 July (figure

Figure 5 (a) Correlation coefficients (shading; magenta contours for 95% confidence) between the 200-hPa Z at 1800 UTC 19 July and the area-averaged
24-h accumulated rainfall, with ensemble mean 200-hPa Z at respective time contoured in bold black (in gpm). (b) Correlation coefficients (shading) between
the 200-hPa horizontal wind speed at 1800 UTC 19 July and the area-averaged 24-h accumulated rainfall, with ensemble mean 200-hPa horizontal wind
vector at respective time (reference vector given in bottom right). (c) and (d) are the same as (a) and (b) but for 850 hPa, where the grey box denotes the
spatial range of (e) and (f). (e) and (f) are the same as (c) and (d) but zoomed in over the grey box given in (c) and (d).
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not shown), the growth of the ensemble spread at the first
several hours shows different characteristics associated with
the spatial scale and amplitude of the initial perturbations,
which is shown in Figure 8 for the energy spectra of the
ensemble spread (simply “error energy” hereafter) of the U-
wind component (the power spectra of temperature and water
vapor mixing ratio are qualitatively similar and therefore
omitted).
For LARGE and LARGE0.1, because of the 0.5°×0.5°

horizontal grid spacing of the GEFS analyses that are used to
generate their initial perturbations, most of the error energy is
concentrated in relatively large scales, and the energy de-
creases rapidly for wavelengths below ~200 km (Figure 8a,
8b), consistent with the statement that the smallest resolvable
features of a numerical model are roughly 4 to 6 times of its
horizontal grid spacing (e.g., Skamarock, 2004). The missing
error energy at shorter wavelengths is quickly filled as the
simulation goes on. However, the error energy “plateau” at
wavelengths longer than ~200 km does not increase for the
first 3 to 4 hours (Figure 8a, 8b). The error energy at rela-
tively large scales only starts to increase when the error

energy at relatively small scales has grown to an amplitude
that is comparable to the large-scale errors, and LARGE0.1
starts to increase slightly earlier than LARGE due to its
smaller initial error energy (Figure 8b). If we look at how
much error at each scale grows every hour by examining the
ratios of the error energy spectra of two consecutive hours, it
is clear that error growth is greater in smaller scales at earlier
times, and shifts to larger scales at later times, for both
LARGE and LARGE0.1 ensembles (Figure 8e, 8f). Fur-
thermore, accompanying this shift from smaller to larger
scales of error growth peaks, the amplitude of the peaks also
gradually decreases as they move toward larger scales,
suggesting a slower growth at larger scales (Figure 8e, 8f).
The behavior of error growth of the LARGE and LARGE0.1
ensembles suggests that the most prominent growth of
errors—even when only large—scale uncertainties are im-
posed at the initial conditions-occurs at smaller scales first,
then gradually transitions to larger scales (“upscale growth”),
and the speed of error growth at smaller scales is faster than
later at larger scales, consistent with the three-stage error
growth model of Zhang et al. (2007).
On the other hand, the SMALL and SMALL0.1 en-

sembles first show apparent adjustment from 0 to 1 h re-
sulting from the unbalances in the sub-grid-scale initial
perturbations. Unlike the error energy spectra of LARGE
and LARGE0.1 that drastically decrease for wavelengths
smaller than ~200 km, the error energy spectra of SMALL
and SMALL0.1 at 0 h and 1 h are almost flat across the
entire range of the wavelengths (Figure 8c, 8d); however,
since larger scales have greater base energy than smaller
scales, therefore the overall “flat” error energy spectra of
SMALL and SMALL0.1 actually indicate that errors are
more concentrated at smaller scales than larger scales, op-
posite to the power spectra of LARGE and LARGE0.1 that
errors are more concentrated at larger scales. Compared with
the growth of error energy of LARGE and LARGE0.1
(Figure 8a, 8b), the errors seem to be growing at all scales
simultaneously for SMALL and SMALL0.1 (Figure 8c, 8d),
similar to the error growth after 4 h in LARGE0.1 (Figure
8b, cyan color). However, if we look at the error growth
ratios, there is also a shift of error growth peaks from the
smaller scale with larger amplitude at earlier times to the
larger scale with smaller amplitude at later times (Figure 8g,
8h), similar to what we have already observed for the
LARGE and LARGE0.1 ensembles (Figure 8e, 8f), espe-
cially for SMALL0.1 which has smaller initial errors (Fig-
ure 8h).
In general, although the error grows up at all scales in some

of the circumstances, the wavelengths at which the fastest
error growth occurs shift upscales for initial condition per-
turbations from both small and large scales with different
initial amplitudes. This remains true in sensitivity experi-
ments that completely remove initial perturbations at scales

Figure 6 (a) Differences of 850-hPa vertical relative vorticity between
composite of good members and poor members (Good − Poor) on 1800
UTC 19 July; ensemble mean 850-hPa Z is contoured in black (in gpm);
locations of tropical cyclones (identified based on the minimum of 850-hPa
Z) in the composite of good (poor) members were denoted by yellow (red)
crosses. (b) is the same as (a) but for 0000 UTC 20 July. The green box
indicates the focused region same as the black one in Figure 1.
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smaller than 200 km of LARGE and SMALL ensembles,
while another sensitivity experiment that only keeps
SMALL’s initial perturbations at scales smaller than 200 km
shows that error at smaller scales can grow without larger-
scale errors (see supplement Figure S3).

4.2 Impact of moist process on the power spectrum and
error growth features with respect to different scales and
amplitudes

Error growth rates in regions with and without precipitation

Figure 7 (upper panels) Ensemble probability-matched mean and (lower panels) ensemble standard deviation of 24-hour accumulated rainfall from 1200
UTC 19 July 2021 to 1200 UTC 20 July 2021 for the (first column) LARGE, (second column) LARGE0.1, (third column) SMALL, and (fourth column)
SMALL0.1 ensemble forecasts.

Figure 8 (upper panels) Hourly ensemble-mean power spectra and (lower panels) hourly growth of the ensemble-mean power spectra of the U-wind
perturbations from 0600 UTC to 1800 UTC of 19 July 2021 (0 to 12 hours of the ensemble simulation) for the (first column) LARGE, (second column)
LARGE0.1, (third column) SMALL, and (fourth column) SMALL0.1 ensemble forecasts. Blue colors denote earlier times (shorter simulation lengths) and
red colors denote later times (longer simulation lengths).
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are distinct due to the dominant role of moist convective
processes in error growth at mesoscales (Zhang et al., 2007).
Figure 9a shows the root-mean difference kinetic energy
(RMDKE; e.g., Zhang et al., 2002) averaged over regions
with (“moist” in Figure 9a) and without (“dry” in Figure 9a)
precipitation, defined as the ensemble mean precipitation
rate exceeding or lower than 10−6 mm h−1, in the ensembles.
The characteristics of temperature and moisture are generally
the same as RMDKE. RMDKE is defined as

( )u v
nRMDKE =

1
2 +

, (3)i i i
2 2

where u and v are the differences between an ensemble
member and the ensemble mean for the two components of
the horizontal wind, i is all the grid points within the moist or
the dry region from all the 40 ensemble members, and n is the
quantity of all i grid points. It is apparent from Figure 9a that
the error growth rate for the first 6 to 8 hours is much faster in
the moist region than in the dry region for all the ensembles,
proving the critical role of moist convective processes in
boosting the error growth at mesoscales. Furthermore, while
the four ensembles contain initial perturbations from differ-
ent scales with different amplitudes, the curves of their re-
spective RMDKE, both in the moist and the dry region, are
generally parallel with each other. This suggests that, at least
for the four ensembles that we have examined for this event,
the error growth mechanisms at the first 6 to 8 hours are
likely independent of the scales and amplitudes (when they
are already very small) of the initial perturbations.
We further decompose the horizontal winds into three

different scales with partitions at 30 and 200 km, then cate-
gorize the decomposed wind components into moist and dry
regions and examine how RMDKE grows with and without
precipitation at different scales (Figure 9b). Similar to what
we have observed in the temporal evolution of the error
energy spectra (Figure 8), the distinctions of error growth
rates in moist and dry regions are greater at smaller scales
than at larger scales: the 0–6-h error growth rate in the moist
region is 3.76 times of the dry region growth rate at the small
scales (<30 km), while this ratio of moist-region versus dry-
region error growth rate is 2.77 at the medium scale
(30–200 km), and it becomes almost comparable in these
two regions at the large scale (>200 km). The “stall” of error
growth at the first several hours at the largest scales (Figure
8) is also apparent in Figure 9b that the large-scale RMDKE
almost does not grow at the beginning of the forecasts, unlike
the other two scales. The small-scale RMDKE at 6-hour
lead-time is smaller than the medium-scale RMDKE (Figure
9b), because the fastest error growth scale moves beyond
30 km after about 2 h (Figure 8e–8h).
In short, ensemble forecasts show that the predictability of

this rainfall event is intrinsically limited. Reducing initial
error amplitudes will not lead to improved forecasts. No

matter what the spatial scales and amplitudes the initial
perturbations are, the error energy spectra have no difference
after 6–8 h. This time scale is consistent with many other
studies (e.g., Durran and Gingrich, 2014, Durran and Weyn,
2016). There is also an apparent upscale growth of errors,
with errors at smaller scales growing faster, and errors grow
faster in regions where precipitation occurs than that in the
no-precipitation region due to the dominant role of moist
convective processes in mesoscale error growth, both con-
sistent with the three-stage error growth conceptual model of
Zhang et al. (2007). Additionally, it is shown for the first
time in peer-reviewed literatures that the error growth at
larger scales depends on the smaller-scale errors and that
larger-scale errors will not grow until smaller-scale errors
have grown to an amplitude that is comparable to larger-
scale errors, while error growth at smaller scales is in-
dependent of larger-scale errors. This suggests that the me-
chanism governing error growth of this event in our
ensembles is primarily the upscale growth rather than the
upamplitude growth.

4.3 Error growth features with respect to different
structures

Larger error growth is observed in the CNOP than the
LARGE (it should be noted that in this section, “LARGE”
refers to the simulation with perturbations derived from the
LARGE ensemble in Sections 4.1 and 4.2, rather than the
LARGE ensemble itself) in the whole integration time from
0600 UTC 19 July to 1200 UTC 20 July (Figure 10a). The
CNOP grows faster thans the LARGE in the first several
hours, and the growth rates of the CNOP and the LARGE
become similar after that (Figure 10b).
Similar vertical distributions are observed in CNOP and

the 3 members of LARGE in the first several hours (Figure
11c), while the horizontal distributions are greatly different
from each other. The sensitive areas identified by CNOP are
corresponding to the key synoptic weather systems, while
those of LARGE are not (Figure 11a, 11b; Figure 2c−2e).
Large vertically-integrated TME of CNOP is generally col-
located with the hourly precipitation simulation at both the
initial hours (Figure 11d) and times after that (Figure 11g).
The large perturbation developments at different vertical
levels correspond to the key synoptic weather systems that
are associated with the rainfall at the whole integration time,
which are the low-level water vapor convergence area, the
mid-level low and the upper-level divergence area (Figure
12a, 12c, 12e, 12g, 12i, 12k). However, at the first several
hours in LARGE (~10 h), the large vertically-integrated
TME is not quite consistent with the simulated hourly pre-
cipitation (Figure 11e) and the large perturbation develop-
ments at different vertical levels are not associated with the
key synoptic weather systems as good as in CNOP (Figure
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12b, 12f, 12j). After the first several hours, the LARGE
development patterns become similar to the CNOP (Figure
11h) and are better corresponding to the key synoptic
weather systems mentioned above (Figure 12d, 12h, 12l).
Faster error growth at smaller scales than that at larger

scales is also observed in CNOP and LARGE in the first
several hours (Figure 13). However, different error growth
features are found at larger scales in different variables for
these two types of perturbations with different structures.
While the characteristics of error growth of temperature in
both CNOP and LARGE forecasts are similar to those ob-
served in the previous subsection that larger scale errors stall
when smaller scale errors grow for the first few hours
(“upscale”; Figure 13e–13h), error growth of Qv in both
CNOP and LARGE forecasts are more uniform (“upampli-

tude”; Figure 13i, 13j), although smaller scale errors grow
slightly faster than larger scale errors at the beginning
(Figure 13k, 13l). On the other hand, error growth of the
wind (the U-component and V-component are similar) shows
different behavior in the two forecasts: it is more upampli-
tude with the CNOP initial perturbations (Figure 13a), while
more upscale with the LARGE initial perturbations (Figure
13b). This result suggests that the error growth of wind is
more sensitive to the structure of initial perturbations than
those of temperature and Qv.
The reasons for the more upamplitude features are two

folds related to the structure of the initial perturbation and the
wavelength regime used for forecasts. On the one hand, the
more upamplitude features in wind and Qv of the CNOP may
be contributed partly by the inherent faster error growth as-

Figure 9 RMDKE of (a) the original model forecast fields, and (b) the model forecast fields decomposed into small scales (<30 km), medium scales
(30–200 km), and large scales (>200 km) for regions with (solid lines) and without (dashed lines) precipitation. The portion of the model domain that is
covered by precipitation is also plotted in (a) as the dotted lines. The lines in (b) are the averages of respective, scale-decomposed RMDKE values of the four
ensembles (i.e., LARGE, LARGE0.1, SMALL, and SMALL0.1).

Figure 10 (a) TME (units: m2 s−2) and (b) hourly growth of the TME over the area interested (the inner black box in Figure 2a) for the CNOP (black line)
and LARGE (red, blue and green lines).
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sociated with the large-scale flow patterns that are well
collocated with rainfall. On the other hand, the distribution of
atmospheric kinetic energy with respect to wavelengths has
already transitioned from a k−5/3 power law at the smallest
scales of the CNOP and LARGE forecasts to a k−3 power law
at the largest scales of these forecasts (e.g., Skamarock,
2004), and Rotunno and Snyder (2008) and Durran and
Gingrich (2014) show that error grows more upscale in the
k−5/3 regime while more upamplitude in the k−3 regime.
Additionally, Skamarock (2004) shows that forecasts with
parameterized convection (like the CNOP and LARGE
forecasts) are not able to build the k−5/3 energy spectrum and
hinders error growth at smaller scales compared with fore-
casts with explicit convection, which may enhance the up-
amplitude tendency for the forecasts. Therefore, mixed

behavior of both upscale and upamplitude error are observed
in the three variables, with Qv showing the strongest upam-
plitude characteristics as the convective parameterization
scheme directly impacts it while it is more of an indirect
impact on the temperature and wind through modified con-
vective activities.
In short, CNOP has larger error growth at the whole in-

tegration time and a much faster growth rate at the first
several hours than the LARGE. In addition, error growth
tends to be more upamplitude in these coarse resolution
forecast, especially with the CNOP. The error growth at
larger scales may be related to both the inherited feature of
CNOP perturbation, the inability of the convective para-
meterization scheme to rebuild the k−5/3 atmospheric power
spectra at the mesoscales, and different error growth char-

Figure 11 Development of the CNOP and LARGE at (upper panels) 0600 UTC, (middle panels) 0900 UTC, and (bottom panels) 2100 UTC 19 July 2021.
The vertical integrated TME (shading, the top 1% energy) for (first column) CNOP and (second column) LARGE_11, and (third column) the vertical
distribution of the hTME (units: m2 s−2) for CNOP and LARGE are shown. The simulated 1-h precipitation (contour, every 2 mm) at the corresponding time
are also shown in (d), (e), (g), (h).
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acteristics in the k−5/3 and k−3 regimes.

5. Concluding remarks

This study explores the controlling factors of the un-
certainties and error growth features with various initial
scales, amplitudes, and structures in forecasting the high-
impact extremely heavy rainfall event that occurred in Henan
Province China, on 17−22 July 2021. The most intense
events happened during 19−20 July 2021, when the me-
tropolitan area of Zhengzhou, the capital city of Henan
Province, and the surrounding area received record-breaking
hourly rainfall of 201.9 mm and 24-hour accumulated rain-
fall of over 600 mm. In spite of warnings that were issued
several days prior to this event, large uncertainties exist in
operational forecasts in the location and intensity of the
highest accumulated rainfall of this event. A suite of ana-
lyses, including ensemble sensitivity analysis (ESA) using
an ensemble of global models, conditional nonlinear optimal

perturbation (CNOP) method using a coarse-resolution re-
gional model, and ensemble simulations using a high-re-
solution convection-permitting regional model, is designed
in this study.
Using the four models that most accurately predicted the

rainfall amount and location of this event from the TIGGE
ensemble, ESA reveals several dominating synoptic features
that determine the forecast uncertainties of this event. The
most significant contributor is found to be the mid-to-lower
low-pressure system directly over Henan Province. The up-
per-level deeper ridge and trough that are associated with a
stronger jet stream are found to provide stronger upper-level
divergence and hence stronger lifting and more favorable for
heavy rainfall. In addition, the positions of the two tropical
cyclones and the associated low-level jets are also important
for rainfall. Likely being associated with the southwestward
extending of a ridge from the subtropical high, when Ty-
phoon Cempaka is more located to the southeast or Typhoon
In-Fa is more located to the south, the low-level jets are
enhanced, and so is the total amount of precipitation in He-

Figure 12 Development of the (first and third columns) CNOP and (second and fourth columns) LARGE_11 at (first and second columns) 0900 UTC and
(third and fourth columns) 2100 UTC 19 July 2021. The TME (shading, the top 1% energy) at (upper panels) 300 hPa, (middle panels) 500 hPa, and (bottom
panels) 850 hPa. Also shown are (upper panels) the horizontal wind divergence (contour, units: 10−5 s−1) at 300 hPa, (middle panels) the vertical relative
vorticity (contour, units: 10−5 s−1) at 500 hPa, and (bottom panels) the water vapor flux divergence (contour, units: 10−4 kg (kg s)−1) at 850 hPa for the (first
and third columns) CNOP and (second and fourth columns) LARGE_11. The solid contour line denotes the divergence area at 300 hPa and positive vorticity
at 500 hPa, and the dotted line denotes the convergence area at 850 hPa.
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nan Province. Similar to the 24-h accumulated rainfall, the
hourly extreme rainfall at 0800 UTC 20 July is also sensitive
to the upper-level ridge, mid-level low, and low-level trough
extending from the low pressure vortex, as revealed by our
CNOP analysis.
High-resolution convection-permitting ensemble forecasts

with flow-dependent, unobservably small initial perturba-
tions show that rainfall area is quite predictable, but the
predictability of this event is intrinsically limited in terms of
the maximum values of 24-hour accumulated precipitation.
Reducing initial perturbations by order of magnitude will not
lead to reduced forecast uncertainties, no matter the spatial
scales of the initial perturbations are relatively large (from a
global model) or small (from sub-grid-scale unresolved un-
certainties).
The evolution of the energy spectra of the forecast errors

is insensitive to the amplitudes or spatial scales, or struc-
tures of the initial perturbations after 6 to 8 hours. The in-
trinsically limited predictability of convectively driven
extreme rainfall events is widely recognized, and this in-
sensitivity of forecast errors to the amplitudes and spatial
scales in initial perturbations is aligned with previous stu-
dies of other extreme rainfall events under different synoptic
regimes, including Mei-yu rainfall (Bei and Zhang, 2007),
warm-sector rainfall (Wu et al., 2020), frontal and pre-

frontal rainfall (Weyn and Durran, 2019), and organized
convective systems (Nielsen and Schumacher, 2016, Weyn
and Durran, 2019). However, for the initial perturbation
generated with GEFS or sub-grid-scale uncertainties, one
outstanding discovery is the behavior of large-scale flow-
dependent errors when they have much larger amplitudes
than the small-scale errors: to the knowledge of the authors,
this is the first study that shows the inability of large-scale
errors to grow until the amplitude of small-scale errors have
increased to an adequate amplitude, confirming that errors
of smaller scale grow faster than those of larger scale.
In addition, the error growth rate with respect to different

spatial scales and time—despite whether large-scale or
small-scale initial uncertainties are imposed—also shows an
apparent transfer of the fastest growing scale from smaller to
larger scales with a slower growth rate at larger scales. This
result suggests that although upamplitude growth and up-
scale growth coexist, the dominant mechanism controlling
the error growth is their upscale transfer, at least for the
ensemble forecasts of this high-impact event examined in
this study. Faster error growth is also observed in regions
where precipitation occurs, suggesting the importance of
moist convective processes in controlling the error growth of
this event. Whether this behavior of large-scale flow-de-
pendent errors holds true for other events and how sensitive

Figure 13 (first and second columns) Hourly power spectra and (third and fourth columns) hourly growth of the power spectra of (upper panels) the U-wind
perturbations, (middle panels) the T perturbations, and (bottom panels) the Qv perturbations from 0600 UTC to 2100 UTC 19 July 2021 (0 to 15 hours of the
simulation) for the (first and third column) CNOP, (second and fourth column) LARGE_11. Blue colors denote earlier times (shorter simulation lengths) and
red colors denote later times (longer simulation lengths).
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this behavior is to different strengths of synoptic forcing
remain unknown and deserve further studies.
The sensitivity of the error growth to different structures of

initial perturbations was also examined with the distribution
of atmospheric kinetic energy transitioning from the k−5/3 to
k−3 regimes. Results show that CNOP has larger error growth
at the whole integration time and a much faster growth rate at
the first several hours than the GEFS or sub-grid-scale per-
turbations. Different error growth features at larger scales are
observed in different variables for the perturbations with
different structures. CNOP pattern initial perturbations,
whose error growth well corresponds to the rainfall asso-
ciated key synoptic weather systems at the whole integration
time, show more upamplitude feature with an error growth at
the initial hours at both smaller and larger scales for wind and
water vapor mixing ratio. However, the error growth feature
of temperature is not quite sensitive to the structure of initial
perturbations. The error growth at larger scales may be
owning to the inherited feature of CNOP perturbation, the
inability of the convective parameterization scheme to re-
build the k−5/3 power spectra at the mesoscales, and different
error growth characteristics in the k−5/3 and k−3 regimes.
To conclude, this study suggests that the forecast un-

certainties of the record-breaking extreme rainfall event that
occurred in Henan Province China on 19−20 July 2021 are
associated with many different factors across different spa-
tial scales. Practically, because of incomplete knowledge of
the atmosphere, model deficiencies, and imperfect data as-
similation techniques, initial conditions of different models
disagree in terms of their representations of the upper-level
ridge and trough, the mid-level low-pressure system directly
over Henan Province, as well as the low-level jet associated
with the warm ridge of the subtropical high and the two
distant tropical cyclones to the southeast, which leads to
diverse forecasts of the total accumulated rainfall. However,
even we have a nearly perfect model with nearly perfect
estimations of the atmospheric conditions, tiny, unobservable
errors will grow upscale and, to a slightly lesser extent, up-
amplitude with the help of moist convective processes, and
intrinsically prevent the accurate predictions of the location
and strength of the accumulated rainfall in a deterministic
sense. Although the universality of some of these conclu-
sions needs to be further examined under different scenarios,
they nonetheless highlight the importance of further devel-
oping advanced data assimilation techniques that can make
better use of existing but underutilized observations, as well
as the benefits of ensemble forecasts that consider un-
certainties in initial conditions over deterministic forecasts,
in improving practical predictability of extreme weather
events and providing more useful numerical weather pre-
dictions as forecast guidance in the future.
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