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ABSTRACT

The practical predictability of tropical cyclone (TC) intensity in terms of mean absolute forecast error with

respect to different conditions at forecast initialization was explored through convection-permitting hindcasts

of all Atlantic storms during the 2008–12 hurricane seasons using the Weather Research and Forecasting

(WRF) Model. Averaged over a total of 2190 simulations, the day 1–5 performance of these WRF hindcasts

was comparable to two operational regional-scale hurricane prediction models used by the National Hurri-

cane Center (NHC) but was slightly inferior to the NHC official forecasts. It was found that the prediction

accuracy of TC intensity, both at the initialization time and the targeted forecast hours, was strongly corre-

lated with the TC intensity. On average, for both theWRF hindcasts and the NHC official forecasts, stronger

intensities and larger intensity variations led to larger forecast errors. A number of synoptic-scale environ-

mental parameters, such as vertical wind shear, sea surface temperature (SST), and the underlying surface

condition (land vs sea), affected the intensity forecast errors of TCs, in part due to their influence on intensity

changes, while other thermodynamic environmental parameters, such as moisture and instability, had rela-

tively minor effects. The accuracy of the intensity prediction was also found to be sensitive to the translation

speed of the TCs. Amoderate TC translation speed of 11–15 knots (kt; 1 kt5 0.51m s21) corresponded to the

largest intensity errors during forecast lead times less than 60 h, while the slowest translation speed (,7 kt)

was associated with the largest errors after the 60-h forecast lead time.

1. Introduction

It is well known in the tropical cyclone (TC) research

and operational forecast communities that track fore-

casts have experienced large improvements during the

past few decades, while there has been virtually no im-

provement in the intensity forecasts in both the North

Atlantic (Cangialosi and Franklin 2013; Houze et al.

2007) and western North Pacific (Yu et al. 2013) basins,

especially during stages of rapid intensity change (Elsberry

et al. 2007). TC track is primarily controlled by the large-

scale environment, including, for example, the steering

flow (Chan andGray 1982), b effect (Holland 1983), and

Fujiwhara effect (Fujiwhara 1921), and better track pre-

dictions have been achieved with the advances in nu-

merical weather prediction (NWP) models, observing

systems, and data assimilation methods. The intensity,

on the other hand, is mainly determined by the internal

dynamics and moist processes. These dynamics and

processes are smaller in scale and more chaotic, making

intensity less predictable.
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The predictability of weather systems consists of in-

trinsic and practical predictability (Lorenz 1963), and

the lack of improvement in the accuracy of intensity

forecasts has resulted from both the limited intrinsic

predictability of underlying dynamics and the limited

practical predictability due to deficiencies in the current

generation of intensity-forecast guidance tools. The

practical limitations arise from insufficient model res-

olutions, inaccurate initial conditions (ICs), and un-

certainties in the representations of various physical

processes. Using finer convection-resolving resolutions

in NWP models, applying advanced ensemble-based or

hybrid ensemble–variational data assimilation methods,

and assimilating inner-core observations such as ground-

based or airborne Doppler radar radial velocity obser-

vations will greatly mitigate the practical predictability

limitation and improve intensity forecast accuracy

(Zhang et al. 2009, 2011; Weng and Zhang 2012; Li et al.

2012; Aksoy et al. 2013; Cavallo et al. 2013). Davis et al.

(2010) found a statistically significant improvement in

TC intensity forecasts using a nested domain of 1.33-km

resolution rather than 12-km resolution in an NWP

model. Based on real-time analyses and forecasts using

an ensemble Kalman filter (EnKF) and the advanced

Hurricane Weather Research and Forecasting (WRF)

Model data from the 2009 North Atlantic hurricane

season, Cavallo et al. (2013) found that the EnKF data

assimilation can systematically reduce the TC position

and intensity errors except for strong TCs. Because of

the chaotic nature of moist convection and internal dy-

namics that dominate TC intensity, it may be intrin-

sically less predictable than track. Zhang and Sippel

(2009) found that small unobservable initial condition

perturbations could lead to large divergence in TC for-

ecasts, as similarly observed in studies concerning the

mesoscale predictability of continental mesoscale con-

vective systems (Melhauser and Zhang 2012; Wu et al.

2013) and midlatitude extratropical cyclones (Zhang

et al. 2002, 2003). Van Sang et al. (2008) found that small

random moisture perturbations in the boundary layer

might greatly change the structure and intensity of TCs,

implying large intrinsic uncertainties associated with TC

intensity prediction. Using similar initial perturbations

but with the inclusion of environmental vertical wind

shear, Zhang and Tao (2013) found that larger magni-

tudes of shear decrease the intrinsic predictability of the

TC, especially during periods of genesis or rapid inten-

sification (RI). Furthermore, Hakim (2013) and Brown

and Hakim (2013) explored the possible time scale of

intrinsic predictability of several TC characters under an

idealized equilibrium framework and found that most

features near eyewall region maintained their pre-

dictability for no longer than 48 h without considering

the ambient environment. It is noteworthy that most

studies on TC intensity predictability focused on in-

trinsic predictability of single or idealized cases. The

factors controlling intensity forecast error growth in

realistic or operational NWP models remain largely

unknown.

Although as stated in Brown and Hakim (2013) the

intrinsic predictability of many TC characteristics is lost

after about two days, with the help of realistic dynamical

models as well as statistical models, another major

branch in TC operational forecast community, forecasts

up to 120 h are routinely issued at various major oper-

ational centers, including the National Hurricane Center

(NHC). One of these statistical models, the Statistical

Hurricane Intensity Prediction Scheme (SHIPS; DeMaria

and Kaplan 1994), uses a combination of climatological,

persistence, and synoptic parameters to provide in-

tensity forecasts of Atlantic and eastern North Pacific

TCs (DeMaria and Kaplan 1999). This model has also

been updated to include effects of land surface after

landfall [decay SHIPS (DSHIPS); DeMaria et al. 2005].

Another widely used statistical model, the 5-day Sta-

tistical Hurricane Intensity Forecast Model (SHF5;

Knaff et al. 2003), uses a combination of only climato-

logical and persistence predictors and their products.

The performance of SHF5 is generally inferior to SHIPS

(Elsberry et al. 2007), possibly resulting from the ex-

clusion of synoptic parameters in SHF5, which implies

the importance of considering synoptic conditions in

predicting TC intensity. Although statistical models

have provided valuable guidance in operational fore-

casts, these models still lack skill in predicting tropical

cyclogenesis and RI (Elsberry et al. 2007). According to

surveys, about 31% of all TCs that formed in the At-

lantic basin between 1989 and 2000 underwent RI [de-

fined as an intensity increase of more than 30 knots (kt;

1 kt 5 0.51m s21) within a 24-h period] at least once

during their lifetimes (Kaplan and DeMaria 2003), and

6% of Atlantic TC 24-h intensity changes were greater

than 30 kt (Kaplan et al. 2010). Thus, the capability of

accurately predicting RI is essential for intensity fore-

casting. Another statistical model designed specifically

for intensity predictions of RI applied different combi-

nations of predictors with respect to TC intensity (hur-

ricane category) and stage of RI (Law and Hobgood

2007), indicating that the controlling factors of TC in-

tensity may vary during different stages. With all these

statistical models demonstrating various factors that

may affect TC intensity, it is worth exploring whether

these factors, such as wind shear, moisture, and trans-

lation speed, might also impact intensity forecast errors.

Most recently, Bhatia and Nolan (2013) examined sta-

tistically the uncertainties of TC intensity forecasts with
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respect to the synoptic environment conditions. They

focused on the forecast uncertainty in the NHC’s oper-

ational forecast guidance models (both statistical and

dynamical) as well as in the NHC official forecasts.

Given that the configurations of operational guidance

models often change from year to year, one potential

limitation of their study is that some of the forecast

sensitivities may have come from yearly variations in the

model rather than the true forecast uncertainties due to

environmental factors.

This article focuses on using one specific NWP model

with the same configuration throughout a 5-yr period.

We seek to explore the mean absolute forecast error

characteristics from days one to five with respect to

different factors at simulation initialization time. Un-

derstanding practical intensity predictability of TCs in

an NWP model not only can help us examine possible

causal links between dynamical and thermodynamical

processes within TCs, but may also provide guidance to

forecasters. Further knowledge of the less predictable

TCswill help us to find solutions to improve their forecasts

through the development of better models, better data

assimilation and vortex initialization methods, and/or the

deployment of better observations. Section 2 introduces

the NWP model and methodology used in this study.

After comparing the performance of the models in

section 3, a statistical analysis of mean absolute intensity

forecast errors is provided in section 4. Finally, section 5

provides the conclusions of this study.

2. Model, data, and methodology

The Advanced Research (ARW) core of WRF, ver-

sion 3.4.1 (Skamarock et al. 2008), was used in this study.

The three two-way nested domains had 3793 244 (D01),

304 3 304 (D02), and 304 3 304 (D03) horizontal grid

points with resolutions of 27, 9, and 3 km, respectively.

D01 was fixed to cover the central to eastern three-

quarters of the continental United States (CONUS) and

the tropical and subtropical North Atlantic as shown in

Fig. 1. All Atlantic TCs named by theNHCduring 2008–

12, especially the formation and intensification stages of

these storms, occurred inside D01, which was large

enough to minimize the influence of lateral boundary

conditions (BCs) in most cases while remaining com-

putationally affordable. The inner domains (D02 and

D03) moved automatically following the location of the

TC vortex. There were 44 terrain-following hydrostatic-

pressure levels vertically, decreasing to 50 hPa at the

top. The time step used for the model integration was

90 s in the outermost domain. Physical parameterization

schemes included the Grell–Devenyi ensemble scheme

for cumulus parameterization (Grell and Devenyi 2002;

only in D01), the WRF single-moment (WSM) 6-class

scheme for microphysical processes (Hong and Lim

2006), the Yonsei University (YSU) planetary boundary

layer scheme (Hong et al. 2006) with the fifth-generation

Pennsylvania State University (PSU)–National Center

for Atmospheric Research (NCAR) mesoscale model

(MM5) similarity surface layer scheme (Zhang and

Anthes 1982) and the MM5-based five-layer thermal

diffusion land surface model (Dudhia 1996), and the

Rapid Radiative Transfer Model (RRTM) scheme

(Mlawer et al. 1997) for longwave and the Dudhia

scheme (Dudhia 1989) for shortwave atmospheric ra-

diation. An empirical scheme implemented in Green

and Zhang (2013; denoted therein as the PSU scheme)

was used to estimate the bulk drag and enthalpy co-

efficients (CD/CK). This ad hoc scheme has been found

to be effective in improving the TC wind–pressure re-

lationship forecasts.

During the years of 2008–12, there were 17, 11, 21, 20,

and 19 TCs respectively, which totaled to 88 TCs in the

North Atlantic basin. These numbers were based on the

Tropical Cyclone Vital Database (TCVitals), which con-

tains TC location, intensity, and structure information and

were generated in real time every 6h by forecasters

(Trahan and Sparling 2012). A 126-h deterministic

forecast was conducted when a TCVitals report was is-

sued, with ICs and BCs provided by the analysis and

forecasts of the operational Global Forecast System

(GFS) at the forecast initialization time, which had

a horizontal resolution of 0.58 3 0.58. Sea surface tem-

perature (SST) condition is included in the GFS analysis

at model initialization and was held constant over the

5-day forecast period. A total of 2190 hindcast cases

were collected and used for the statistical analysis in this

work, and will be referred to as the ARW no data

FIG. 1. Domain setting as of 0000 UTC 26 Oct 2012 used for

a forecast ofHurricaneSandy (2012)with tracks of all simulatedTCs

during 2008–12. Different colors of tracks stand for different hurri-

cane intensity categories as labeled at the bottom of this figure.
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assimilation forecast by The University of Pennsylvania

(ANPS) forecasts hereafter, which is also the identifi-

cation acronym in the Automatic Tropical Cyclone

Forecast system (ATCF; Sampson and Schrader 2000)

designated by NHC for the Penn State University ex-

perimental real-time forecasts during 2011–12. Note

that because of the coarse resolution of the ICs that

directly come from the GFS analysis, the initial TCs

often differed from the real storms, with weaker in-

tensity and smoother structure, and experienced rapid

adjustment for the first several hours of model in-

tegration. Thus the nested model domains (D02 and

D03) were fixed in location during 0–6 h and began

moving with the TC center afterward.

The maximum sustained 10-m wind speed (Vmax) of

each TC was chosen to represent TC intensity. Com-

parisons between results using minimum central sea

level pressure (Pmin) and Vmax showed general consis-

tencies. Intensity and positions of TCs were determined

by the Vortex Tracker program of the Geophysical Fluid

Dynamics Laboratory (GFDL) model (Gopalakrishnan

et al. 2012) every 6 h. The Vortex Tracker calculates the

position based on the average of extrema of several

parameters of the model forecasts in the vicinity of an

input first-guess position. These parameters include

relative vorticity and geopotential height at 850 and

700 hPa, wind speed at 850 hPa, 700 hPa, and 10m, and

mean sea level pressure (MSLP). The first-guess posi-

tion was determined by TCVitals at the model initiali-

zation time, and by a weighted average of advecting the

previous TC center using the 500-, 700-, and 850-hPa

wind speed from previous position during the model

forecast.

To calculatemodel forecast errors, the NHCpoststorm

‘‘best track’’ analysis (referred to as BEST) from ATCF

was used as the observations. Two othermajor multilayer

regional dynamicalmodels that are operationally running

at NHC, the National Weather Service (NWS)–GFDL

model (Bender et al. 2007) and the NWS–Hurricane

WRF (HWRF)Model (Gopalakrishnan et al. 2012) were

used for verification of the performance of the ANPS

that will be presented in the next section. The NHC

official forecasts were also examined (referred to as

OFCL). GFDL, HWRF, and OFCL forecasts were all

acquired through ATCF. Note that ANPS, GFDL, and

HWRF generated intensity and position information

every 6h during the 126-h forecast, while OFCL forecasts

were available every 6 h during 0–12 h, every 12h during

12–48 h, and every 24h during 48–120h.

For all results, the statistical significance was verified

using the bootstrap method (Wilks 2006). In this method,

to verify the difference between the mean values of two

groups that have a and b members respectively, a new

group of a members and a new group of b members are

randomly selected with replacement from the (a 1 b)-

member union of the original two groups, and the

difference of the mean values of the two new groups is

recorded. This procedure was repeated 10 000 times,

and the original difference that was to be verified was

regarded as significant if it achieved the 0.05 level

(95% confidence; when its value falls outside the

2.5th–97.5th percentiles of the 10 000-difference dis-

tribution) in our study. Significances were verified for

all pairs of two individual groups within one catego-

rization. For the remaining part of this article, the

terms ‘‘significant’’ and ‘‘significance’’ are used in a sta-

tistical sense.

3. Model performance

Before further analyzing the ANPS forecasts, it is

desirable to examine whether the NWP model used

can provide dynamically reliable TC forecasts with an

acceptable error magnitude. Figure 2a shows that the

ANPS track forecasts were comparable in accuracy to

the operational forecasts by the HWRF and GFDL

models as well as OFCL for 2008–12. The bootstrap

test confirmed that the track accuracies of these fore-

casts were statistically indistinguishable. However,

since the ANPS forecasts with the WRF Model were

directly initialized with the coarse GFS analysis with-

out additional TC vortex initialization,1 the intensity

forecast errors of ANPS were larger than HWRF and

GFDL at first (Fig. 2b), and the differences between

ANPS and HWRF–GFDL were significant until 24 h.

The OFCL intensity forecast error saturated around

13–15m s21 after approximately 48 h. On the contrary,

the errors of the dynamical model forecasts continuously

increased over time, mostly due to the continuously

increasing forecast biases (Fig. 2c). It is also worth

noting that the ANPS forecast achieved a decent wind–

pressure relationship (often used as ameasure of dynamical

reliability), as the least squares linear fit between the

forecasted Vmax and Pmin closely followed those of

HWRF, GFDL, and the best-track estimates (Fig. 2d).

Despite the configuration uniformity, there was a

strong variability in the intensity forecast errors fromyear

to year by ANPS (Fig. 3a). The accuracy of the OFCL

forecasts also experienced strongly year-to-year vari-

ability, although not always in the same direction as

ANPS (not shown). Some of the ANPS forecast

1However, a TC vortex relocation scheme is used in the opera-

tional GFS analyses that are used to initialize the ANPS hindcasts

(Liu et al. 2000).
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performance variability might come from the strong

year-to-year variability in the forecast biases (Fig. 3b).

All yearly averaged intensity biases increased over

forecast lead times, and over the five years the biases

generally shifted from being negative to positive (in-

tensity forecasts from being weaker to stronger than

best-track estimates). Some of these yearly shifts in

forecast biases might be a reflection of the changes in

the GFS analyses and forecasts (both in terms of the

forecast model and the data assimilation system; NCEP

2013) that were used as ICs and BCs for the ANPS

forecasts. The yearly variability in the ANPS forecast

biases clearly revealed the influence of global analysis

and forecasts that were used to initialize regional-

scale models: although we strived to maintain uni-

formity of the ANPS hindcasts, the simulations were

nonetheless sensitive to changes and quality of its ICs

and BCs.

4. Dependence of intensity forecast error on
various storm-scale and environmental factors

a. TC intensity

First, we examined how different initial TC intensities

might result in different characteristics of intensity

forecast error growth. Each ANPS forecast was cate-

gorized according to the Saffir–Simpson hurricane wind

scale based on the best-track observations at the ini-

tialization time. Figure 4a shows the mean absolute

forecast error growth of intensity categorized into

tropical depressions and tropical storms (TD and TS;

Vmax , 64 kt), nonmajor hurricanes (category 1 and 2

hurricanes, 64 # Vmax , 96 kt), and major hurricanes

(category 3–5,Vmax$ 96 kt) as well as the 24-hourly first

and third quartiles of each group. The spinup periods

were clearly revealed, with much larger initial error for

major hurricanes and decreasing to a similar magnitude

FIG. 2. Mean absolute errors during 2008–12 of (a) track and (b) maximumwind speed (Vmax) for selected regional

NWP models and NHC official forecasts, as well as (c) mean biases of Vmax and (d) relationships between Vmax and

Pmin for NWPmodel forecasts and best-track observations. In (a) and (b), the numbers at the top indicate the sample

size of different models at that time, the two-color squares at the bottom indicate significantly different pairs at that

time. In (a)–(c), the vertical lines accompanying error or bias trends are ranges between the first and the third

quartiles of each group every 24 h. In (d), the scatters are each single Vmax–Pmin pair of best track.
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of TD and TS after about 72 h. On the contrary, the

intensity forecast errors for TD–TS increased with time.

The intensity forecast errors for nonmajor hurricanes

also increased with time but at a lesser growth rate.

Major hurricanes had the potential to have larger fore-

cast errors at least for 0–60 h, and this difference was

significant for 0–48 h. In OFCL, major hurricanes con-

tained larger errors during 12–96 h (Fig. 4b) and were

significant until 72 h. When the mean absolute errors

were normalized into mean relative error percentages

(mean of absolute intensity error divided by best-track

intensity), the differences among groups in OFCL be-

came almost statistically indistinguishable throughout

the 5-day period (Fig. 4d). However, the percentage-

based intensity forecast error of ANPS was different

among forecasts with different initial intensity (Fig. 4c).

For example, the intensity forecast error for initially

major hurricanes was significantly larger than the other

two groups at the beginning of the forecast period, partly

due to model initialization and subsequent spin-ups, and

quickly decreased to near a quasi-steady value of ;20%

at around 24h. This error subsequently became signifi-

cantly smaller than the forecasts initialized with weaker

initial TCs after 90h.

Figure 5 further stratifies the forecast errors according

to the best-track TC intensity at each verification time. It

is quite apparent that stronger TCs (at the verification

time) had larger intensity forecast errors both for ANPS

(Fig. 5a) and OFCL (Fig. 5b) at almost all lead times.

This characteristic was significant during 0–102 h for

ANPS and 12–120 h for OFCL. Given that initially

weaker TCs on average tend to strengthen to stronger

storms, while initially stronger TCs tend to weaken

(Fig. 6a), the strong dependence of forecast error on the

intensity of the observed storms at the verification times

shown in Fig. 5a was thus consistent with the de-

pendence of forecast error on the initial storm intensity

shown in Fig. 4a. On the other hand, the percentage-

based forecast errors (categorized by the concurrent

intensity) for both ANPS and OFCL (Figs. 5c,d) had

much larger variabilities among groups than those cat-

egorized by the initial intensity shown in Figs. 4c and 4d.

For ANPS, major hurricanes had significantly larger

errors for 0–54 h, while the weakest TD and TS became

the significantly largest after 78 h. OFCL tended to have

persistently larger error magnitudes for TS and TD than

hurricanes (Fig. 5d; significant after 12 h), which might

be in part due to the difficulty in forecasting rapid in-

tensity changes. Given the absolute error remains the

primary verification metrics in various studies (e.g.,

Elsberry et al. 2007; Bhatia and Nolan 2013) and oper-

ational centers including the NHC, the mean absolute

errors were used in the remainder of this study to make

it more comparable to other studies.

Next, we examined the dependence of intensity

forecast error on the initial bias. Since there was a sharp

decrease of overall intensity forecast error for ANPS

(Fig. 2b) during the first 6 h of simulations, the initial

bias for the ANPS forecasts was therefore considered to

be the bias at t 5 6 h. Not surprisingly, larger initial in-

tensity biases resulted in larger forecast errors at most

times. The noteworthy result in the ANPS forecasts in

Fig. 7a is that forecast errors with initially positive bias

(stronger than the observations) larger than 10 kt de-

creased quickly after initialization and became in-

distinguishable from errors in TCs with much smaller

initial biases. Meanwhile, the forecast errors with ini-

tially large negative bias (blue lines in Fig. 7a) remained

significantly larger than the other errors until 54 h.

However, with a much smaller initial error (by human

FIG. 3. (a) Yearly mean absolute intensity forecast errors and (b) yearly mean intensity biases of ANPS. The

vertical lines accompanying error or bias trends are ranges between the first and the third quartiles of each group

every 24 h.
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forecasters), the initial biases in OFCL generally did not

affect the subsequent OFCL forecasts (Fig. 7b). The

much longer sustained larger errors of TCs with initially

large negative biases could result from a strong TC with

longer time for model spinup or a TC experiencing RI,

which will be examined next.

RI has long been recognized as one of the most

challenging elements of TC prediction. Both dynamical

and statistical models lack sufficient skill in accurately

forecasting both the timing andmagnitude ofRI (Elsberry

et al. 2007). RI herein was defined as the process in which

the Vmax of a TC intensifies by more than 30kt within

a 24-h period, as in Kaplan and DeMaria (2003) and used

operationally by NHC. Based on this definition, we di-

vided the forecast dataset into five groups based on the

observed DVmax during the first 24h of forecasts. These

groups were RI (DVmax . 30kt), normal intensification

(30. DVmax . 5kt), maintenance (5. DVmax . 25kt),

normal decay (25 . DVmax . 230kt), and rapid decay

(DVmax , 230kt). The results showed limited practical

predictability of RI for ANPS model, as the intensity

forecast error experienced an increase of over 20kt within

the first 24h (Fig. 7c). The forecast errors of RI TCs were

significantly larger than all other TCs during 12–66h,

while the forecast errors of rapidly decaying TCs de-

creased dramatically after initialization and remained

comparable to (or slightly smaller than) others. A similar

practical predictability limitation of TCs undergoing RI

also appeared in the OFCL forecasts (Fig. 7d); those TCs

had significantly larger errors during 24–48h. These

characteristics might result from the fact that rapid

decay occurs more frequently in strong TCs that may

already have large errors at initialization, while RI

happens mostly in weak TCs. This was confirmed by

Fig. 6b during 0–24 h, when the RI TCs on average in-

tensified by nearly 40 kt from TS strength, while the

rapidly decaying TCs weakened by a similar magnitude

from a category-2 hurricane.

The forecasts that underwent RI were further in-

vestigated. All cases that went through RI during the

FIG. 4. (a) ANPS and (b) OFCL mean absolute intensity forecast errors, and (c) ANPS and (d) OFCL mean

relative intensity forecast errors, all categorized by best-track TC intensity categories at forecast initialization time

(t5 0h). The vertical lines accompanying error trends are ranges between the first and the third quartiles of each group

every 24h; the two-color squares at the bottom indicate significantly different pairs at that time.
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126-h simulation had been categorized by the forecast

lead time when their RI began (e.g., forecasts in cate-

gory Day 1 began their RI in forecast lead times of

0–24 h). Only the earliest RI start time was counted for

each forecast. It is clear that the pattern of intensity

error of ANPS (Fig. 7e) resembled the pattern of best-

track intensity (Fig. 6c). Furthermore, the peak errors of

all groups during their respective RI were also signifi-

cantly larger than those before RI at the same time.

OFCL was similar to ANPS (Fig. 7f) for RI before 48 h,

but the error of RI after 48 h (fromDay 3 to Day 5 in the

figure) for OFCL behaved differently from those of

ANPS even considering the much coarser time resolu-

tion of 24 h of OFCL, and RI after 96 h (‘‘Day 5’’ in the

figure) had much larger errors in OFCL than in ANPS.

Strong correlation between intensity change and error

growth of ANPS throughout the entire forecast period

indicates that large errors during RI periods are not due

to the spinup effect of ANPS (bias resulting from initial-

izing the TC directly from the GFS analysis); otherwise,

intensity forecast errors would be smaller in subsequent

RIs beyond the spinup periods. Also, the much larger

intensity errors after RI than before might be a conse-

quence of the increased intensity as well as the generally

increasing trend of intensity forecast errors during the

simulations (Fig. 2b).

b. Environmental factors

1) VERTICAL WIND SHEAR

Vertical wind shear (referred to as shear hereafter) is

one of the most influential environmental parameters

throughout the entire lifetime of a TC. It affects tropical

cyclogenesis and RI (Molinari et al. 2004; Molinari and

Vollaro 2010b; Nguyen and Molinari 2012; Zhang and

Tao 2013), TC structure (Cavallo et al. 2013), and more

specifically the distribution or asymmetries of convec-

tion (Corbosiero and Molinari 2002, 2003; Molinari and

Vollaro 2010a; Reasor et al. 2013) and precipitation

(Chen et al. 2006; Gao et al. 2009; Wingo and Cecil

2010), as well as changes in TC intensity (DeMaria 1996;

Molinari et al. 2006; Zeng et al. 2010). However, Zehr

FIG. 5. As in Fig. 4, but for (a) ANPS and (b) OFCLmean absolute intensity forecast errors, and (c) ANPS and (d)

OFCL mean relative intensity forecast errors, all categorized by best-track TC intensity categories at each verifi-

cation forecast lead times.
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(2003) argued that the influence of shear might not be

reliably quantified and consistently related. Here we

examined the impact of shear on TC intensity prediction

and practical predictability within both ANPS and

OFCL.

The 18 3 18 GFS final analysis (FNL) was used to

calculate environmental shear. The FNL analysis is

based on the GFS analyses, but assimilates more ob-

servations after the synoptic time using a 13-h cutoff

window (rather than a 11-h cutoff window for the op-

erational GFS analysis). Many different ways to average

wind speed at a specific isobaric level had been utilized

in the aforementioned literature. In this study, the deep-

layer shear was calculated as the difference between the

mean wind vectors within an annular area between 200

and 800 km from the TC center at 850 and 200 hPa

(Table 1), which had been widely used in previous

studies (e.g., Gao et al. 2009).

The mean TC intensity evolution categorized by the

amplitude of shear at forecast initialization times for

the subsequent 5 days of the forecast is given in Fig. 6d.

The average shear at the initial time for all storms was

8.84m s21 (Table 2). Somewhat surprisingly, the mean

initial intensity of the TCs (Fig. 6d) for the weak to

moderate shear values (0–10m s21) was the weakest

(around 50 kt) while the storms with strong shears

(.10m s21) were more intense on average (55–60 kt).

This shows that the instantaneous shear values were

not strongly correlated with the instantaneous TC in-

tensity. Nevertheless, the initial shear amplitude was

directly related to the subsequent mean intensity

changes. The storms with averaged initial shear ,
5m s21 intensified the fastest, followed by storms with

initial shear of 5–10m s21, both of which approached

a near steady intensity between 48 and 72 h. The TCs

with the largest initial shear (.15m s21) on average

had the largest decrease in intensity, followed by the

storms with shears of 10–15m s21, both of whose av-

erage intensities changed from decaying to strength-

ening at around 72–96 h. The strengthening of these

FIG. 6. Best-track mean intensity categorized by (a) best-track TC intensity categories at forecast initialization

time, (b) best-track intensity changes during the first 24 h of forecasts, (c) days that rapid intensification began, and

(d) 850–200-hPa vertical wind shearmagnitudes. The vertical lines accompanying intensity trends are ranges between

the first and the third quartiles of each group every 24 h.
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strong initially sheared storms might result from the

vortex precession–alignment processes that counter

against the environmental shear (e.g., Rappin and

Nolan 2012; Zhang and Tao 2013); it is also possible

that shear changed with time.

The effect of the initial shear on the intensity forecast

error was rather complicated (Figs. 8a,b). The TCs with

initial shear of 0–5m s21 had the largest intensity fore-

cast error byANPS (until about 84 h), and its differences

from other groups were significant during 18–72 h. The

FIG. 7. As in Fig. 4, but formean absolute intensity forecast errors of (left) ANPS and (right)OFCL, categorized by

intensity bias at (a) 6 and (b) 0 h; (c),(d) best-track intensity changes during the first 24 h of forecasts; and (e),(f) days

that rapid intensification began. Quartile ranges are plotted during 6–126 h every 24 h in (a).

1012 WEATHER AND FORECAST ING VOLUME 29

Unauthenticated | Downloaded 02/06/23 10:21 AM UTC



storms that had the largest initial shear (.15m s21) on

average had the smallest intensity forecast errors at

nearly all times, even though the error differences might

not always be significant. However, a 10–15m s21 strong

shear produced larger errors than the moderate 5–

10m s21 shear in ANPS, although their difference was

statistically indistinguishable for 15 out of the 22 verified

forecast lead times (Fig. 8a). OFCL also had the least

forecast errors for initial shear .15m s21 that was sig-

nificant during 24–96 h, while its errors for weak (0–

5m s21) and moderate (5–10m s21) shears were statis-

tically indistinguishable (Fig. 8b).

The above findings on practical predictability with

respect to initial shear were complementary to the re-

cent studies of Zhang and Tao (2013). They found that

stronger deep-layer environmental shear leads to smaller

intrinsic predictability of tropical cyclone intensity during

RI. An extension of their work (F. Zhang and D. Tao

2013, personal communication) revealed similar con-

clusions for shear magnitude up to 12.5m s21. Because

Zhang and Tao (2013) applied an idealized framework

that explored only the impacts of shear and focused

primarily on the intrinsic predictability of a TC’s for-

mation and RI (the NHC best-track database does not

include any genesis forecasts, and thus neither ANPS or

OFCL forecasts demonstrate the difficulty of producing

genesis forecasts under different shear), the discrepancy

of the impact from environmental shear on TC intensity

predictability between these two studies is expected. In

addition, the error characteristics under different shear

conditions (Figs. 8a,b) were different from correspond-

ing intensity evolutions (Fig. 6d) as decay of TCs under

shear .10m s21 did not lead to a decrease of intensity

forecast errors, which indicates further links between

shear and predictability of TC intensity. However, this is

beyond the scope of this study.

2) SEA SURFACE TEMPERATURE AND CENTER

LATITUDE

Sufficient SST has long been recognized as a pre-

requisite of TC formation andmaintenance since the sea

surface is its major energy source (Emanuel 1986). It has

been proven to be an important factor for both TC track

and intensity forecasts as well (Kunii andMiyoshi 2012).

The National Oceanic and Atmospheric Administration

(NOAA) Optimum Interpolation (OI) 1/4 Degree Daily

Sea Surface Temperature Analysis (OISST; Reynolds

et al. 2007) produced from the Advanced Very High

Resolution Radiometer (AVHRR) aboard the NOAA-

series polar-orbiting satellites was used in this study. If

more than half the grid points within a 200-km radius

from the TC center were located over the sea, SST

values of these grid points were averaged to give the SST

value (Table 1).

TCs under different initial SSTs generally had similar

initial intensities of 50–55 kt, or medium TS intensity

(Fig. 9a). However, the storms subsequently underwent

different intensity changes. Not surprisingly, environ-

ments with SSTs lower than 278C were not favorable for

the intensification of TCs. On the contrary, warmer SSTs

fueled the intensification, except for SSTs higher than

298Cwhere TCs becameweaker after 48 h. In agreement

with previous results that stronger TCs have larger er-

rors, the strongest TCs with SSTs of 288–298C generally

had the largest errors, although its differences in error

amplitude from storms with SSTs of 278–288C were not

significant (Fig. 8c). A higher or lower SST than these

values both resulted in smaller errors, but only SSTs

lower than 278C had significantly lower errors between

18 and 66 h. The distribution of SST had a mean value of

about 278C (Table 2) with a long tail in the distribution

toward the lower temperatures (with the coldest SSTs of

148C), and an even lower SST would further increase the

practical predictability (not shown). This might be re-

lated to extratropical transitioning (ET) systems moving

northward over cold sea surfaces at higher latitudes.

Forecast errors of OFCL also showed a substantial in-

crease of error with respect to warmer SSTs (Fig. 8d),

TABLE 1. Calculations of environmental parameters.

Variables Data Algorithm

Shear (m s21) NCEP FNL Difference between 200 and 850hPa, each layer averaged within an annulus

area of 200–800km from the TC center

SST (8C) NOAA OISST Averaged within 200 km from the TC center, if more than half grids of this

area are over sea

925-hPa RH NCEP FNL Averaged within an annulus area of 200–800km from the TC center

CAPE (J kg21) NCEP FNL Averaged within an annulus area of 400–1000km from the TC center

TABLE 2. Mean values and standard deviations (STD) of

environmental parameters.

Variables Shear (m s21) SST (8C)
925-hPa

RH (%)

CAPE

(J kg21)

Mean 8.84 27.46 83.7 958

STD 4.99 2.03 5.7 405
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although only the coldest conditions continuously passed

the significance test after 12h.

Categorization by initial latitude of forecasts (Fig.

8e) showed similar characteristics to categorization by

initial SST. TC forecasts from 158 to 258N had the

largest forecast errors, and moving both poleward and

equatorward in initial position could reduce the error,

although only errors of the northernmost cases during

18–60 h were significantly different. OFCL categorized

by initial latitude (Fig. 8e) was also similar to its cate-

gorization by initial SST (Fig. 8d) with decreasing errors

resulting from increasing latitude. However, the partial

FIG. 8. As in Fig. 4, but for (a),(b) 850–200-hPa vertical wind shear magnitudes; (c),(d) SST at forecast initialization

time; and (e),(f) center latitude at forecast initialization time, for (left) ANPS and (right) OFCL forecasts.
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correlation coefficient2 between latitude and forecast

errors while holding SST constant for ANPS was no

larger than 0.05 at all times after initialization, and the

time average is 20.0005, indicating that latitude effects

on intensity forecast errors are nearly solely due to the

changing SSTs with respect to latitudes.

3) CONVECTIVE PARAMETERS

Doswell et al. (1996) proposed three necessary in-

gredients for deep convection: lifting, moisture, and in-

stability. Since TCs are convective phenomena and

moist convection has been proven to play a crucial role

in limiting the intrinsic predictability of TC intensity

(e.g., Zhang and Sippel 2009; Zhang and Tao 2013),

effects of moisture and instability on intensity forecast

errors were explored. The FNL analysis was again used

to calculate moisture and instability parameters. Mois-

ture was averaged over an annular area of 200–800 km

from the TC center (same as calculation of shear) to

provide an estimation of the environment. For instability

parameters, an observational analysis in Molinari et al.

(2012) found that both values of convective available

potential energy (CAPE) and convective inhibition

(CIN) remained nearly unchanged within 400–1000 km

from the TC center (their Fig. 6) and can be roughly

regarded as the environment. The instability parameters

in this study were averaged over an annular area be-

tween these two radii. We used relative humidity (RH)

at 925 hPa and CAPE (calculated using surface air par-

cels) as representations of moisture and instability re-

spectively. Calculations using different variables including

CIN, lifted index (LI; both calculated using surface air

parcels), mixing ratios, and precipitable water, within

different radii or different levels, were also examined and

FIG. 9. As in Fig. 6, but for (a) SST at forecast initialization time, (b) 925-hPa RH at forecast initialization time, (c)

CAPE at forecast initialization time, and (d) days that the TC made landfall in best track during the forecast.

2When two variablesA andB are both affected by other variable

(s), the partial correlation coefficient between A and B measures

the degree of their association with removing the effect of other

variable(s).
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the results were generally consistent. Wu et al. (2012)

also showed that low-level (1000–925 hPa) RH has the

most horizontal homogeneity compared with other

levels. The calculations of all environmental factors are

included in Table 1.

It was found that the initial environmental RH of

81%–88% had nearly no impact on the subsequent av-

erage TC intensity (Fig. 9b). The mean intensity

remained nearly unchanged during the 126-h forecast,

although a higher environmental RH tended to have

stronger TCs at initialization, and only the wettest or

driest TCs (of RH greater than 88% or less than 81%,

respectively) had distinct intensity changes. Interestingly,

the driest environment (less than 81%) had the smallest

forecast errors during 36–84 h among all categories for

ANPS (Fig. 10a), and this difference was significant

FIG. 10. As in Fig. 4, but for (a),(b) 925-hPa RH at forecast initialization time; (c),(d) CAPE and forecast ini-

tialization time; and (e),(f) days that the TC made landfall in best track during the forecast, for (left) ANPS and

(right) OFCL forecasts.

1016 WEATHER AND FORECAST ING VOLUME 29

Unauthenticated | Downloaded 02/06/23 10:21 AM UTC



during 42–66 h. This more or less coincided with its ac-

companying decrease in intensity during 0–72 h. All

other RH ranges had statistically indistinguishable er-

rors throughout the forecast. This outlier with a dry

environment also appeared in the OFCL forecast error

(Fig. 10b), although the error differences were much

smaller in magnitude and significant only during the 24–

48-h period.

Initial environmental CAPE values ranged from 30 to

nearly 2200 J kg21, leading to a large standard deviation

of 405 J kg21 (Table 2). Although TCs under different

initial CAPE values all started from an average initial

intensity of 50–55 kt (Fig. 9c), a CAPE value of less than

900 J kg21 was not conducive to intensification, whereas

when the initial value of CAPE exceeded 900 J kg21, the

TCs had a chance to intensify on average. The impacts of

CAPE on forecast errors were more or less similar to

moisture. On average, the larger values of CAPE did

have larger intensity forecast errors by ANPS, likely

because they were associated with stronger TCs (Fig.

10c), but sometimes the most stable environments lead

to forecast errors comparable to those in the most un-

stable environment. The significances of differences

were acquired mostly for longer forecast lead times

when the differences became sufficiently large with their

continuous increasing during the whole forecast period,

which indicates that environmental instability may have

a continuous and long-time impact on intensity practical

predictability. On the other hand, forecast error of

OFCL seemed to be more stratified in that larger CAPE

was more likely to be practically less predictable (Fig.

10d), and forecast errors of the smallest CAPE were

significantly different from others after 12 h.

The comparably smaller changes of TC intensity

forecast errors in response to environmental instability

and moisture in ANPS were expected; and this complex

relationship might result for numerous reasons. Intrin-

sically, convective conditions, and consequently moist

convection processes, are mesoscale to microscale phe-

nomena and less predictable than synoptic-scale condi-

tions. Moisture and instability also might be greatly

modified by the interaction of TC circulation and

neighboring synoptic systems during the forecasts, like

the midlevel dry air intrusion, which might result in

a shorter effective predictability time scale for these

parameters.

c. Translation characteristics

Landfall typically alters a TC’s intensity, especially

when a TC crosses over the coastline where the un-

derlying surfaces have different frictional and thermal

characteristics (Rappaport et al. 2010). When focusing

only on the TCs that made landfall during the 126-h

forecast, it was clear from the best-track observations

that TCs would experience a rapid weakening by ap-

proximately 20 kt during landfall (Fig. 9d) on average.

Indicative of previous results where a stronger intensity

led to a larger intensity forecast error, it is not surprising

that a similarly steep drop in error during landfall was

observed (Fig. 10e). The forecast errors of landfalling

TCs were significantly different from those still over the

sea. However, for OFCL, the error decrease during

landfall was not observed and there was no significant

difference between groups. The similar magnitude of

error between OFCL and TCs after landfall in ANPS

indicates that the performance of ANPS, as well as other

NWPmodels, was worse before TCsmade landfall when

over the sea surface than other state-of-the-art forecasts.

This might result from the complexity and uncertainty of

sea surface parameterization schemes under high wind

speed conditions (Green and Zhang 2013).

The relationship between translation speed and in-

tensity forecast error was complicated and limited over

shorter periods of time. Figure 11 shows the intensity

forecast errors categorized by the observed translation

speed of the TCs at different forecast lead times (cal-

culated using the two latest 6-hourly best-track positions

at each verified time). The characteristics that appear in

all panels are smaller errors associated with fast-moving

TCs (faster than 15 kt) and a more continuous increase

of forecast errors of the slowest TCs (slower than 7 kt).

Focusing on a shorter time period (24 h) after each

categorization time (indicated by the horizontal range

line at the top in Fig. 11), we can divide the 126-h fore-

cast time into two periods: before about 60 h (Figs. 11a–

d) and after about 60 h (Figs. 11e,f). Before 60 h, TCs

with moderate speeds of 11–15 kt led to the largest in-

tensity errors for the following 24 h (but the error dif-

ferences are insignificant), whereas all other TCs except

for the fastest movers had similar smaller errors. After

60 h, the much larger forecast errors of the slowest TCs

continued to increase at a faster rate than the rest, while

the intensity forecast errors of all TCs except the fastest

movers maintained similar errors as in the first 60 h. The

forecast superiority of the fastest TCs attained signifi-

cance at nearly all forecast lead times within the time

windows of Figs. 11c–f.

These error characteristics were quite different from

the intensity changes under different translation speeds

(Fig. 12a). The slowest-moving TCs were the weakest

and this was likely due to strong upwelling that cooled

the underlying SSTs, subsequently preventing the

storms from intensifying. Numerous simulation and

statistical studies proved the negative feedback that

when a TC becomes stronger, it will induce stronger

upwelling in the mixing layer below sea surface,
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subsequently resulting in a cooler SST that is less fa-

vorable for further intensification of the TC (Chang

1985; Schade and Emanuel 1999; Chan et al. 2001; Dare

andMcBride 2011; Liu et al. 2011). TCs with a moderate

speed of 11–15 kt on average had the strongest intensity

and the fastest intensification, while the fastest TCs

generally maintained their intensity. The relationship

between forecast error and translation speed at each

forecast lead time again indicates the impact of trans-

lational speed on practical predictability (Fig. 12b), al-

though most of the differences were not significant

except for the fastest TCs. However, model bias may

FIG. 11. As in Fig. 4, but for the best-track translation speed of the TC at forecast lead times of (a) 0, (b) 12, (c) 24,

(d) 48, (e) 72, and (f) 96h for ANPS forecasts. The horizontal range lines at the top indicate 0–24-h time period after

categorization time.
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also play a role. The slowest TCs had the largest in-

tensity biases, especially in longer forecast lead times

(Fig. 12c). TCs of 11–15-kt translation speed also expe-

rienced constantly negative bias (forecasts weaker than

observations). Biases of these two groups were signifi-

cantly different from the others after 36 and 30 h, re-

spectively. Since ANPS is not coupled with any ocean

model, the cooling effect of TCs on SST through up-

welling cannot be represented in the ANPS fore-

casts. Sandery et al. (2010) showed that a coupled

atmosphere–ocean model produces smaller TC intensity

forecast errors than a stand-alone atmosphere model.

For the slowest-moving TCs, the NWP model may

artificially extract too much energy from the sea surface,

which results in a positive intensity forecast bias com-

pared to best-track observations. If all biases were re-

moved, the forecast errors of the slowest TCswere reduced

(Fig. 12d); storms with moderate speeds of 11–15kt had

the largest errors and both faster- and slower-moving TCs

had smaller errors. Again, only the errors of the fastest

TCs remained significantly different (after 24 h), and the

largest errors for TCs with the 11–15-kt translation

speed acquired significance for a few longer lead times.

These results indicate that the practical predictability

of TC intensity might be improved through the coupling

with an ocean model, especially for slower-moving

storms.

5. Conclusions

This study explored the practical predictability of

TC intensity through convection-permitting hindcasts

with ARW and real-time 5-day official forecasts

issued by NHC of all Atlantic TCs from the 2008–12

seasons. The focus was the impact of initial conditions

on the intensity forecast errors during the 126-h TC

hindcasts. The day 1–5 performance of these WRF

hindcasts of TC intensity was comparable to two

FIG. 12. (a) Best-trackmean intensity, (b) ANPSmean absolute intensity forecast errors, (c) ANPSmean intensity

forecast bias, and (d) ANPS debiased mean absolute intensity forecast errors, all categorized by translation speed of

the TC at each verification forecast lead times. The vertical lines accompanying intensity, error or bias trends are

ranges between the first and the third quartiles of each group every 24 h. In (b) and (d), the two-color squares at the

bottom indicate significantly different pairs at that time.
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operational regional-scale hurricane prediction models

used by NHC, and slightly inferior to the NHC official

forecasts.

The TC intensity itself was found to be the most im-

portant factor related to the accuracy of the intensity

forecasts among all metrics explored in this study. Since

the initially stronger TCs tend to weaken in the fore-

casts, their intensity forecast errors generally decreased

through time, while the initially weaker TCs on average

had increasing values ofVmax and thus increasing errors.

Forecast errors were also positively correlated with

initial errors. TCs with a large negative initial bias (the

initialized TC in the NWPmodel was much weaker than

the observations) maintained significantly larger fore-

cast errors. The inability to accurately capture the timing

and magnitude of RI was also revealed, as there were

steep increases of forecast errors during RI.

Many other internal or environmental variables, in-

cluding environmental vertical wind shear, SST, lati-

tude, underlying surface condition, etc., affected the

forecast errors through their impacts on intensity. Deep-

layer (850–200 hPa) vertical wind shear was an impor-

tant factor that might affect TC intensity forecast

accuracy. The practical predictability of TC intensity

generally increased when shear became stronger for

both ANPS and OFCL. Since the sea surface is the

major energy source for TC development and mainte-

nance, higher SSTs can fuel stronger TCs and therefore

lead to larger forecast errors. However, in a statistical

sense, TCs do not intensify when the SST is higher than

298C on average, possibly because higher SSTs are

usually located in areas near the equator where the

Coriolis force is insufficient for development. Because

of this, smaller intensity forecast errors were observed in

this range of SSTs than in the 278–298C group in the

ANPS model. The latitude at forecast initialization was

also strongly related with intensity predictability.

However, a calculation of partial correlation revealed

that this was almost exclusively because of the strong

relationship between latitude and SST. As a conse-

quence of the chaotic nature of mesoscale convection,

the impacts of environmental moisture and instability on

intensity forecast errors were comparably smaller than

some of the other parameters examined in this study,

and most of their impacts were insignificant. The in-

tensity forecast errors decreased sharply during landfall,

partly because of the rapid weakening of TCs during

landfall.

The impact of translation speed on intensity pre-

dictability was apparent over much shorter periods of

time than other parameters. Besides the largest pre-

dictability of the fastest-moving TCs, a moderate speed

of 11–15 kt had the largest forecast errors during the

following 24 h for forecast lead times shorter than 60 h,

while TCs with the slowest speeds (smaller than 7 kt)

were the least predictable after 60 h. Analyses of the

forecast biases indicate that the slowest TCs have the

largest biases and that the simulated TCs in this group

were stronger than the observed ones. When the model

biases of different translation speeds were removed, the

largest errors of the slowest TCs disappeared and the

TCs with speeds between 11 and 15 kt consistently had

the significantly largest forecast errors. Analysis of the

debiased intensity forecast errors as well as model bias

characteristics suggest that systematic model bias of TC

intensity under different translation speeds might also

contribute to the forecast errors.

In summary, larger TC intensity forecast errors are

more likely in the ANPS model configuration described

here when the environment has a weak to moderate

vertical shear of 0–10m s21 and a warm SST of 278–298C,
when the TC is moving at a translation speed of 11–15 kt

or when the TC is experiencing RI, resulting from

a higher chance of producing stronger TCs under these

conditions. Changes of other environmental thermody-

namic parameters may contribute less to the practical

predictability. It should be pointed out that improve-

ments in ICs and BCs may also alter practical pre-

dictability of TC intensity, and the characteristics here

were analyzed under the framework of the WRFModel

without using a regional-scale cycling data assimilation

system. Therefore, the results presented in this study

should be explained and applied with caution, especially

in circumstances where a different physical parameter-

ization scheme is used or there are different model

conditions.3 Real world tropical cyclones are influenced

by plenty of atmospheric and oceanic variables, and

parameters examined in this work are somewhat lim-

ited. However, our study did reveal some features af-

fecting TC intensity forecast errors in an NWP model,

and will be helpful in further improving TC intensity

predictions by increasing the in-depth understanding of

practical predictability.
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CORRIGENDUM

YUNJI ZHANG

Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences,

School of Physics, Peking University, Beijing, China, and Department of Meteorology, The Pennsylvania

State University, University Park, Pennsylvania

ZHIYONG MENG

Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences,

School of Physics, Peking University, Beijing, China

FUQING ZHANG AND YONGHUI WENG

Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

An unfortunate error in the editing process occurred in Zhang et al. (2014). The last

sentence on p. 1005, which carries over onto p. 1006, contains an error identifying the

university name. The correct sentence should read as follows: ‘‘A total of 2190 hindcast cases

were collected and used for the statistical analysis in this work, and will be referred to as the

ARW no data assimilation forecast by The Pennsylvania State University (ANPS) forecasts

hereafter, which is also the identification acronym in the Automatic Tropical Cyclone

Forecast system (ATCF; Sampson and Schrader 2000) designated by NHC for the Pennsyl-

vania State University experimental real-time forecasts during 2011–12.’’

The staff of Weather and Forecasting regrets any inconvenience this error may have

caused.
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