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ABSTRACT
Quantum statistics plays a fundamental role in the laws of nature. Haldane fractional exclusion statistics
(FES) generalizes the Pauli exclusion statistics, and can emerge in the properties of elementary particles and
hole excitations of a quantum system consisting of conventional bosons or fermions. FES has a long history
of intensive studies, but its simple realization in interacting physical systems is rare. Here we report a simple
non-mutual FES that depicts the particle-hole symmetry breaking in interacting Bose gases at a quantum
critical point. We show that the FES distribution directly comes from particle-hole symmetry breaking.
Based on exact solutions, quantumMonte Carlo simulations and experiments, we find that, over a wide
range of interaction strengths, the macroscopic physical properties of these gases are determined by
non-interacting quasi-particles that obey non-mutual FES of the same form in one and two dimensions.
Whereas strongly interacting Bose gases reach full fermionization in one dimension, they exhibit
incomplete fermionization in two dimensions. Our results provide a generic connection between
interaction-induced particle-hole symmetry breaking (depicted by FES) and macroscopic properties of
many-body systems in arbitrary dimensions. Our work lays the groundwork for using FES to explore
quantum criticality and other novel many-body phenomena in strongly correlated quantum systems.

Keywords: quantum statistics, interaction, particle-hole symmetry breaking, fractional exclusion statistics,
strongly correlated quantummaterials

INTRODUCTION
Bose-Einstein and Fermi-Dirac statistics constitute
two cornerstones of quantum statistical mechanics.
However, they are not the only possible forms of
quantum statistics [1]. In two dimensions, anyonic
excitations can carry fractional charges and obey
fractional statistics [2–7]. To generalize fractional
statistics, Haldane formulated a theory of fractional
exclusion statistics (FES) that continuously inter-
polates between Bose and Fermi statistics in arbi-
trary spatial dimensions [8].This theory depicts how
much the Hilbert space dimensionality for available
single-particle states, namely the ‘number of holes’
(Nh, α) of species α decreases as particles of species
β are added to a system [8–10]:

�Nh,α = −
∑

β

gαβ�NP,β . (1)

Here the FES parameter gαβ is independent of the
particle numberNP, β . Bose and Fermi statistics cor-
respond to the non-mutual FES where gαβ = gδαβ

with g = 0 and 1, respectively. FES has found exact
realizations in a few one-dimensional (1D) systems,
including the Calogero-Sutherland model of parti-
cles interacting through a 1/r2 potential [11–14],
Lieb-Liniger Bose gases [14,15] and anyonic gases
with delta-function interaction [16,17].

FES reveals the statistical nature of a system
with respect to its energy spectrum regardless of
whether the constituent particles interact or not.
On the other hand, particle-hole symmetry break-
ing (PHSB) [18] emerges as a key mechanism
for understanding strongly correlated quantum ma-
terials including high-Tc superconductors [19,20]
and fractional quantum Hall systems [21]. This
symmetry breaking significantly influences physical
properties such as equations of state [22], optical
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Figure 1. Particle-hole symmetry breaking and Haldane FES in interacting many-body
systems. (a) Particle-hole symmetry breaking in a quasi-momentum cell at k (see Equa-
tion (2)) in an interacting system. (b) A many-body system near a quantum critical
point. (c) Schematic of the logic flow: interaction determines the particle-hole symme-
try breaking (depicted by FES) that in turn governs the macroscopic physical properties
of a many-body system at and near a quantum critical point.

properties [23], dynamical evolutions [24], trans-
port properties [25] and non-Fermi-liquid behav-
iors [26]. However, it remains challenging to iden-
tify emergent FES for depicting the particle-hole
symmetry breaking in generic interacting many-
body systems.

In this article, we show that FES naturally
emerges as a result of particle-hole symmetry break-
ing in quantum many-body systems (see Fig. 1(a)
and Equation (2)). In particular, we demonstrate
interaction-induced non-mutual FES at a quantum
critical point. We consider a repulsively interacting
Bose gas that undergoes a quantum phase transi-
tion under zero temperature (T = 0) from a vac-
uum to a quantum liquid when the chemical poten-
tial μ exceeds a critical value μc (Fig. 1(b)). Here
‘quantum liquid’ denotes aTomonaga-Luttinger liq-
uid (TLL) [27] in one dimension or a superfluid in
higher dimensions [28]. Based on exact solutions in
one dimension and high-precision quantum Monte
Carlo (QMC) simulations in two dimensions, we
report evidence for emergent particle-hole symme-
try breaking (Equation (2)) in these many-body
systems. Our results are further supported by ex-
isting experimental data given in [27–32]. We es-
tablish a one-to-one correspondence between inter-
action and particle-hole symmetry breaking over a
wide range of interaction strengths, and further ob-
serve that, remarkably, such symmetry breaking de-
termines the macroscopic properties of interacting
gases in aunifiedmanner, as summarizedby the logic
flow shown in Fig. 1(c).

Particle-hole symmetry breaking and FES
In aquantummany-body system, interactiondresses
the constituent particles to form quasi-particles
that are statistically distributed over the quasi-
momentum space. In each quasi-momentum cell

that defines the species in Equation (1), the num-
ber of unoccupied states depends on the numbers
of occupied states in the same cell and in other cells,
forming a net of correlated cells in general. Such cor-
related cells can be depicted by quasi-momentum-
dependent particle-hole symmetry breaking; see
Equation S43 within the online supplementary ma-
terial. At a quantumcritical pointwhere the system is
strongly correlated with large characteristic lengths
in real space, these quasi-momentum cells become
decoupled into nearly independent cells (see Sec-
tion 3 within the online supplementary material),
which leads to a simplified formof particle-hole sym-
metry breaking equation thatwe expect to hold in ar-
bitrary dimensions (Fig. 1(a)):

ρh(k) + gρ(k) = dsp. (2)

Here, the species label α is given by quasi-
momentum k, gαβ by g δ(k − k′), NP and Nh are
scaled into distribution functions, ρ(k) and ρh(k),
of occupied states and of holes, and dsp = 1/(2π)D

is a bare dimensionality of states in a phase-space
unit cell for aD-dimensional system.

Accordingly, a non-mutual FES distribu-
tion [9,14] of quasi-particles naturally emerges at a
quantum critical point. We prove (for details, see
Section 4within the online supplementarymaterial)
that Equation (2) directly gives rise to a non-mutual
FES distribution with the following occupation
number f in a state with energy ε:

f (ε) = 1
w(ζ ) + g

,

wg (1 + w)1−g = ζ ≡ exp
(

ε − μ

T

)
. (3)

This generic connection between Equations (2) and
(3) enables understanding interacting systems from
the perspective of emergent FES phenomena. Based
on the interaction-induced particle-hole symmetry
breaking (Equation (2)), the macroscopic physi-
cal properties of many-body systems can be ob-
tained through non-interacting quasi-particles that
obey the non-mutual FES distribution in Equa-
tion (3). Specifically, the number density and en-
ergy density are given by n = ∫

G(ε)f(ε)dε and
e = ∫

G(ε)f(ε)εdε, where the density of states per
volume is given by G(ε) = 1/(2π

√
ε) in one di-

mension and 1/(4π) in two dimensions for non-
relativistic particles.We set 2m= kB = � = 1, where
m is the particle mass, kB the Boltzmann constant
and � the reduced Planck constant.

To connect Equation (2) to physical inter-
acting systems, we introduce an interaction-FES
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Figure 2. Demonstration of the proportionality relation
in the interaction-FES correspondence hypothesis (Equa-
tion (4)). Based on exact solutions for 1D Bose gases with
delta-function interaction, we compute gPHSB,k=0 that de-
picts the particle-hole symmetry breaking in low-energy ex-
citations. The numerical data (circles) show the proportion-
ality relation with fitted c̃1,PHSB = 0.77(3). The solid line
shows Equation (4) with c1 = 0.772 (see Equation (10) for
details). Under strong couplings (c̃/ñ � 1), the numerical
data can be described by an analytical form (dashed line;
see Equation (7)).

correspondence hypothesis:

RHDim ≡ g (c̃ ) − g 0
g∞ − g (c̃ )

= c̃
c̃ 1

. (4)

Here c̃ is a properly scaled interaction strength,
g (c̃ ) is the corresponding FES parameter in Equa-
tions (2) and (3), g 0/∞ = g (c̃ = 0/∞) and c̃ 1 is
a coefficient. This hypothesis is inspired by an an-
alytical result for the FES in 1D strongly interact-
ing Bose gases [33] as well as a Ginzburg-Landau
theory for 2D superfluids [31,34], and is found to
apply over a large interaction range (see Fig. 2). It
provides a simple proportionality relation between
the interaction strength c̃ and the resulting Hilbert
space dimensionality ratio (RHDim) of g − g0 (for
theHilbert space occupied by one single particle be-
cause of interaction) to g∞ − g (for the ‘remaining’
Hilbert space that is occupiable but yet unoccupied
because c̃ has not reached infinity). For interacting
Bose gases, g0 = 0 and we denote g∞ as gmax. Equa-
tions (2) and (4) together enable quantitative pre-
dictions of macroscopic physical properties. In the
following, we provide evidence for the emergence
of such interaction-induced particle-hole symmetry
breaking andnon-mutual FESat andnear a quantum
critical point.

FES in one dimension
The 1D Bose gas with delta-function interaction
is an integrable model with great relevance in
both theoretical and experimental contexts (see re-

views [35,36]). Such gases are described by the
Hamiltonian [15,37]

H =
N∑
i=1

(−∇2
i − μ) + c

∑
i 
= j

δ(ri − r j ),

(5)

where c is the repulsive elastic interaction strength
and N the particle number. In its dilution limit,
the discrete 1D Bose-Hubbard model used in
QMCsimulations corresponds to Equation (5)with
c = U/(2t1/2) (see Section 9 within the online sup-
plementary material), where U and t are the onsite
interaction and tunneling parameters, respectively.
We exactly solve such 1D gases at the vacuum-to-
TLL transition (μc = 0) [27] based on the thermo-
dynamic Bethe ansatz (TBA) equation [37,38],

ε(k) = k2 − μ − T
2π

∫
a(k − q)

× ln(1 + e−ε(q)/T)dq , (6)

where a(x) = 2c/(c2 + x2), and the pressure is
given by p(μ, T) = (T/2π)

∫
ln (1 + e−ε(k)/T)dk.

For convenience, we present thermodynamic ob-
servables and parameters in dimensionless forms
(see Section 1 within the online supplementary
material). We compute the critical entropy per
particle Sc/N ≡ (S/N)(μ = μc), scaled crit-
ical density ñc,1D = nc/T1/2 and scaled critical
pressure p̃c,1D = pc/T3/2 by numerically solving
Equation (6).

The Sc/N increases with a scaled interac-
tion strength c̃ = c/

√
T (Fig. 3(a)). It reaches

A∞, 1D ≈ 1.89738 at c̃ → ∞ (see Section 1 within
the online supplementary material), exactly match-
ing the Sc/N of non-interacting fermions [37]
(gmax, 1D = 1), as predicted and observed for Tonks-
Girardeau gases [15,39–42]. These solutions agree
with data extracted from experiments performed
by the Kaiserslautern group [29] and the USTC
group [27], and agree with our 1D QMC simu-
lations (see Sections 10 and 11 within the online
supplementary material).

We now verify the particle-hole symme-
try breaking equation (Equation (2)) and the
interaction-FES correspondence hypothesis (Equa-
tion (4)) based on ab initio computations (see
Section 5 within the online supplementary ma-
terial). We compute ρ(k) and ρh(k) and define
a k-dependent FES parameter gPHSB,k based on
ρh(k) + gPHSB,kρ(k) = 1/(2π). We observe
that gPHSB,k is almost homogeneous within a
finite range of |k| < O(

√
T) (see Section 5

within the online supplementary material), cor-
responding to low-energy elementary excitations
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Figure 3. Evidence for interaction-induced FES in 1D Bose gases at a quantum criti-
cal point. (a) Critical entropy per particle Sc/N as a function of c̃ . Exact solutions (cir-
cles) agree excellently with QMC computations (diamonds) and agreewith experiments
(squares and triangles, from [27,29]). (b) Power-law scaling of Sc/N with respect to
Ctr. Dotted line denotes the fermionization limit A∞, 1D. (c)–(e) Under Equation (8) with
gmax, 1D = 1, thermodynamic observables of interacting gases agree well with those of
non-interacting quasi-particles that obey non-mutual FES: (c) Sc/N; (d) scaled critical
density ñ c; (e) scaled critical pressure p̃c. Error bars represent 1σ statistical uncertain-
ties.

that obey simple particle-hole symmetry break-
ing (Equation (2)) depicted by a non-mutual
FES distribution (Equation (3)). Equation (3)
associated with gPHSB,k=0 captures the essential
behaviors of ρ(k) and ρh(k) (see Section 5 within
the online supplementary material). Furthermore,
the Hilbert space dimensionality ratio RHDim
shows a proportionality relation to the interaction
strength c̃ over a large range (Fig. 2), with a fitted
coefficient c̃ 1,PHSB = 0.77(3). Thus, Equation (4)
provides a powerful approximation that depicts the
particle-hole symmetry breaking for low-energy
excitations in interacting gases. We note that, based
on Equation (5), particle-hole symmetry breaking
can in general be depicted by k-dependent mutual
FES [14]; such mutual FES reduces to non-mutual
FES under strong coupling [33], which we here
derive to be for finite temperatures (see Section 5
within the online supplementary material)

g strong.cpl.PHSB,k=0 ≈ 1 − 2n
c

(
1 − 2n

c

)
(1 + e ε(k=0)/T).

(7)

As shown inFig. 2, Equation (4)not only agreeswith
this strong-coupling analytical form, but also depicts
well the numerically computed gPHSB,k=0 over a sig-
nificantly larger range covering strong, intermediate
and weak interactions.

The particle-hole symmetry breaking (depicted
by Equations (2) and (4)) dictates the distribution
functions (Equation (3)) of elementary excitations
and thereby determines the macroscopic properties
of interacting gases. For Bose gases, Equation (4)
predicts a one-to-one mapping to non-interacting
quasi-particles with FES parameter

g = gmaxCtr, (8)

where Ctr is a transformed interaction parameter,

Ctr ≡ c̃/c̃ 1
c̃/c̃ 1 + 1

, (9)

and gmax, 1D = 1. Based on the computed critical en-
tropy per particle, we observe two scaling functions
(Fig. 3(b) and (c)) that are similar to each other,
which is characteristic of the interaction-FES corre-
spondence (Equation (8)). For non-interacting FES
quasi-particles, the Sc, FES/N at μc = 0 exhibits a
power-law scaling with respect to g (Fig. 3(c), blue
curve): Sc,FES/N = A∞,1Dg βFES,1D , with βFES, 1D =
0.298(2) fitted for 0.05 < g ≤ 1. This scaling sug-
gests, and we indeed observe, that the Sc/N for in-
teracting Bose gases accordingly obeys a power-law
scaling with respect to Ctr (Fig. 3(b)):

Sc/N = A∞,1DCβ1D
tr . (10)

Here β1D = 0.298(1) and c̃ 1 = 0.772(5) are fit-
ted parameters. Under Equation (8), these two scal-
ing functions match each other, and the numeri-
cal data agree within 4% (Fig. 3(c)). We note that
Equation (10) agrees excellently with exact solu-
tions within 1% over 0.002 < c̃ < ∞, and the pre-
cisely determined c̃ 1 conforms well to the c̃ 1,PHSB
determined earlier. Thus, identifying the power-law
scaling for Sc/N provides a smoking-gun signature
and a precise determination of the interaction-FES
correspondence.

We find agreement within 15% and 8% for ñc
and p̃c, respectively (Fig. 3(d) and (e)). The over-
all good agreement for Sc/N, ñc and p̃c shows that
macroscopic thermodynamic observables are deter-
mined by interaction-induced particle-hole symme-
try breaking. Therefore, these observables can serve
as a practical gauge for conveniently measuring the
corresponding non-mutual FES, especially when ab
initio computations are difficult or unavailable.

FES in two dimensions
In higher dimensions, while the Bethe ansatz in gen-
eral does not apply, particle-hole symmetry break-
ing remains a key characteristic [43] that governs
measurable macroscopic properties of interacting
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Figure 4. Evidence for interaction-induced FES in 2D Bose gases at a quantum critical
point. (a) Critical entropy per particle Sc/N as a function of c̃2D. QMC results (circles)
agree with NPRG computations [46] and experiments [28,30]. (b) Power-law scaling
of Sc/N with respect to Ctr. (c)–(e) Given Equation (8) with gmax, 2D = 0.432(14), ther-
modynamic observables of interacting gases agree well with those of non-interacting
quasi-particles that obey non-mutual FES: (c) Sc/N; (d) scaled critical density ñ c;
(e) scaled critical pressure p̃c, with the dotted line denoting the non-interacting boson
limit p̃c0 = π/24 [46]. Our results agree with existing experiments [28,30,31]. Horizon-
tal and vertical gray bands mark A∞, 2D and gmax, 2D, respectively. Error bars represent
1σ statistical uncertainties.

gases. Here we benchmark the applicability of Equa-
tions (2) and (4) in 2D gases. Using QMC simula-
tions [44,45], we study a 2D Bose-Hubbard lattice
gas that has a vacuum-to-superfluid quantum phase
transition at μc = −4t [28]. The Bose-Hubbard
Hamiltonian is given by

Ĥ = −t
∑
〈i, j 〉

(b̂†i b̂ j + b̂†j b̂ i )

+
∑
i

[
U
2
n̂ i (n̂ i − 1) − μn̂ i

]
, (11)

where b̂†i and b̂ i are the creation and annihilationop-
erators at site i, n̂ i = b̂†i b̂ i and 〈i, j〉 runsover all near-
est neighboring sites. We define a scaled interaction
strength c̃ 2D = U/(2t) (see Section 9 within the
online supplementary material) that is the lattice-
gas equivalence [28,31] of the interaction param-
eter

√
8πa/ l z for 2D Bose gases without lattices,

where a is the scattering length and lz is an oscillator
length [32].

To obtain physical properties that are insensitive
to the lattice structure, we perform QMC simula-
tions for each c̃ 2D at a series of temperatures down to
T= 0.1t.We extract scaled quantities Sc/N, ñc,2D =
nc/T and p̃c,2D = pc/T2 for each T, and perform

extrapolation towards T = 0 for each quantity (see
Section 10 within the online supplementary mate-
rial). We test this extrapolation protocol on a 1D
Bose-Hubbard system (see Section 10 within the
online supplementary material) and find excellent
agreement with exact solutions (Fig. 3).

In two dimensions, we identify the same
interaction-FES correspondence (Equation (8))
as in one dimension. The Sc/N increases with
c̃ 2D and reaches A∞, 2D = 1.988(14) at c̃ 2D = ∞
(Fig. 4(a)), matching the Sc, FES/N of non-
interacting FES quasi-particles with gmax, 2D =
0.432(14). Our QMC data agree well with a
non-perturbative renormalization group (NPRG)
computation [46], and with experiments by the
Chicago [28] and ENS [30] groups. Based on
Equation (9) and c̃ 1,2D = 1.9(3), Sc/N shows
an excellent power-law scaling with respect to
Ctr = (c̃ 2D/c̃ 1,2D)/(c̃ 2D/c̃ 1,2D + 1) (Fig. 4(b)):

Sc/N = A∞,2DCβ2D
tr (12)

with A∞, 2D, c̃ 1,2D, and β2D = 0.20(1) fitted for
0.05 ≤ c̃ 2D < ∞ (0.026 ≤ Ctr ≤ 1). We then test
the predictions of Equations (2) and (4) (with
gmax, 2D and c̃ 1,2D determinedabove)using theQMC
data.

We find evidence for emergent non-mutual FES
based on good agreement for Sc/N, ñc and p̃c.
The FES quasi-particles also exhibit a power-law
scaling, Sc,FES/N = AFES,2Dg βFES,2D , withAFES, 2D ≡
(Sc, FES/N)(g = 1) ≈ 2.373. The exponent βFES, 2D
= 0.2122(1) is fitted for 0.02 ≤ g ≤ 1 and agrees
with β2D. Given Equation (8), the two power-
law scaling functions for Sc/N versus gmax,2DCtr
and for Sc, FES/N versus g agree well within 5%
(Fig. 4(c)). Accordingly, ñc,2D and p̃c,2D show
agreementwithin 5%and3%, respectively (Fig. 4(d)
and (e)). Our simulations agree with existing exper-
iments [28,30,31] at and near the quantum critical
point (see also Fig. S5 within the online supplemen-
tary material). These numerical and experimental
data together are fully consistent with, and thereby
strongly support, the emergence of interaction-
induced particle-hole symmetry breaking and non-
mutual FES in two dimensions (Equations (2) and
(8)).The less-than-unity gmax, 2D =0.432(14) shows
incomplete fermionization of strongly interacting
2D Bose gases.

In summary, we established a generic connec-
tion between particle-hole symmetry breaking and
FES and then found strong evidence for interaction-
induced non-mutual FES at and near a quantum
critical point. Our non-perturbative approach holds
promise for studying the dynamical evolutions [24],
transport properties [25] and hydrodynamics [47]
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of quantum systems in arbitrary dimensions, and
for studying other integrable models such as multi-
component systems. In particular, such simple non-
mutual FES is expected to emerge in the charge de-
gree of freedom at the quantum critical region of
the multi-component ultracold atoms in one and
higher dimensions, whereas the spin degrees of free-
dom are frozen out at quantum criticality. More-
over, our approach provides a route to understand-
ing strongly interactingquantummaterialswhere ex-
periments can be both enriched and complicated
by inelastic collisional losses and finite temperature
effects [31,48,49].

METHODS
Quantum Monte Carlo simulations
In our work, we apply the worm algorithm in the
path-integral representation to simulate the Bose-
Hubbard model in both one and two dimensions
using the QMC method. Here, we mainly focus on
three observables: particle density n, pressure p and
entropy per particle S/N. Our QMC data are ob-
tained by spending about 2 × 105 CPU hours. Fur-
ther details of the QMC simulation can be found in
Sections 8 to 11 within the online supplementary
material.

Statistical methods for data analysis
The error bars in figures and texts represent 1σ
statistical uncertainties of the QMC simulations
or experimental measurements. Based on a set of
numerical or experimental data and a specificmodel,
a least-square fit can be performed to determine the
best fitting parameters as well as the standard errors
of these parameters.

DATA AVAILABILITY
The data supporting the findings of this study are
available within the paper and accompanying online
supplementary material.
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