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A B S T R A C T   

Measurement of in-plane elasticity of thin sheets often leverages out-of-plane poking or bulging, 
also known as indentation or bulge tests. For linear elastic sheets, a load-cubic deflection relation 
has been frequently assumed so that the stiffness of the sheet could be readily extracted. However, 
we find that recent results of indentation and bulge tests on 2D materials do not support the 
assumption, which can be attributed to the slippage of 2D materials against their supporting 
substrates. Besides, the interfacial slippage could cause instabilities in the sheet such as radial 
wrinkles in suspended region, with finite lengths. To gain a quantitative understanding, we as
sume constant interfacial shear traction and study the wrinkling extent and the effective stiffness 
of thin sheets upon poking and bulging. We identify a single dimensionless parameter governing 
these mechanical responses—the sliding number—defined by comparing the sheet tension (that 
drives the slippage) with the interfacial traction (that resists the slippage). We discuss several 
useful asymptotic behaviors emerging at small and large sliding numbers. These understandings 
inspire when the effect of the interfacial slippage (as well as other substrate-associated subtleties) 
can be neglected in these tests. For instance, traditional bulge and indentation tests suffer from 
complexities caused by the slippage, pretension, Poisson’s ratio, substrate roughness, and various 
interfacial traction-separation laws. Based on such understandings, we propose a simple poking/ 
bulging methodology immune to all of these complexities, enabling an alternative way to measure 
the sheet stiffness.   

1. Introduction 

Indentation and bulge tests are popular methods for measuring the mechanical properties of thin sheets because of their ease of 
specimen mounting and loading. They have been widely used for detecting the pretension and Young’s modulus of metallic, polymeric, 
and biological membranes (Cao et al., 2016; Chen et al., 2018; Diab et al., 2020; Vlassak and Nix, 1992) as well as emerging atomically 
thin 2D materials (Koenig et al., 2011; Novoselov et al., 2016). To carry out such experiments, a transverse force or a pressure is 
carefully applied to the thin sheet, and the resulted deflection is precisely measured, yielding the load-deflection curve. The inter
pretation of the load-deflection curve, however, is a nontrivial task even for linear elastic isotropic thin sheets due to the inherent 
nonlinearity of the deformed geometry (Chandler and Vella, 2020; Jia and Amar, 2020). The task would be further complicated by the 
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pretension in the sheet that could be induced by sheet growth or transfer. 
A simplified force-deflection relationship for the indentation test has been widely adopted in the literature (particularly when 

analyzing the indentation of 2D materials). It embodies asymptotic solutions at the small and large deformation of a thin circular sheet 
of radius R, stiffness E2D, and pretension tpre (Lee et al., 2008), 

F = πtpred + αF (ν)E2D

R2 d3, (1.1)  

where d is the center deflection, ν is the Poisson’s ratio of the sheet, and αF (ν) = (1.0491 − 0.1462ν − 0.15827ν2)
− 3. 

Much predating the indentation technique, bulge test was first introduced to measure the mechanical properties of thin sheets by 
Beams in 1959 (Beams, 1959). A number of researchers have examined the validity and accuracy of this method. For example, Itozaki 
reported an important role played by the initial sheet height in the mechanical response (Itozaki, 1982). Using finite element methods, 
Small and Nix analyzed the effect of initial film conditions, including the initial height, wrinkles, and residual stresses (Small and Nix, 
1992). Neglecting the bending stiffness of thin sheets, Hencky gave an analytical solution in the form of power series for the 
pressure-deflection relation of a circular membrane with fixed edges (Hencky, 1915). Vlassak further considered the contribution of 
residual stress to such pressure-deflection relation (Vlassak, 1994). Here, we modify Vlassak’s expression slightly by using a different 
prefactor for the nonlinear term, 

p =
4tpre

R2 d + αP(ν)
E2D

R4 d3, (1.2)  

where αP(ν) = (0.7179 − 0.1706ν − 0.1495ν2)
− 3. We adopt the prefactors, αF (ν) and αP(ν), from numerical calculations of 

pretension-free sheets under clamped boundary conditions (Komaragiri et al., 2005). 
Following conventional analysis of thin film bulge tests, state-of-the-art practice for 2D materials is to use (1.1) to fit measured 

force-deflection data and obtain the pretension and the stiffness of the sheet as fitting parameters (Lee et al., 2008). In bulge tests of 2D 
materials, however, the pretension term in (1.2) is often neglected, and the cubic term is used to determine the stiffness of the sheet 
(Koenig et al., 2011). The simplicity of the two formulae enables a quick interpretation of the measured load-deflection data but could 
produce significant errors. For (1.1), the linear term does not involve a length scale for the indenter size, challenging the validity of the 
fitted pretension (Vella and Davidovitch, 2017). Besides, the summation of asymptotic solutions for small (the linear term dominates) 
and large (the cubic term dominates) deformation fails to describe the transition regime between the two. Specifically, the deviation 
from calculation increases with decreasing indenter size and can be up to 60% (Vella and Davidovitch, 2017). The deviation associated 
with (1.2) is less than 2%. However, omitting the linear term in previous bulge test interpretations not only precludes the estimation of 
the pretension but also introduces noticeable errors for the extracted in-plane stiffness if the pressurization is within the transition 
regime. 

These issues become insignificant when the pressurized or indented deflection is so large that the cubic term dominates the me
chanical response of the sheet. The question is whether the deflection has been appropriate in previous experiments of 2D materials 
that were analyzed by (1.1) or (1.2). We answer this question by re-plotting load-deflection relations measured from monolayer 
graphene in the following section. The paper outline will be offered at the end of Section 2. 

Fig. 1. (a) A schematic of the indentation test and the rescaled indentation force-deflection relations measured on monolayer graphene extracted 
from multiple publications (Dai et al., 2019; Falin et al., 2017; Lee et al., 2008; López-Polín et al., 2015; Xu et al., 2018). (b) A schematic of the bulge 
test and the rescaled pressure-deflection relations measured on monolayer graphene (Koenig et al., 2011; Wang et al., 2017). The solid lines are 
theoretical results assuming pretension-free sheets supported by clamped interfaces (i.e., the strong-shear limit of Case I discussed in Section 4). The 
dashed lines are theoretical results assuming pretension-free sheets supported by lubricated interfaces (i.e., the weak-shear limit of Case II in 
Section 4);. 
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2. Experiments 

2.1. Previous load-deflection data 

A variety of atomically thin 2D materials have been fabricated recently (Novoselov et al., 2016). Due to their perfectly crystalline 
structures, they typically possess outstanding elastic properties, which, for the most part, are measured by the indentation tests 
(Akinwande et al., 2017). Monolayer graphene is the first mechanically tested 2D material. Fitting the indentation result with (1.1) 
leads to an in-plane stiffness of ~340 N/m, amounting to Young’s modulus of ~1 TPa if taking the sheet thickness to be the interlayer 
spacing in bulk graphite (0.335 nm) (Lee et al., 2008). This value agrees well with that obtained through fitting the bulge test with (1.2) 
later (Koenig et al., 2011) as well as first-principles calculations (Kudin et al., 2001; Wei et al., 2009). 

A number of reports on the indentation of pristine monolayer graphene are available in the literature, and they serve as a 
benchmark against which graphene derivatives and other 2D materials could compare (Dai et al., 2019; Falin et al., 2017; Lee et al., 
2008; López-Polín et al., 2015; Xu et al., 2018). 

In Fig. 1a, we plot these results using the rescaled force FR2/d3 vs. deflection d/R. In this way, the coefficient in front of d3 /R2 in 
(1.1), αF (ν)E2D, is simply a horizontal solid line in Fig. 1a, which is determined using the following well-accepted values for graphene: 
ν = 0.165 and E2D = 340 N/m. It is obvious in this plot that the experimental results rarely agree with the force-cubic deflection 
relation. Instead, the experimentally measured rescaled force keeps decreasing with increasing indentation depth. It is even surprising 
to notice that the experimental results can fall through the horizontal solid line as d/R increases. This suggests that instead of being in 
the transition regime, the deformation in previous experiments might be beyond the linear to cubic transition. In fact, the deformation 
turns out to be so large that certain softening mechanisms get triggered, which invalidate the F ∼ d3 relation. This discovery holds for 
indentation experiments on other monolayer 2D materials, including Mxene, WS2, MoS2, hBN, and Perovskite (Appendix A). Similar 
behavior is also observed in the bulge test of monolayer graphene (Fig. 1b), in which we rescale the applied pressure by pR4 /d3 and the 
horizontal solid line represents αp(ν)E2D, the coefficient in front of d3/R4 in (1.2) (Koenig et al., 2011; Wang et al., 2017). 

Is this softening a material or structural behavior? Ab initio calculations of monolayer graphene have revealed that nonlinear 
elasticity initiates at ~5% strain, and anisotropy becomes noticeable at ~15% strain (Wei et al., 2009). In Fig. 1, the sheets typically 
start to soften before d/R = 0.2, at which the strain level is ~4% such that most area of the sheet can still be considered isotropic and 
linearly elastic. Herein, we suggest that the breakdown of F ∼ d3 and p ∼ d3 relations stem from the relaxation of the clamped 
boundary condition: when subjected to large enough transverse loads, the sheet would slide on its substrate radially inward. In fact, 
sliding has been a longstanding hurdle for the indentation and bulge tests of thin sheets because it is challenging to perfectly glue or fix 
a thin sheet to its substrate. The problem would be exacerbated when the sheet is of atomic thinness and smoothness. Previous 
indentation and bulge tests on 2D materials usually suspend the sheet over a substrate with pre-patterned holes and simply rely on the 
spontaneous van der Waals (vdW) interaction between the 2D material and the supporting substrate as fixture. However, vdW in
terfaces are known to be weak in resisting tangential separations (Dai et al., 2016; Gong et al., 2010; Jiang et al., 2014). 

Fig. 2. (a) Schematics of the fabrication and indentation of monolayer graphene supported by a graphite substrate. (b) Rescaled indentation force- 
deflection relations measured on SiO2-supported (green squares) and graphite-supported (pink circles) monolayer graphene. The experimental 
setting follows (Dai et al., 2019). A slight difference is that the drumhead radius is 0.5 μm for graphene on SiO2 and 2.5 μm for graphene on graphite 
because the 2.5-μm-radius holes are easier to etch by focused ion beam (FIB) illustrated in (a-ii). The graphite-supported graphene results could even 
drop below the weak-shear limit, possibly due to the finite size of the sheet that is smaller than the sliding extent. 
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2.2. Poking on sheets with lubricated interfaces 

To further clarify the sliding effect, we compare indentation tests with intentionally designed strong- and weak-shear interfaces 
(Fig. 2). The relatively strong-shear interface was achieved through using the popular SiO2 to support the monolayer graphene. The 
relatively weak-shear interface was accomplished by fabricating graphene drumheads over a graphite substrate (Fig. 2a) as the 
graphene-graphite interface is believed to be highly lubricated and susceptible to slippage (Hod et al., 2018). The fabrication methods 
are the same as those described in (Dai et al., 2018). In Fig. 2b, we plot the measured indentation force-deflection relation for the 
graphite-supported graphene (pink circles), together with the SiO2-supported graphene extracted from literature (green squares) (Dai 
et al., 2019). As expected, the “falling through” comes earlier than the SiO2–supported graphene. This experimental observation 
confirms that the structural softening is much more significant in the weak-shear indentation. These results highlight the critical role 
played by the sheet-substrate interface in the indentation tests, particularly at large deformations. 

2.3. Elastic instabilities 

In addition to modifying the mechanical response, the interfacial slippage can shrink a material circle and cause hoop compressions 
to the thin sheet. While the compressive stress might be maintained in the supported region due to the confinement of interfacial 
adhesion, it prefers to be released in the suspended region via the formation of radial wrinkles (Vella, 2019). Compared with wrinkles 
due to residual compressive stress which gradually disappear with loading (Small and Nix, 1992; Janssens et al., 2020), wrinkles due to 
sliding are absent initially and only appear after interfacial slippage is initiated to certain extent by loading (we shall show this 
shortly). The slippage induced wrinkling pattern is visible in the atomic force microscope (AFM) amplitude images of a pressurized 
graphene sheet in Fig. 3a. So far, there is no evidence for such instabilities occurring in indentation tests due to difficulties in visu
alizing deformed configurations. However, wrinkling is observable in an alternative system—2D material tents—that could form 
spontaneously when the sheet is draped over a nanoparticle/pillar-patterned substrate (Dai et al., 2020b; Jiang et al., 2017; 

Fig. 3. Atomic force microscopic (AFM) amplitude images of a gas-pressurized bilayer graphene bubble (a) (Wang et al., 2017) and a multilayer 
graphene tent (b) (Dai et al., 2020b). 

Fig. 4. (a-c) Schematics for three possible deformed configurations when the sheet is allowed to slide against its supporting substrate in the 
indentation (top) and bulge (bottom) tests. All lengths labeled in the figure are normalized by the radius of the hole R. ρo represents the normalized 
outer radius of the sliding zone (i.e., the sliding extent). The brown-shaded part of the sheet denotes the region with instability. 
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Reserbat-Plantey et al., 2014). Surrounding the tent, radial buckle delamination has been observed in the supported region (Fig. 3b). In 
general, 2D material tent can be regarded as an inversed, upward indentation. Nevertheless, we should note that different from the tent 
system whose interface forms via a healing process, the delamination in indentation tests is more likely to be suppressed to avoid the 
sheet-substrate separation (we will discuss this more in Section 5.1). 

In this work, we neglect the pretension and focus on the previously mysterious interfacial slippage, particularly its effect on the 
mechanical responses of thin sheets upon poking and bulging. Motivated by experimental observations in Section 2, we develop a 
theory accounting for a finite shear resistance at the sheet-substrate interface as well as elastic instabilities in the sheet in Section 3. 
Section 4 presents the numerical and analytical results. We will show in Section 5 that our assumptions are not that limited. We will 
identify a few useful parameters that do not rely on pretension or any specific interfacial traction-separation laws and discuss how they 
can enable a reliable measure for the elasticity of the thin sheets. 

3. Theory 

3.1. Problem description 

Fig. 4 depicts possible configurations of indented and pressurized thin sheets with the consideration of the interfacial slippage. We 
use R to denote the radius of the hole. The sheet is suspended in [0,R] while supported by the substrate in [R,∞] (i.e., infinite size). We 
assume a constant shear traction at the sheet-substrate interface within the sliding zone [R,Ro]. A similar assumption has been used to 
explain the stress transfer problem in which the substrate is stretched and the strain transferred to the sheet is monitored via Raman 
spectroscopy (Jiang et al., 2014; Yu et al., 2020). We note that this assumption may be appropriate for common substrates such as 
polymer and SiO2. When the substrates are crystalline such as graphite, the constant traction may be considered as the average shear 
over a domain in which both the dimension and the radial displacement are much larger than 

̅̅̅
3

√
a, where a is the lattice constant 

(Kumar et al., 2016; Kumar et al., 2015). 
We consider three specific cases for the poking and bulging of thin sheets. Case I describes the base state that does not account for 

instabilities in the thin sheet. This case is thus appropriate only when instability is absent or in its very early stage. As the size of the 
sliding zone Ro grows with the applied pressure or point force, wrinkles may initiate in [Rw,R], so that the compression in the thin sheet 
is relieved. We consider this situation in Case II. Note that this case allows the supported part of the sheet to be compressed due to the 
sheet-substrate interactions, which may be appropriate for most indentation and bulge tests. In Case III, we consider the sheet being 
confined by a weak adhesion, so that buckle delamination occurs in [R,Rb] in addition to wrinkles in [Rw,R]. Case III of poking may 
better characterize the tent problem (see Fig. 3b) than the indentation problem because tents are formed as the sheets approach the 
substrates, during which buckle delamination could occur without needing to overcome much energy barrier. 

3.1.1. FvK equations 
We first discuss the force equilibrium in the suspended, instability-free region, i.e. [0,Rw] (Rw = R in Case I). The load q(r), which is 

Fδ(r)/(2πr) for a point force and p for a pressure, is balanced by the bending and stretching of the sheet (Mansfield, 2005), 

∇2( B∇2w
)
− (Nrrκrr +Nθθκθθ) − q(r) = 0, (3.1)  

where B is the bending stiffness of the sheet, w is the out-of-plane deflection, Nrr (κrr) and Nθθ (κθθ) are the radial and hoop stress 
resultants (curvatures), respectively. For the point force, we use q(r) = Fδ(r)/2πr though the force is downward in the diagram in 
Fig. 1a because the equilibrium equation is invariant under w → − w and q → − q. We follow the conventional assumptions adopted 
when analyzing 2D materials indentation and bulging – moderate rotation, linear elasticity, and axisymmetry (Komaragiri et al., 2005; 
Lee et al., 2008; Mansfield, 2005), such that ∇2f = d2f/dr2 + r− 1df/dr and the curvatures approximate 

κrr ≈
d2w
dr2 and κθθ ≈

dw
rdr

. (3.2) 

The in-plane force balance leads to 

d
dr

(rNrr) − Nθθ = 0. (3.3) 

The equilibrium equations with linearized curvatures are often termed the Föppl–von Kármán (FvK) equations. We introduce the 
Airy stress function ϕ such that the in-plane equilibrium is satisfied automatically by calculating the radial and circumferential stress 
via 

Nrr =
dϕ
rdr

and Nθθ =
d2ϕ
dr2 . (3.4) 

FvK equations can then be rewritten in terms of ϕ and w (Mansfield, 2005), 

∇2( B∇2w
)
− [ϕ,w] − q(r) = 0 (3.5)  

and 
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∇4ϕ +
1
2
E2D[w,w] = 0, (3.6)  

where [f , g] = d
rdr

(
df
dr

dg
dr

)

. Eq. (3.6) ensures compatibility. 

3.1.2. Non-dimensionalization 
The stiffness E2D is a constant under the linear elasticity assumption, and the radius R is prescribed by the dimension of the holes 

pre-patterned on the substrate. We thus use them to normalize variables, including 

δ =
d
R
, ρ =

r
R
, ρo =

Ro

R
,W =

w
R
,H =

h
R
, u =

u
R
, ρw =

Rw

R
, ρb =

Rb

R
(3.7a)  

and 

T =
τR
E2D

, Ñρ =
Nrr

E2D
, Ñθ =

Nθθ

E2D
,F =

F
E2DR

,P =
pR
E2D

,Φ =
ϕ

E2DR2, (3.7b)  

where u is the in-plane displacement, and τ represents the constant shear traction. We can then obtain the dimensionless form of the 
FvK equations 

∇2( K
− 1∇2W

)
− [Φ,W] − Q = 0 (3.8)  

and 

∇4Φ +
1
2
[W,W] = 0, (3.9)  

where Q is F δ(ρ)/(2πρ) for the point force and P for the pressure, and 

K =
E2DR2

B
(3.10)  

is often referred to as the FvK number (Blees et al., 2015), which can be thought of as the bendability of the system since sheets with 
higher FvK numbers are more susceptible to bending than stretching. The compatibility Eq. (3.9) indicates that Φ ∼ δ2. Thus, the 
stretching term dominates in (3.8) when K − 1 ≪ δ2, or bending effect becomes negligible when δ ≫ K − 1/2. This criterion can be 
readily satisfied in 2D material experiments. In particular, unlike classical plates that resist bending deformations via tension and 
compression across the neutral plane, monolayer 2D materials resist stretching by the strong in-plane covalent bonds and bending by a 
different physical origin–weak out-of-plane π bonds (Zhang et al., 2011). This unique behavior causes a much smaller bending stiffness 
for 2D materials than the prediction by classical plate theory and hence an extremely high bendability in the poking and bulging 
problems (Han et al., 2020; Wang et al., 2019). For example, the K of a monolayer graphene with a radius of ~1 µm is ~108 

(Androulidakis et al., 2018). In what follows, we thus neglect the bending term in (3.8). This simplification is often referred to as the 
membrane limit of the FvK equations. 

3.2. Poking: The base state 

Motivated by the extensive use of the indentation tests on 2D materials, we detail the three cases of the poking problem. The 
formulations can be extended for the bulging problem, which will be discussed briefly in Section 3.5. According to Schwerin’s solution 
(Schwerin, 1929), we expect a ρ− 1/3 singularity of stresses in the point-loaded sheet as ρ → 0, though the slippage may slightly 
ameliorate this singularity. It is convenient for numerical computations to introduce 

Ψ = ρΦ’, Ñρ =
Ψ
ρ2 and Ñθ =

Ψ’

ρ −
Ψ
ρ2 (3.11)  

such that the variable Ψ becomes regular, where ()’ denotes differentiation with respect to ρ. With (3.11), the membrane limit of the 
FvK equations for the poking problem reads 

ΨW
′

= −
ρF

2π (3.12)  

and 

Ψ′′ −
Ψ

′

ρ = −
1
2
W ′2, (3.13)  

which can be obtained through integrating (3.8) and (3.9) over [0, ρ] once. The integration constants are null because, unlike a plate, 
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the suspended sheet experiences no transverse or shear forces. For a prescribed point force F , the equations are to be solved with three 
boundary conditions. The zero in-plane deformation at the center and zero out-of-plane deformation at the edge give 

lim
ρ→0

u = 0 and W(1) = 0, (3.14)  

respectively. The third condition should match the continuity of the displacement across the edge of the hole, which needs a bit of 
thought. 

Within the supported domain, i.e., ρ ∈ [1,ρo], the only equilibrium equation comes from the in-plane force balance, 

d
dρ

(

ρÑρ

)

− Ñθ + Tρ = 0. (3.15) 

Assuming constant interfacial shear traction as well as linear elasticity for this flat region, we can rewrite (3.15) in terms of Ñρ, 

ρÑ
’’
ρ + 3Ñ

’
ρ + (2+ ν)T = 0. (3.16) 

We obtain the exact solution to this plane-stress problem, given that both stresses become zero at ρ → ρo (pretension is neglected), 

Ñρ = T
(

1 + ν
2

ρo +
1 − ν

6
ρ3

oρ− 2 −
2 + ν

3
ρ
)

, (3.17)  

which, together with (3.15), gives rise to 

Ñθ = T
(

1 + ν
2

ρo −
1 − ν

6
ρ3

oρ− 2 −
1 + 2ν

3
ρ
)

. (3.18) 

The clamped boundary condition is a special situation when the sliding zone vanishes, i.e., ρo → 1. In this situation, lim
ρo→1

Ñθ(1+) /

Ñρ(1+) = ν, implying zero circumferential strain or zero in-plane displacement at the edge of the hole. 
The radial stress and in-plane displacement are continuous across the edge of the hole, leading to 

Ψ(1) = T
(

1 − ν
6

ρ3
o +

1 + ν
2

ρo −
2 + ν

3

)

(3.19)  

and 

Ψ
′

(1) − (1+ ν)Ψ(1) =
T
6
(
ν2 − 1

)
(ρo − 1)2

(ρo + 2). (3.20) 

With a prescribed point force and given interfacial shear traction, the four conditions in (3.14), (3.19), and (3.20) can be used to 
solve the coupled ODEs in (3.12) and (3.13) as well as the unknown sliding extent ρo. 

3.3. Poking: Strong adhesion 

When wrinkling occurs in the suspended region and modifies the stress state, we consider a transition from Case I to Case II 
(Fig. 4b). Case II may be the most common situation in nanoindentation tests of 2D materials where the center deflection is moderate 
(δ⪅0.3) and the sheet-substrate normal interaction is strong enough to suppress the wrinkling in the supported region. Due to the 
wrinkling, the domain where regular FvK equations are applicable shrinks to [0,ρw]. The solution to the plane stress problem in the 
supported region still holds as we assume no wrinkling. In the wrinkled zone [ρw,1], we adopt the tension field theory (TFT) to describe 
the stress state, assuming that the hoop compression in this domain is fully released. The second FvK equation concerning the 
compatibility is then replaced by a zero hoop stress. This assumption should be valid for 2D materials due to their atomic thinness. The 
vertical force balance in (3.8) becomes 

(Φ’W ’)’ = 0. (3.21) 

Based on the in-plane force balance with Ñθ = 0, we obtain the solutions to (3.21), 

Φ’ = CN and W = CW(1 − ρ), (3.22)  

where we have used W(1) = 0. Eq. (3.22) suggests a zero Gaussian curvature in the wrinkling zone. The problem now is to solve the 
regular FvK equations along with the four unknown constants (i.e., ρw,CN,CW, and ρo), which requires seven boundary and continuity 
conditions. 

The condition in (3.14) regarding zero in-plane displacements at the center still holds. The continuity conditions at the inner and 
outer edges of the wrinkled zone should be enforced. We then have 
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lim
ρ→0

u = 0 and [W]
ρ+w
ρ−w = [W ’]

ρ+w
ρ−w =

[

Ñρ

]ρ+w

ρ−w
=

[

Ñρ

]1+

1−
= 0, (3.23)  

where [x]+− = x+ − x− . As the hoop compression is maintained in the supported region, we expect a jump of hoop stress across the edge 
of the hole. However, such jump is not allowed at the inner radius of the wrinkled zone, leading to 

[

Ñθ

]ρ+w

ρ−w
= 0. (3.24) 

This hoop stress continuity in the suspended region has been proved to be equivalent to the minimization of total elastic energy 
with respect to ρw in similar problems utilizing the TFT (Davidovitch et al., 2011; King et al., 2012). The wrinkling zone is much like a 
plastic zone – it grows with increasing load, and its initiation criterion provides a continuity condition at the growing front. The final 
condition is related to the in-plane displacement, whose solution has been missing in the wrinkled region. We use the kinematics and 
Hooke’s law in the wrinkled region, 

ερ = u’ +
1
2
(W ’)

2
= Ñρ − vÑθ, (3.25)  

to show that 

u
(
ρ+

w

)
− u(1− ) = CN lnρw +

1
2

C2
W(1 − ρw), (3.26)  

where we used (3.22). The displacements on the right side of (3.26) can be calculated according to the stress states in the unwrinkled 
regions since [u]ρ

+
w

ρ−w = [u]
1+

1− = 0. Eqs. (3.23), (3.24), and (3.26) complete the seven conditions that are required in Case II. 

3.4. Poking: Weak adhesion 

In Case III, we consider that instabilities arise and release the hoop compression in both suspended and supported regions (Fig. 4c). 
Within the suspended region, we use the wrinkled and unwrinkled theories developed in Case II. In the supported domain, the problem 
is much complicated by the fact that the instability could take various forms of buckle delamination, which will be discussed in Section 
5.1. We do not elucidate this complication since Case III is not likely to occur in indentation (as well as bulge) tests (also see discussions 
in Section 5.1). However, to gain quantitative insights into the delamination effect on the load-deflection behavior, we consider the 
most straightforward situation – a weak-adhesion interface. Specifically, we assume that any compressive force can cause the sheet to 
delaminate from its substrate so that the TFT is applicable in the buckle delamination zone [1, ρb] as well. The stiffness of the sheet upon 
poking calculated under this assumption can thus be thought of as a lower limit. 

The size of the buckled zone is determined by Ñθ(ρb) = 0, which, according to (3.18), requires 

ρ2
o

ρ2
b
+

2(1 + 2ν)
1 − ν

ρb

ρo
−

3(1 + ν)
1 − ν = 0. (3.27) 

Eq. (3.27) is meaningful only when ρb ≥ 1, i.e., 

ρo ≥ ρν =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9 + 6ν − 15ν2

√
− 1 − ν

2(1 − ν) . (3.28) 

This criterion also characterizes the critical size of the sliding zone beyond which hoop stress becomes compressive, and instability 
is expected to initiate. Correspondingly, ρo⪆1.35 for graphene with ν = 0.165. In the unbuckled region [ρb,ρo], (3.17) and (3.18) can be 
used while in the buckled region [1,ρb], we rewrite the in-plane Eq. (3.15) with released hoop stress:

d
dρ

(

ρÑρ

)

+ Tρ = 0. (3.29) 

As a consequence, the problem is to solve the regular FvK equations and (3.29) as well as five unknowns (i.e., ρw,CN,CW, ρb, and ρo), 
which requires nine boundary and continuity conditions. 

According to the zero in-plane displacement at the center and the continuity conditions, we have 

lim
ρ→0

u = 0, (3.30a)  

and 

[W]
ρ+w
ρ−w = [W ′

]
ρ+w
ρ−w =

[

Ñρ

]ρ+w

ρ−w
=

[

Ñθ

]ρ+w

ρ−w
=

[

Ñρ

]1+

1−
=

[

Ñρ

]ρ+b

ρ−b

= 0. (3.30b) 

We note that [Ñθ]
1+

1− = 0 has been satisfied automatically, and [Ñθ]
ρ+b
ρ−b

= 0 amounts to (3.27). Again, the last condition comes from the 
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continuity of the in-plane displacement across the wrinkled and buckled regions, 

u
(
ρ+

w

)
− u

(
ρ+

b

)
= CN lnρw +

1
2

C2
W(1 − ρw) +

∫

ρ+b

Ñρdρ, (3.31)  

where the displacements on the right side can be calculated according to the stress states in the unwrinkled/unbuckled regions since 

[u]
ρ+w
ρ−w = [u]

ρ+b
ρ−b = 0. Eqs. (3.27), (3.30), and (3.31) complete the conditions necessary to solve the boundary value problem in Case III. 

3.5. From poking to bulging 

The analysis of the bulging problem follows the same techniques outlined for the poking problem in the previous sections. In 
particular, the ODEs are identical in the supported region. The main changes come from differences between point-loaded and 
pressurized sheets in the vertical force balance. For the bulging problem, the membrane limit of FvK equations, according to (3.8), 
could be written as 

ΦW ′

= −
1
2

Pρ2 (3.32)  

and 

ρ d
dρ

[
1
ρ

d
dρ (ρΦ)

]

= −
1
2
W ′2, (3.33)  

where we used Φ to substitute Φ′ . Eqs. (3.32) and (3.33) are applicable in [0, ρw] (though ρw = 1 in Case I). In the wrinkled region [ρw,1], 
the hoop stress vanishes, allowing for analytical solutions to the vertical and horizontal equilibrium equations, 

Φ = CN and W =
P

6CN

(
1 − ρ3), (3.34)  

W(1) = 0 and the continuity of W′ at ρ = ρw have been enforced in (3.34). Unlike the poking problem, the wrinkled sheet in the bulging 
problem shows a nonlinear deflection along the radial direction. 

Fig. 5. (a) Indentation force-deflection curves for thin sheets with various interfacial shear tractions provided by their substrates. Note that the 
result of T = 1 shows no discernable difference to that based on clamped boundary conditions. (b) The sliding extent as a function of the center 
deflection under various interfacial shear tractions. The dependency of the effective stiffness (c) and the sliding extent (d) on the sliding number. 
Markers are obtained by numerical calculations, while solid curves are from analytical solutions detailed in Appendix B. 
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4. Results 

4.1. Poking: Emergence of a sliding number 

We begin by discussing Case I of the poking problem. Fig. 5a plots numerically solved indentation force-deflection curves for thin 
sheets with various shear tractions provided by their substrates. As expected, thin sheets with weaker shear traction behave less 
resistive to the point force. To indicate the poking resistance, we define an effective stiffness of the system, 

K =
F

δ3 . (4.1)  

K should be a strong function of the sliding extent, as plotted in Fig. 5b, which depends on not only the shear traction (that resists the 
slippage) but also the deflection (that drives the slippage). To better characterize the sliding extent, we propose a new parameter – the 
sliding number that compares the driving force with the resistive force, 

S =
δ2

T
, (4.2)  

where the square is used because the sheet tension scales as δ2 (Chen, 2020; Vella and Davidovitch, 2017). Apparently, thin sheets with 
larger sliding numbers undergo further interfacial slippage. 

The use of the sliding number can collapse the numerical results on the effective stiffness of thin sheets with various deflections and 
interfacial tractions into a master curve (Fig. 5c). We find two limits: when the interfacial slippage is negligible or when the interfacial 
shear traction is negligible. Fig. 5c clearly suggests that the sheet is close to being clamped when S ⪅0.1 while the sheet-substrate 
interface is close to being ultra-lubricated or frictionless when S ⪆104. 

We also found analytical solutions for the master K − S curve in Fig. 5c (see the derivation in Appendix B). The effective stiffness 
can be expressed as 

K =
π
2

θ1 − (1 − ψ1)tanθ1

θ3
1

, (4.3)  

where θ1 = tan− 1[ψ1/2
1 /(1 − ψ1)

1/2
] ≤ π/2. The intermediate parameter ψ1 is controlled by S and can be solved simply based on two 

algebraic equations: 

3ψ1S
/

θ2
1 = 6(1+ ν)ρo + 2(1 − ν)ρ3

o − 4(2+ ν) (4.4)  

and 

2(1+ ν)θ2
1(ρo − 1)

/
S − θ1

/
tanθ1 − ψ1 + 1 = 0. (4.5) 

The two equations also indicate a master ρo − S curve, which is plotted in Fig. 5d. 
The analytical solution is very beneficial to understand the asymptotic behaviors of the system, emerging under small or large 

sliding numbers, which are called strong-shear and weak-shear limits, respectively: 

K ≈

{
αF (ν), S ⪅0.1
2
/

π, S ⪆104 (4.6) 

Table 1 
The asymptotic responses of thin sheets upon poking and bulging. We list the coefficients if they are Poisson’s ratio independent, or their dependence 
is explicit. Otherwise, the coefficients are not provided and just labeled by “~”. αF (ν) and αP(ν) can be found in (1.1) and (1.2), respectively, which 
were provided by (Komaragiri et al., 2005). ρν is defined by (3.28).   

Poking  
Case I Case II Case III 

Regime F /

δ3  

ρo  Regime F /δ3  ρw  ρo  F /δ3  ρw  ρo  

S ⪅10− 1  αF (ν) 1 S = Sc(ν) 0.86 1 ρν  0.86 1 ρν  

S ⪆104  2
π  

[
6S

π2(1 − ν)

]1/3  S ⪆104  1.94
π  

0.49 ∼ S
1/3  

∼ (lnS )
− 1/2  ∼ (lnS )

− 1  
∼ S

1/2    

Bulging  
Case I Case II Case III  

P/δ3  ρo   P/δ3  ρw  ρo  P/δ3  ρw  ρo  

S ⪅10− 2  αP(ν) 1 S = Sc(ν) 2.69 1 ρν  2.69 1 ρν  

S ⪆103  1.63 ∼ S
1/3  S ⪆104  1.60 0.86 ∼ S

1/3  NA NA ∼ S
1/2   
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and 

ρo(S )approx

⎧
⎪⎪⎨

⎪⎪⎩

1, S ⪅0.1

[
6S

π2(1 − ν)

]1/3

, S ⪆10
. (4.7) 

The limits, together with these in other cases discussed shortly, are summarized in Table 1. We find good agreement between αF (ν)
in (1.1), and numerical calculations (Fig. 5c). It is also found that the large-S stiffness is surprisingly simple and is independent of 
Poisson’s ratio. However, the weak-shear limit of Case I is not realistic for ultrathin sheets as elastic instabilities should initiate much 
earlier than this limit. 

4.2. Poking: Role of instabilities 

We then move on to discuss the mechanical responses when elastic instabilities set in. It is well known that the tangential inter
action between 2D materials and their substrate is much weaker than their normal interaction (Dai et al., 2020a). This contrast drives 
the scenario of Case II: the sheet wrinkles in the suspended region and remains flat in the supported region. We perform numerical 
calculations following the formulation in Section 3.3 and identify the sliding number still to be the sole controlling parameter of Case 
II. In Fig. 6, we display the S -dependency of the effective stiffness (Fig. 6a) as well as the sliding extent (Fig. 6b) and the wrinkling 
extent (Fig. 6c) (More rigorously, 1 − ρw is the wrinkling extent). 

The critical point separating Case I and Case II is located at S = S c, since which the hoop stress at the edge becomes compressive. 
The value of S c is very sensitive to Poisson’s ratio because the onset of instability needs the shrinkage of a material circle due to the 
radial sliding to be larger than that due to the Poisson’s effect. The results in Fig. 6 are based on graphene of ν = 0.165 (corre
spondingly, S c ≈ 2.306). After this point, radial wrinkles grow from the edge of the hole towards the center (Fig. 6c), along with a 
further softened poking resistance (Fig. 6a). When the sliding number is sufficiently large (i.e., S ⪆104), the weak-shear limit emerges. 
Consequently, the effective stiffness stabilizes, and the radial wrinkles extend to their maximum length (not reaching the hole center, 
see detailed values in Table 1). Compared with Case I, Case II shows a smaller stiffness at large sliding numbers (Fig. 6a), due to the 
release of hoop stresses. However, the difference is minor (~3%), implying that the wrinkling only modifies radial stresses slightly. 

These results can qualitatively explain the softening behavior observed in Fig. 1. In particular, experimental results lie in between 
the strong-shear limit of Case I and the weak-shear limit of Case II when deflections are relatively large. A quantitative interpretation of 
these results is challenging and also subjected to considerable fitting errors because of the complex interplay between pretension and 
interfacial slippage. Alternatively, we will present a different method in the discussion section allowing for simpler metrology of the 
elasticity of the thin sheet. 

We succeed in deriving exact analytical solutions for master relations in Case II (see details in Appendix C). The effective stiffness is 

Fig. 6. The dependency of the effective stiffness (a), the sliding extent (b), and the wrinkling extent (c) on the sliding number in all three cases. Dots 
label the critical points from Case I to Case II (strong adhesion) or to Case III (weak adhesion). Dashed curves represent unrealistic Case I solutions 
after instability sets in. 
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found to depend on the size of the wrinkled zone, 

K = 2πψwρwtanθw[(1 − ρw)tanθw + 2ρwθw]
− 3
, (4.8)  

where θw = tan− 1[ψ1/2
w /(1 − ψw)

1/2
] and ψw is an intermediate constant. The vanishing hoop stress at the end of the wrinkling zone 

gives a transcendental equation for ψw, 

(2 − ψw)tanθw − 2θw = 0, (4.9)  

whose solution is ψw ≈ 0.6965. ρw, characterizing the wrinkling extent, can be solved based on algebraic equations (C.10) and (C.11) 
in the Appendix. These equations also prove the master ρo − S relation, particularly that ρo ∼ S

1/3 at large sliding numbers. Besides, 
the asymptotic analysis suggests a number of quantities that are independent of Poisson’s ratio (Table 1), including the upper limit of 
the wrinkling extent, i.e., the smallest possible ρw(S → ∞), and the effective stiffness at the critical moment of wrinkling, i.e., K(S =

S c), and the saturation of wrinkling, i.e., K(S → ∞). 
We have shown that wrinkling plays a small role in the mechanical response of the sheet in Case II. However, elastic instabilities 

would dramatically modify the sheet response in Case III (Fig. 6), where we assume that the adhesion is weak, and the instability occurs 
in both suspended and supported regions as long as the material is in compression. Under this assumption, we still find S to be the only 
controlling parameter. Due to buckle delamination, the sliding and wrinkling zones propagate with respect to S in a much faster 
manner (Fig. 6b and 6c). Specifically, for Case III of large sliding numbers, ρo scales as S 1/2 (S 1/3 in Case I and II); Instead of being a 
constant, ρw scales as 1/lnS . Consequently, F ∼ δ3/

̅̅̅̅̅̅̅̅̅
lnS

√
– the effective stiffness fails to stabilize (see Fig. 6a). 

These scaling relations are based on the exact solution to Case III (Appendix D). Interestingly, the simple relation in (4.8) is also 
applicable to Case III while ρw and ρo are determined by a different set of equations – (D.4) and (D.6). In Case I or II, there exists a weak- 
shear limit so that one may use a large S to calculate parameters (such as the effective stiffness and the wrinkling extent) for systems 
with vanishing friction. However, our theory for Case III cannot provide predictions for infinitely large S . This issue could be tackled 
by considering the finite lateral size of a thin sheet since the sliding zone engulfs the sheet if the interfacial shear traction is zero 
(Davidovitch and Guinea, 2020). However, we are not going to do so as there are many difficulties to fully understand the physics in 
the supported region, as discussed in Section 5.1 and 5.2. 

4.3. Bulge tests 

For thin sheets in bulge tests, the sliding number still enables the plot of the master curves. We show the numerically calculated 
effective stiffness (defined by K = P/δ3) and the sliding and wrinkling extent in Fig. 7. Though we failed to obtain analytical solutions, 
most of the asymptotic responses we derived for the poking problem are found applicable to the bulging problem. For instance, the two 
limits appear in Case I and Case II: the sheet-substrate interface is nearly clamped when S ⪅10− 2 and frictionless when S ⪆103. The 

Fig. 7. The dependency of the effective stiffness (a), the sliding extent (b), and the wrinkling extent (c) on the sliding number for the three cases in 
the bulging problem. Again, dots label the critical points from Case I to Case II or to Case III. 
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critical sliding number S c for the I-II transition of a graphene sheet is ∼ 0.76 (Fig. 7a). We checked numerically that K(S c) is ∼ 2.79 
and ν-independent. At large sliding numbers, we can identify the ρo ∼ S

1/3 relation (Fig. 7b) as well as the ν-independent K(S → ∞)

in Case I and II (Table 1). 
Compared with point force, thin sheets under pressure show even smaller differences between Case I and Case II: the ρo − S relation 

nearly overlaps (Fig. 7b), and the weak-shear stiffness only differs by 1.9% (Fig. 7a). The reason for this limited effect of wrinkling is 
the limited length of the wrinkles (1 − ρw), which is up to 0.51 in a point-loaded sheet and only 0.14 in a pressurized sheet. In bulge 
experiments, the size of the wrinkled zone ranges from ∼ 0.06 (Luo et al., 2020) to ∼ 0.12 in Fig. 3a (Wang et al., 2017). The different 
behaviors in ρw between poking and bulging is also visible in the asymptotic response of thin sheets with weak adhesive interactions 
(Case III). We have derived ρw ∼ 1/lnS and K ∼ 1/

̅̅̅̅̅̅̅̅̅
lnS

√
for Case III of the poking problem, leveraging that the wrinkles are 

reasonably long in this case. These relations are therefore invalid for the bulging problem (Fig. 7a and 7c) although ρo ∼ S
1/2 seems to 

agree quite well with the numerical results (Fig. 7a). 

5. Discussions 

Our relatively simple theoretical framework has allowed several important understandings of the mechanical behaviors of 
atomically thin sheets under poking and bulging. However, our analysis neglects some critical aspects of interface mechanics, 
including the finite interfacial adhesion, substrate surface roughness, and the mixed-mode delamination. In this section, we discuss the 
challenges associated with those subtleties and, more importantly, propose an alternative metrology for the elasticity of 2D materials 
that would be immune to these subtleties. 

5.1. Interfacial normal interactions 

As mentioned earlier, the analysis of Case III has been unrealistic. To solve Case III, we adopted TFT to release the compression of 
the buckled sheet in the supported region (essentially assuming no adhesion in the supported region). This treatment has been useful 
for suspended or water-floating sheets (Davidovitch and Vella, 2018; Vella and Davidovitch, 2018). However, the support of a rigid 
substrate could help maintain certain compression (Davidovitch et al., 2019). The problem is more complicated when the radial buckle 
delamination occurs as it is often non-axisymmetric; An additional length scale is needed to characterize the spacing of these buckles, 
as seen in (Dai et al., 2020b) and discussed in a recent work (Davidovitch and Guinea, 2020). 

A recent work studied the wrinkling (instead of delamination) in the supported region by considering the normal sheet-substrate 
interaction as a linear Winkler foundation (Davidovitch and Guinea, 2020). This treatment would further complicate the hoop stress 
jump across the edge of the hole. Our analysis for the weak-limit of Case II is identical to the Davidovitch-Guinea analysis with a 
sufficiently large foundation stiffness. More generally, however, the physics in the supported region is a combination of mechanical 
properties of the sheet, pretension, and interfacial normal/shear tractions (Davidovitch and Guinea, 2020). When the interfacial shear 
traction is negligible (for instance, graphene on graphite), Case II is in its weak-shear limit. The corresponding analysis is valid only if 
the center deflection or the hoop compression at the edge of the hole (that drives the wrinkling in the supported region) is sufficiently 
small, compared with the bending stiffness of the sheet and the stiffness of the sheet-substrate normal interaction (that resists the 
wrinkling) (Davidovitch and Guinea, 2020). When the shear traction is nontrivial (for instance, graphene on SiO2), the 
normal-tangential coupling needs to be considered. In bulge experiments in Fig. 3a, this supported region is found to be relatively 
“flat”; At least, AFM-based characterizations did not show wrinkles in this region. In indentation experiments, yet again, no obser
vations are available. 

5.2. 2D or not 2D 

We have assumed that the unbuckled sheet in the supported region is flat and adopted the 2D plane-stress analysis with a body 
force. This assumption may approximate well when the substrate is crystalline, and the interface is atomically smooth. However, 2D 
materials in indentation and bulge tests are mostly supported by SiO2, whose surface roughness needs to be considered. This effect on 
the overall poking or bulging stiffness of the sheet may be negligible since the sliding number in these systems is relatively small 
(S ⪅10, according to T ∼ 0.01 in the literature) (Kitt et al., 2013; Wang et al., 2017). However, the detailed size of the sliding zone may 
be significantly influenced by the substrate roughness. This also brings a question of how surface roughness tunes the tangential 
behavior of sheet-substrate interfaces, which remains an outstanding question (Dai et al., 2020a). 

Besides, we have used the simplest tangential traction-separation law – constant traction. Many of our conclusions, including those 
based on the strong- or weak-shear limit, should be modified by using a different traction-separation law. For instance, indentation and 
bulge tests are inherently mixed-mode with nonzero normal and shear tractions at the interface (Cao et al., 2015, 2016; Davidovitch 
and Guinea, 2020). From the point of view of intermolecular interactions, the normal interfacial separation would weaken the 
tangential traction, possibly leading to an increased sliding number. It is not clear how the sliding modifies the normal traction or vice 
versa, especially given the complexity due to substrate roughness. 

5.3. Wrinkling-assisted metrology 

In the introduction, we discussed the difficulties in interpreting the bulge and indentation experiments due to the coupling between 
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pretension and out-of-plane deformation. This work further introduces the complexity associated with the interfacial slippage, which 
should be particularly significant for ultrathin sheets whose edges are often not perfectly glued. More troubles would arise and make 
analytical efforts like (1.1) and (1.2) impossible when interface subtleties (such as surface roughness and complicated traction- 
separation laws) are considered. 

Our studies of the poking problem inspire a useful, alternative way to exploit both indentation and bulge tests (Fig. 8). The idea 
comes from the effective stiffness as a function of the wrinkling extent in Case II, i.e., (4.8). We rewrite the load-deflection relation: 

d3 ≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ρw + 3.29)3FR2

68.2ρwE2D
(Indentation tests)

pR4

(7.95ρw − 5.27)E2D
(Bulge tests)

, (5.1)  

where the first equation is based on (4.8), and the second is the fitting of the numerical solution to the bulging problem (Fig. 8). Though 
ρw is related to the sliding number in this work, it, together with the applied load and deflection, are experimentally accessible, leading 
to a direct measure of the sheet stiffness. Note again that the coefficients in (5.1) are independent of Poisson’s ratio of the sheet, 
pretension, or any specific interfacial laws (the interaction with the substrate could even be absent). The underlying reason is that for a 
given ρw, the condition of zero hoop stress at the tip of the wrinkle allows the solution of the coupled ODEs in the suspended region 
without matching the continuity conditions at the edge of the hole. 

The invariance of (5.1) renders elasticity metrology for thin sheets immune to errors caused by the unknown pretension and 
Poisson’s ratio, which have been troublesome in traditional indentation tests. In addition, by leveraging the mechanical response at the 
onset of wrinkling, the measure could be achieved without knowing the detailed wrinkling extent, i.e., ρw = 1. As long as the 
axisymmetry holds, the adventitious pretension during the material transfer makes no difference, and the substrate could be designed 
in various forms (not limited to the configurations in Fig. 4). A similar conclusion could be drawn at the late stage of the wrinkling, the 
signature of which is simply the ripening of the wrinkled zone. ρw at this stage in the indentation and bulge tests is constant, as 
provided in Table 1. However, it would be modified by nonzero pretensions. Alternatively, a theoretical investigation on this modi
fication may offer an opportunity for the measure of the pretension in the sheet. The late-stage usually comes with relatively large 
deflections. Therefore, one should be cautious about possible material and geometrical nonlinearities (Chandler and Vella, 2020). 

6. Concluding remarks 

We considered the mechanical response of thin sheets with sliding boundaries upon poking and bulging. When pretension is absent, 
a sliding number, comparing the membrane tension with the interfacial traction, turned out to be the sole controlling parameter in 
both problems. We discussed three cases, although Case I and Case II are more likely to occur in indentation and bulge tests. In both 
cases, we identified the strong- and weak-shear limits: the sheet-substrate interface is nearly clamped at small sliding numbers and 
ultra-lubricated at large sliding numbers. However, the difference in the effective stiffness between Case I and II is within 3% for all 
indenting/bulging deflections and theoretically allowable Poisson’s ratios. In reality, as the applied load gradually increases, the sheet 
response is first captured by Case I and transits smoothly to Case II when the hoop stress becomes negative at the edge of the hole. The 
transition from Case II to III remains to be carefully investigated, especially in tent problems. 

Unfortunately, the consideration of edge slippage, together with other factors such as pretension and specific interfacial traction- 
separation laws, would prevent explicit load-deflection relation like (1.1) and (1.2). It would be a grand challenge to measure the in- 
plane stiffness of an ultrathin sheet merely using load-deflection curves. A generic yet simple-to-implement poking/bulging meth
odology has been offered, which leverages the extent of instabilities. We highlighted the robustness of this methodology by its 
independency of pretension, Poisson’s ratio, and any effects associated with the substrate, or even no substrate. 

Fig. 8. Schematics of exploiting the wrinkling instabilities in the suspended region in indentation and bulge tests of thin sheets.  
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Appendix A. Indentation of various 2D materials 

Fig. A1 

Appendix B. Analytical solution to Case I 

The analytical solution to the nonlinear, coupled FvK Eqs. (3.12) and (3.13) is the key to solve the poking problem (Chopin et al., 
2008). The combination of (3.12) and (3.13) leads to 

ρ d
dρ

(
1
ρ

dΨ
dρ

)

+
1
2

(
ρF

2πΨ

)2

= 0. (B.1) 

Let η = ρ2 so that (B.1) becomes 

d2Ψ
dη2 +

F
2

32π2Ψ2 = 0. (B.2) 

We integrate (B.2) once to obtain 

dψ
dη =

A3/2F

4π

(
1 − ψ

ψ

)1/2

, (B.3)  

where A is the integration constant and ψ = AΨ. Back to (3.12), we find 

Fig. A1. Rescaled indentation force-deflection relations measured on various 2D materials (Bertolazzi et al., 2011; Falin et al., 2017; Lee et al., 2008; 
Lipatov et al., 2018; Liu et al., 2014; Tu et al., 2018). 
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δ =

∫1

0

ρF

2πΨ
dρ =

AF

4π

∫ψ1

0

dψ
ψψ ′ , (B.4) 

which can be solved by combining (B.3), 

δ =
2

A1/2tan− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ1/(1 − ψ1)

√
, (B.5)  

where ψ ′

= dψ/dη and ψ1 = ψ(1). There are two ways to determine ψ1. One is by integrating (B.3) to obtain 

A3/2F

4π η = −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ(1 − ψ)

√
+ tan− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ/(1 − ψ)

√
, (B.6)  

where we have used limρ→0μ(ρ) = 0 that is identical to limη→0ψ(η) = 0. At the edge of the hole, 

A3/2

4π F = −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ1(1 − ψ1)

√
+ tan− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ1/(1 − ψ1)

√
. (B.7) 

Another way is to leverage the continuity of the radial stress across the edge, i.e., (3.19), 

ψ1 = AT
(

1 + ν
2

ρo +
1 − ν

6
ρ3

o −
2 + ν

3

)

. (B.8) 

In addition, the continuity of the radial displacement across the edge can give rise to 

dψ
dη |η=1 = AT

1 + ν
2

(ρo − 1), (B.9)  

which, according to (B.3), can further lead to 

A1/2F

2π(1 + ν)

(
1 − ψ1

ψ1

)1/2

= T(ρo − 1). (B.10) 

Given a set of poking force F and interfacial shear traction T, the unknowns, including δ, ψ1, A, and ρo, can be solved based on 
(B.5), (B.7), (B.8), and (B.10). We can use (B.5) and (B.7) to show the effective stiffness, 

K =
F

δ3 =
π
2

tan− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ1/(1 − ψ1)

√
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ1(1 − ψ1)

√

[
tan− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ1/(1 − ψ1)

√ ]3 . (B.11) 

ψ1 is dependent on a single parameter—S —since (B.5)2 × (B.8) equals to 

3ψ1S

[
tan− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ1/(1 − ψ1)

√ ]− 2
= 6(1+ ν)ρo + 2(1 − ν)ρ3

o − 4(2+ ν), (B.12)  

and (B.7)/(B.10)/(B.5)2 gives 

2(1+ ν)(ρo − 1)S − 1
[
tan− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ1/(1 − ψ1)

√ ]2
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − ψ1)/ψ1

√
tan− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ1/(1 − ψ1)

√
= ψ1 − 1. (B.13)  

Appendix C. Analytical solution to Case II 

In this case, (B.1–B.3) and (B.6) can still be used in the unwrinkled region [1,ρw]. At the inner edge of the wrinkling zone, we define 
ψw = ψ(ρw). Immediately, (B.6) dictates 

A3/2F

4π ρ2
w = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ψw(1 − ψw)

√

+ tan− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ψw/(1 − ψw)

√

, (C.1)  

and the zero hoop stress requires 

A3/2F

2π ρ2
w =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ψ3
w

/
(1 − ψw)

√

, (C.2)  

which provides an equation for ψw, 

ψw

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ψw/(1 − ψw)

√

+ 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ψw(1 − ψw)

√

= 2tan− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ψw/(1 − ψw)

√

. (C.3) 

The continuity of the slope and the radial stress across the wrinkling tip can solve 
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Cw =
AρwF

2πψw
=

1
A1/2ρw

̅̅̅̅̅̅̅̅̅̅̅̅̅̅ψw

1 − ψw

√

(C.4) 

and 

CN =
ψw

Aρw
, (C.5)  

respectively. The center deflection can be calculated by summing up the wrinkled and unwrinkled parts, 

δ = W(ρw) +

∫ρw

0

ρF

2πΨ
dρ =

1
A1/2

(
1 − ρw

ρw

̅̅̅̅̅̅̅̅̅̅̅̅̅̅ψw

1 − ψw

√

+ 2tan− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅ψw

1 − ψw

√ )

. (C.6) 

Moving the focus outward, we require the continuity of the radial stress at the edge of the hole, 

ψw

ATρw
= −

2 + ν
3

+
1 − ν

6
ρ3

o +
1 + ν

2
ρo. (C.7) 

Finally, the displacement condition (3.26) is rewritten as 

6ψw(ν+ lnρw) +
3ψw(1 − ρw)

ρw(1 − ψw)
− AT

(
1 − ν2)ρw(ρo + 2)(ρo − 1)2

= 0. (C.8) 

We compute the effective stiffness by combining (C.2) and (C6), 

K =
2π
ρ2

w

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ3

w

1 − ψw

√ (
1 − ρw

ρw

̅̅̅̅̅̅̅̅̅̅̅̅̅̅ψw

1 − ψw

√

+ 2tan− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅ψw

1 − ψw

√ )− 3

. (C.9) 

The ψw is a constant according to (C.3) while ρw depends on the sliding parameter. Specifically, we can use (C.6) and (C.7) to show 

S
ψw

ρw
=

(

−
2 + ν

3
−

ν − 1
6

ρ3
o +

1 + ν
2

ρo

)(
1 − ρw

ρw

̅̅̅̅̅̅̅̅̅̅̅̅̅̅ψw

1 − ψw

√

+ 2tan− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅ψw

1 − ψw

√ )2

, (C.10)  

as well as (C.7) and (C.8) to have 

ν + lnρw +
1 − ρw

2ρw(1 − ψw)
−

(1 − ν2)(ρo + 2)(ρo − 1)2

(1 − ν)ρ3
o + 3(1 + ν)ρo − 2(2 + ν) = 0 (C.11)  

Appendix D. Analytical solution to Case III 

The conclusions regarding the suspended sheet in Case II, including (C.1–6), remain the same in Case III. The main difference lies in 
the supported sheet due to the buckle delamination. Particularly, in the buckled part, the tension in (3.29) can be solved 

Ñρ =
T
2
(
ρ2

bρ− 1 + ρ̃2ρ− 1 − ρ
)
, (D.1)  

where the continuity at the outer edge of the buckled zone dictates 

ρ̃2
=

[
− 2(2+ ν)ρ2

b +(1 − ν)ρ3
oρ− 1

b + 3(1+ ν)ρoρb

]/
3. (D.2) 

As a result, equations (C.7) and (C.10) are modified to be 

2ψw = ATρw
(
ρ2

b + ρ̃2
− 1

)
(D.3)  

and 

2S ψw

ρw
=

(
ρ2

b + ρ̃2
− 1

)
(

1 − ρw

ρw

̅̅̅̅̅̅̅̅̅̅̅̅̅̅ψw

1 − ψw

√

+ 2tan− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅ψw

1 − ψw

√ )2

, (D.4)  

respectively. Another change stems from the displacement condition that is now defined by (3.31), namely 

12
ψw

ρw
(ν + lnρw) +

6ψw(1 − ρw)

ρ2
w(1 − ψw)

= 2AT
(
1 − ν2)(ρb − ρo)

2( 2 + ρoρ− 1
b

)
+ 6AT

(
ρ2

b + ρ̃2)lnρb − 3AT
(
ρ2

b − 1
)
. (D.5) 

A new version of (C.11) can be obtained by combining (D3) and (D.5), 
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3
(
ρ2

b + ρ̃2
− 1

)[
2(ν + lnρw) +

(
ρ− 1

w − 1
)/

(1 − ψw)
]

= 2
(
1 − ν2)(ρb − ρo)

2( 2 + ρoρ− 1
b

)
+ 6

(
ρ2

b + ρ̃2)lnρb − 3
(
ρ2

b − 1
) . (D.6) 

In Case III, therefore, the effective stiffness is still characterized by (C.9), but ρw and ρo are determined by (D.4) and (D.6), where the 
ρo − ρb relation follows (3.27) and S is the only controlling parameter. 
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