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ABSTRACT

This article summarizes the progress made in predictability studies of weather and climate in recent years in China, with
a main focus on advances in methods to study error growth dynamics and reduce uncertainties in the forecasting of weather
and climate. Specifically, it covers (a) advances in methods to study weather and climate predictability dynamics, especially
those  in  nonlinear  optimal  perturbation  methods  associated  with  initial  errors  and  model  errors  and  their  applications  to
ensemble forecasting and target observations, (b) new data assimilation algorithms for initialization of predictions and novel
assimilation approaches to neutralize the combined effects of initial and model errors for weather and climate, (c) applications
of  new  statistical  approaches  to  climate  predictions,  and  (d)  studies  on  meso-  to  small-scale  weather  system  predictability
dynamics. Some of the major frontiers and challenges remaining in predictability studies are addressed in this context.
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Article Highlights:

•  The CNOP method has been successful in field campaigns for targeting observations associated with real-time forecasts
of tropical cyclones.

•  The  DRP-4DVar  data  assimilation  method,  proposed  by  Chinese  scientists,  has  greatly  reduced  the  initial  shock
phenomenon in decadal predictions.

•  Emerging methods such as complex networks and AI are expected to significantly enhance the prediction capabilities of
weather and climate events.

 

 
 

 1.    Introduction

High-impact weather and climate events [e.g., typhoons,

rainstorms,  monsoon,  El  Nino–Southern  Oscillation
(ENSO), and Indian Ocean Dipole (IOD) events] have serious
adverse effects on society, the economy, and people’s lives
in China and elsewhere across the globe, and thus predicting
such events has always been a key concern of governments
and the general public. Although initial errors due to insuffi-
cient observations at present, and model errors due to imper-
fect  descriptions  of  atmospheric  and  oceanic  processes,
inevitably exist in numerical forecasts, governments and the
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public still expect relevant agencies to provide high quality
weather  forecasting  and  climate  prediction  services  in  a
timely manner. A key question posed to meteorologists, there-
fore, is how can we maximize the forecasting capability for
weather and climate using current numerical prediction sys-
tems?

To  address  this  question,  one  first  needs  to  recognize
the reasons and mechanisms responsible for prediction uncer-
tainties and identify the major sources of forecast uncertain-
ties.  Thereafter,  one  can  then  study  how  to  effectively
reduce  those  forecast  uncertainties.  Such  studies  belong  to
the research field of predictability (Mu et al., 2004b, 2017a).
Since a high forecast skill is closely related and important to
everyone’s  lives,  the  predictability  of  high-impact  weather
and  climate  events  has  long  been  recognized  as  a  frontier
research  topic  in  the  atmospheric  and  oceanic  sciences.
Indeed, it is listed as the core research subject in the “World
Weather Research Program” (https://public.wmo.int/en/pro-
grammes/world-weather-research-programme)  and  the
“World Climate Research Program” (https://www.wcrp-cli-
mate.org/clivar).

Studies on predictability dynamics generally provide use-
ful  guidance  to  improve  the  forecasting  skills  for  weather
and climate (Palmer et al., 1998; Mu et al., 2002; Duan and
Mu,  2015).  They generally  focus  on  estimation  of  the  pre-
dictability  time,  identification  of  the  predictability  sources
and associated uncertainties, and recognition of the mecha-
nism responsible for error growth (Kalnay, 2002; Mu et al.,
2017a; Duan  and  Mu,  2018).  These  concerns  are  often
explored  by  investigating  the  growth  dynamics  of  forecast
errors caused by initial and/or model uncertainties. Then, an
effective  forecasting  strategy  can  be  constructed  to  predict
the weather and climate events of concern.

Data  assimilation  (DA)  is  recognized  as  one  of  the
most  important  forecast  strategies  to  reduce  the  prediction
uncertainties induced by initial errors (Bauer et al., 2015). It
combines a limited number of observations with numerical
models  and  their  respective  error  statistics  to  provide  an
improved  estimate  (or  analysis)  of  the  present  state  (Tala-
grand,  1997).  Bauer  et  al.  (2015)  pointed  out  that  the
advances in numerical weather prediction (NWP) have under-
gone a quiet revolution in the past 30 years, resulting in the
forecasting skill having increased by nearly 30% during this
period, and the improvement is even more substantial in the
Southern  Hemisphere.  Such  a  breakthrough  was  achieved
through  exploiting  satellite  data  and  the  variational  DA
approach (Bauer et al., 2015). It is obvious that DA plays an
important role in achieving high-quality forecasts in modern
NWP.

In addition to advanced DA methods, targeted observa-
tions  are  essential  to  obtain  a  high-quality  forecast  (Mu  et
al., 2015; Parsons et al., 2017). Actually, if an advanced DA
approach together with additional targeted observations (Sny-
der, 1996) is used to predict high-impact weather or climate
events,  a  more  accurate  initial  state  can  be  obtained,  and
their forecasting skill can be increased to a large extent. In tar-

geted observation strategies, to better predict an event occur-
ring in an area (i.e.,  the verification area)  at  a  given future
time t1, additional observations are deployed at a much earlier
time t0 (i.e., the target time; t0 < t1) in a few key areas (i.e.,
sensitive  areas),  where  the  additional  observations  are
expected to make a larger contribution to reducing the forecast
errors in the verification area; and assimilating these observa-
tions  will  provide  a  more  reliable  initial  state  and  then  a
more  accurate  prediction  (Snyder,  1996).  Theoretically,  if
the  initial  perturbations  that  cause  the  largest  perturbation
growth  can  be  identified,  the  initial  errors  located  in  the
areas where the perturbations are concentrated are generally
thought  of  as  contributing  more  to  the  forecast  errors,  and
thus preferentially assimilating additional targeted observa-
tions  in  these  areas  will  reduce  initial  error  effects  much
more effectively and improve the forecast skill greatly [see
the reviews by Majumdar (2016) and Mu et al. (2015)]. Tar-
geted observation strategies have been implemented in field
campaigns  associated  with  high-impact-weather  forecasts
(Langland et al., 1999; Wu et al., 2005, 2007). In the 21st cen-
tury, targeted observation has become one of the main compo-
nents of the new international atmospheric science program
advocated  by  the  World  Meteorological  Organization
(WMO)—namely, the Observing System Research and Pre-
dictability Experiment (THORPEX; WMO, 2004)—and has
achieved great success in field campaigns for typhoon fore-
casting (Parsons et al., 2017). A new Tropical Pacific Observ-
ing  System  (TPOS2020; https://tropicalpacific.org/)  plan
has  been  proposed  to  optimize  the  Tropical  Atmosphere/
Ocean  observational  network/Triangle  Trans-Ocean  Buoy
Network (TRITON) to address the challenge of ENSO predic-
tions  posed  by  El  Niño  diversity  (Cravatte  et  al.,  2016;
Kessler et al., 2021); furthermore, Chen et al. (2018) stated
that a targeted observation strategy would be useful for refin-
ing observational networks. These findings certainly empha-
size  the  importance  of  implementing  targeted  observation
strategies in high-impact-weather and climate predictions.

Tennekes  (1991)  pointed  out  that  a  complete  forecast
includes not only a deterministic forecast but also an estima-
tion of its uncertainty. Therefore, reliable estimation of uncer-
tainties  is  indispensable  for  complete  forecasts.  Ensemble
forecasting  is  a  useful  method  that  provides  estimation  of
uncertainties  by  evaluating  ensemble  spread  (Du  et  al.,
2018; Duan et al.,  2019). The idea of ensemble forecasting
is that the perturbations that reflect the uncertainties of the ini-
tial states are superimposed on the initial condition in the con-
trol run to generate an initial ensemble, and then the forecast
error  of  the  ensemble  mean  can  be  quantified  using  the
spread of the forecast ensemble (Leith, 1974). These members
can also be used to calculate the probability for the occurrence
of the weather or climate events of concern [see the review
by Kriz (2019)]. Since the analysis errors in the control fore-
casts often grow quickly, the perturbations for ensemble fore-
casting should present fast-growing dynamical behaviors; in
this situation, the optimally growing perturbations are useful
for improving the ensemble forecast skill. Due to the abun-
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dance  of  forecast  products  of  ensemble  forecasting,  this
method  plays  an  irreplaceable  role  in  numerical  prediction
and has been listed as one of the main development strategies
of current numerical prediction by the WMO (Majumdar et
al., 2021).

Consequently,  a  complete  high-quality  forecast  should
contain an accurate forecast result and a reliable estimation
of  its  uncertainties.  To produce an accurate  forecast  result,
in addition to using a superior numerical model, one should
also  use  advanced  DA  methods  and  targeted  observations.
Furthermore, a reliable ensemble forecast system is also essen-
tial to obtain an effective estimation of the forecast uncertain-
ties.  Therefore,  to  greatly  improve  the  forecasting  skill  for
high-impact  weather  and  climate  events,  meteorologists
should  synthesize  theoretical  and  practical  research  on  tar-
geted observations, DA, and ensemble forecasting under the
framework  of  an  advanced  numerical  model,  based  on  the
guidance  of  theoretical  studies  on  predictability  dynamics.
In recent years, Chinese scientists have made great progress
in this field and some of their results have been implemented
in operational centers in China. This paper summarizes this
progress, as well as future prospects, especially on major fron-
tiers  and  challenges  in  research  on  methods  to  study  error
growth dynamics and to reduce the uncertainties in forecast-
ing weather and climate.

 2.    Advances  in  studies  of  nonlinear  optimal
perturbations  for  weather  and  climate
predictability dynamics

Consensus has been reached that the best methods for pre-
dicting geophysical dynamical systems are optimization meth-
ods (e.g., DA); however, such methods for estimating forecast
uncertainty  remain  controversial  (Smith  et  al.,  1999).  Cur-
rently, there are two approaches to optimization methods for
error growth estimations. One is to solve the optimally grow-
ing initial  perturbation during a given period of prediction,
while the other searches for the optimally growing perturba-
tions during a time period before the initialization of predic-
tion. One representative example in the former approach is
that of singular vectors (SVs, Lorenz, 1965), and one in the
latter  approach  is  Lyapunov  vectors  (Toth  and  Kalnay,
1993).  However,  these  two  approaches  are  both  linear  and
do not contain the effects of nonlinearity that exist in atmo-
spheric and oceanic motions or land surface processes (Mu,
2000; Kalnay,  2002).  In  this  section,  we  summarize  the
advances made in studies of nonlinear optimal perturbations
achieved by Chinese scientists via these two approaches.

 2.1.    Conditional  nonlinear  optimal  perturbation:
applications  to  ensemble  forecasting  and  targeted
observations

As mentioned above, SVs (Lorenz, 1965) are traditional
approaches  to  estimating  the  growth  of  initial  errors,  and
work by simplifying nonlinear systems to be linear and allow-
ing exploration of the initial error that causes the largest pre-

diction error during a given time period. Although SVs have
been  widely  used  to  address  the  error  growth  dynamics  of
atmospheric and oceanic predictability and even to yield ini-
tial perturbations of ensemble forecasting for weather and cli-
mate events and identify sensitive areas for targeted observa-
tion  (Mu  et  al.,  2015,  Majumdar, 2016; Duan  and  Mu,
2018), they do not consider the modulation effect on optimal
perturbations  of  nonlinear  processes  (Mu,  2000; Sévellec
and Fedorov, 2013; Winkler et al., 2020). To overcome this
limitation, Mu et al. (2003) proposed a novel approach of con-
ditional nonlinear optimal perturbation (CNOP) in the field
of  atmospheric  sciences.  Similar  optimal  perturbation  also
subsequently appeared in the fields of fluid mechanics (see
Pringle and Kerswell, 2010; Kerswell et al., 2014). Such per-
turbations often describe the initial perturbation that satisfies
a certain constraint condition and have the largest departure
from the reference state  at  a  given future time.  The CNOP
has been applied to find the optimal precursor (OPR) for the
occurrence of high-impact oceanic–atmospheric environmen-
tal events such as ENSO and IOD events (Duan et al., 2004;
Duan and Zhao, 2014; Mu et al., 2017b; Yang et al., 2020),
as  well  as  explore  the  optimally  growing  initial  errors
(OGEs)  for  targeted  observations  associated  with  the  fore-
casts of tropical cyclones (TCs; Mu et al., 2009; Qin et al.,
2013; Qin and Mu, 2014), the season-dependent predictability
barrier for ENSO and IOD events (Mu et al., 2007; Duan et
al., 2009; Feng and Duan, 2014; Duan and Mu, 2018; Liu et
al., 2018a), and the stability and sensitivity analyses of both
thermohaline  circulation  and  terrestrial  ecosystems  (Mu  et
al.,  2004a; Sun  and  Mu,  2014; Zu  et  al.,  2016).  All  these
works not only reveal the important role of considering non-
linear effects, but also provide useful guidance for improving
weather  and  climate  predictions.  In  particular,  in  recent
years, the CNOP has been extended to applications in ensem-
ble forecasting for weather and climate forecasting and field
campaigns for targeted observations associated with TC fore-
casting; furthermore, it has been extended from the original
CNOP  representing  the  OGEs  [for  convenience,  hereafter
referred to as CNOP-I (Mu et al., 2003, 2010)] to the addi-
tional  CNOP-P  for  addressing  the  influences  of  optimal
model parametric error (Mu et al., 2010), CNOP-B for reveal-
ing the boundary uncertainties that have the largest effect on
forecasts (Wang and Mu, 2015), and CNOP-F [i.e., the nonlin-
ear  forcing  singular  vector  (NFSV)  proposed  in  Duan  and
Zhou  (2013)]  for  exploring  combined  effects  of  various
model errors. Thus, a family of CNOPs has been achieved,
including CNOP-I,  -P,  -B and -F (Wang et  al.,  2020a).  All
these  perturbations  fully  consider  the  effects  of  nonlinear
physical processes and have been shown to represent the opti-
mally growing mode in their respective scenarios. To facili-
tate readers, we summarize the CNOP family and their respec-
tive benefits in Table 1.

 2.1.1.    Ensemble forecasting

In  applications  of  CNOPs,  CNOP-I  was  recently
applied  to  ensemble  forecasting,  and  orthogonal  CNOPs
(i.e., O-CNOPs), which is a new approach to yield initial per-
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turbations  for  ensemble  forecasting,  were  proposed  (Duan
and Huo, 2016). O-CNOPs have been used to provide skillful
forecasts  for  TC  tracks.  For  example,  Huo  et  al.  (2019)
demonstrated that the ensembles generated by O-CNOPs, as
compared with those made by traditional SVs, Bred Vectors
(BVs), and Random Perturbations (RPs), can present much
larger spreads; moreover, they tend to appear on both sides
of real TC tracks and have high prediction reliability for TC
tracks,  ultimately  providing  much  higher  forecasting  skill
for TC tracks (Huo and Duan, 2019).

CNOP-P, which was proposed to address optimal para-
metric perturbation, has also been used in ensemble forecast-
ing, based on its recognized sensitivity to parameter uncertain-
ties. As is well known, a convection-allowing model cannot
yet well resolve convective cells as well as turbulence diffu-
sion  and  has  limitations  in  forecasting  severe  weather
events. Even if ensemble techniques are used, the ensembles
generated by the stochastically perturbed physics tendencies
(SPPT; Buizza et al., 1999) used in operational centers still
face  new  scientific  challenges,  especially  the  problem  of
under-dispersion.  To  address  this  under-dispersion  issue,
Wang  et  al.  (2020b)  applied  the  CNOP-P  approach  to  the
Global and Regional Assimilation and Prediction Enhanced
System (GRAPES), which is a convection-scale ensemble pre-
diction  model,  to  detect  the  most  sensitive  model  parame-
ters. They then formulated the model uncertainty by adding
a group of stochastic perturbations on these sensitive parame-
ters and conducted ensemble forecast experiments on relevant
variables of convective scales. They showed that these new
members,  as  compared  with  those  generated  only  by  the
SPPT, bring about much larger spread for humidity and tem-
perature over the troposphere and yield much more reliable

forecasting skill for near-surface variables and precipitation.
In view of this, we conclude that CNOP-P is more applicable
than SPPT in describing model uncertainties for convective-
scale  forecasting.  Of  course,  it  is  easily  recognized  that
CNOP-P  only  accounts  for  the  effect  of  model  parameter
errors,  and  there  are  other  model  error  sources  that  also
severely influence weather and climate predictions; further-
more, these model errors are interactive. Considering this situ-
ation,  Xu  et  al.  (2022a)  further  adopted  the  CNOP-F
approach [i.e., the NFSV in Duan and Zhou (2013)] for mea-
suring  the  combined  effect  of  various  model  errors  to
explore the ensemble forecast of convective scales [also see
Xu  et  al.  (2022b)].  They  superimposed  the  NFSV  on  the
SPPT perturbations and formulated new tendency perturba-
tions  (denoted  by  SPPT_NFSV)  for  ensemble  forecasts.
With these new perturbations,  Xu et  al.  (2022b) conducted
ensemble experiments using the GRAPES convection-scale
ensemble  prediction  model  as  adopted  in  Wang  et  al.
(2020b). They illustrated that the overall probabilistic skills
were  significantly  improved  at  the  99.99%  significance
level as estimated by a Student’s t-test, and have an advantage
over the SPPT (Fig. 1). Particularly, they demonstrated that
the use of the NFSV enhances the forecasting skill for precipi-
tation accuracy. It is inferred that additional state-independent
nonlinear  perturbations  (e.g.,  the  NFSV)  superimposed  on
the SPPT can better represent model uncertainties in convec-
tion-scale ensemble forecasts and ultimately contribute to a
more comprehensive characterization of model error for con-
vective-scale forecasts.

In  addition,  the  CNOP-F  (i.e.,  NFSV)  was  also
extended to yield a group of combined modes of initial and
model  perturbations that  are  mutually  independent  and can

Table 1.   The CNOP family and their respective benefits.

CNOP type Representation Benefit References

CNOP-I The initial perturbation that satisfies a
certain  physical  constraint  but
causes the largest evolution of state
perturbation at the prediction time

CNOP-I version: more accurately identifies the
sensitive area for targeted observation

Mu et al. (2007); Qin et al.
(2023); Jiang et al. (2022)

O-CNOPs version: more reasonably depicts ini-
tial uncertainty in ensemble forecasting

Duan and Huo (2016); Huo et
al. (2019); Huo and Duan
(2019); Zhang and Tian
(2022)

CNOP-P The  parameter  perturbation  that
yields the largest evolution of state
perturbation at the prediction time

CNOP-P version:  identifies  the  most  sensitive
parameter or the optimal multi-parameter com-
bination for targeted observation and ensem-
ble forecasting

Mu et al. (2010); Duan and
Zhang (2010); Sun and Mu
(2017a, b); Wang et al.
(2020b)

CNOP-B The  boundary  perturbation  that
causes the largest evolution of state
perturbation at the prediction time

CNOP-B version: reveals the boundary condi-
tion error that exerts the largest effect on the
prediction error

Wang and Mu (2015); Ma et
al. (2022)

CNOP-F (also
NFSV)

The tendency perturbation that yields
the largest evolution of the state per-
turbation at the prediction time

CNOP-F  version:  more  reasonably  identifies
the  area  that  contributes  a  much  larger
model error effect on the prediction error

Duan and Zhou (2013); Zhao
and Duan (2014)

O-NFSVs version: generates mutually indepen-
dent  tendency  perturbations  to  address  the
effects of different kinds of model uncertain-
ties in ensemble forecasting

Zhang et al. (2022a); Xu et al.
(2022b)

C-NFSVs version: produces dynamically coordi-
nated initial and model perturbations to deal
with  the  combined  effect  of  initial  and
model uncertainties in ensemble forecasting

Duan et al. (2022a)
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Fig. 1. The probabilistic skill for 500-hPa zonal wind (left column) and temperature (right column). Panels (a) and
(b) show the domain-averaged RMSE of the control forecast (gray line), the SPPT_NFSV experiment (red line),
and the SPPT experiment (blue line),  together with the ensemble spread for the SPPT_ NFSV (red bar) and the
SPPT (blue  bar).  Panels  (c)  and (d)  represent  the  spread-error  consistency,  and (e)  and (f)  show the  continuous
ranked probability score. Panels (g) and (h) are Talagrand rank histograms, and (i) and (j) show the outlier scores.
The model adopted height-based terrain-following coordinates with 51 vertical levels and covered the domain of
South China (19.99°–25.99°N, 106.5°–117°E) with a horizontal resolution of 0.03°. The forecasts were integrated
for 24 h, initialized at 0000 UTC of each day during the period 1–30 May 2020 over South China. [Reprinted from
(Xu et al., 2022b)].
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cause the largest departure from the control forecast in their
respective sub-phases, which offers a novel ensemble forecast-
ing  method  of  C-NFSVs  (Duan  et  al.,  2022a).  The  C-
NFSVs reveal the important role of the dynamically coordi-
nated growth of initial and model perturbations in improving
the ensemble forecasting skill, thus yielding much more reli-
able  ensembles  compared  with  O-CNOPs  for  measuring
only initial error effects in terms of spatiotemporal variability
(Duan  et  al.,  2022a).  C-NFSVs  are  under  investigation  for
TC track and intensity forecasting with encouraging prelimi-
nary  results.  It  is  expected  that  future  papers  will  address
the usefulness of C-NFSVs in producing much more realistic
forecasts for high-impact weather and climate events.

 2.1.2.    Targeted observations

Another type of application of CNOPs is to provide the
sensitive area for targeted observations associated with high-
impact weather and climate events by revealing their precur-
sory  disturbance  and/or  fastest-growing  initial  errors.
Although  CNOP-I  has  always  been  used  to  explore  the
OPRs and OGEs and their growth dynamics for some typical
weather  and  climate  events  since  it  was  proposed  in  2003
(Mu et al., 2003), as summarized in section 2.1, its applica-
tions in recent years have been focused on identifying sensi-
tive areas for targeted observations by OPRs and OGEs, espe-
cially for the forecasting of high-impact oceanic–atmospheric
environmental events. For example, CNOP-I was applied to
identify the OPRs for the sudden shifts in the Antarctic cir-
cumpolar  current  transport  through  the  Drake  Passage
(Zhou et al., 2021), the occurrence of large meanders in the
track of the Kuroshio (Liu et al., 2018b), the initiation of the
primary Madden–Julian Oscillation (MJO; Wei et al., 2019),
and the determination of El  Niño types (Duan et  al.,  2018;
Hou et al., 2019, Hou et al., 2023); plus, it was also used to
determine the OGEs for predictions of the oceanic flows in
the  Kuroshio  extension  (Geng  et  al.,  2020; Wang  et  al.,
2020c), and the sea surface height, with a key focus on the
role of mesoscale eddies, as well as forecasts of high-impact
weather  events  such  as  TCs  (Qin  et  al.,  2013; Jiang  et  al.,
2022),  heavy  rainfall  (Yu  and  Meng,  2016, 2022; Zhang
and  Tian,  2022),  and  the  southwest  vortex  (Chen  et  al.,
2021). All these identified OPRs or OGEs provide useful indi-
cations for the sensitive areas for targeted observations associ-
ated with corresponding weather and climate event forecast-
ing. Particularly, motivated by the important role of the meteo-
rological  initial  field  in  air  quality  forecasts,  Yang  et  al.
(2022) made a first attempt at applying CNOP-I to determine
the  sensitive  area  for  targeted  observations  associated  with
improving  PM2.5 forecasts  in  a  heavy  air  pollution  event
that  did  not  have  a  warning  issued  in  time  by  the  Beijing
Municipal  Ecological  and  Environmental  Monitoring  Cen-
ter.  In  particular,  greater  improvements  in  PM2.5 forecasts
were obtained by assimilating targeted observations in the sen-
sitive areas, relative to those after assimilating the additional
observations in the key areas suggested by previous studies.
Therefore, even if the strategy of targeted observation was ini-
tially  proposed  for  forecasting  high-impact  weather  and

ocean events,  the study of Yang et  al.  (2022) suggests  that
this strategy, especially when determined by the CNOP-I, is
also useful in greatly improving air quality forecasts.

In  addition,  the  similarities  between  OPRs  and  OGEs
and their application in targeted observations in recent applica-
tions of CNOP-I should be particularly emphasized. Specifi-
cally,  when  oceanic–atmospheric  ENSO  events  and  IOD
events were explored using the CNOP-I method, they were
shown to have similar  OPRs and OGEs in terms of  spatial
variability; plus, their large perturbation values were demon-
strated to often be concentrated within a small  area (Mu et
al., 2014, 2017b; Hu and Duan, 2016). Therefore, when addi-
tional observations are carried out over these areas and assimi-
lated into the initial fields, one can not only improve the accu-
racy  of  the  initial  fields  and  then  decrease  the  prediction
errors, but also detect the precursory signals of the events in
advance,  which  may  substantially  improve  the  forecasting
skill for such events (Mu et al., 2014). It is clear that these
studies  provide  support  for  a  new  approach  in  identifying
the  sensitive  area  for  targeted  observations  by  considering
the similarity between the OPRs and OGEs.

Another  great  advance  in  targeted  observations  is  that
CNOP-I has been applied in several realistic TC field cam-
paigns to determine the observation area of the Fengyun-4A
satellite (FY-4) and locations of dropsondes. From 2020 to
2022, a total of eight field campaigns were implemented by
using  FY-4  and/or  dropsondes  (Chan  et  al.,  2022; Feng  et
al.,  2022; Qin  et  al.,  2023).  Six  TCs,  including  Higos
(202007),  Maysak (202009),  Chan-Hom (202014),  Conson
(2022113),  Chanthu  (202114)  and  Mulan  (202207),  were
observed using FY-4 from the China Meteorological Adminis-
tration  (CMA),  and  simultaneously,  these  TCs  were  also
observed  using  dropsondes  from  Hong  Kong  Observatory.
Particularly,  in  TC  Mulan  from 8  to  10  August  2022  over
the South China Sea, the first ever ground–space–sky observ-
ing system experiment (OSE) of a TC with enhanced observa-
tions,  including  GIIRS  microwave  soundings,  round-trip
radiosondes  and  aircraft-launched  dropsondes,  was  con-
ducted through collaboration between meteorological authori-
ties and research institutes on mainland China with the meteo-
rological  service  in  Hong  Kong.  Furthermore,  these  data
were assimilated in real time into the operational numerical
prediction system of the CMA (Chan et al., 2022). The obser-
vational  and  forecast  results  were  presented  in  “the  CMA
weather conferences”, which demonstrated that assimilating
the  additional  data  collected  in  this  way  shows  a  positive
impact  on  TC  forecasts  of  both  track  and  intensity  (see
Fig.  2),  as  well  as  improves the forecasting skill  for  heavy
rain in southern China.

CNOP-I was also applied to identify the sensitive area
for targeted observations in an oceanic field campaign con-
ducted in summer 2019 for prediction of the vertical thermal
structure in continental shelf seas in the Yellow Sea (Hu et
al.,  2021; Liu  et  al.,  2021).  It  was  found  that  the  sensitive
area is  northeast–southwest-oriented to the northeast  of the
verification  area.  The  associated  targeted  observations
obtained in the field campaign further helped in refining the
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structure  of  the  initial  vertical  thermal  structure,  thereby
greatly improving predictions of the vertical thermal structure
at  a  lead  time  of  7  days.  Liu  et  al.  (2021)  also  extended
CNOP-I to a new application in the field campaign for vertical
thermal structure predictions favorable for recognizing circula-
tion  patterns  and  enhancing  fishing  and  submarine  expedi-
tions.

The above discussion shows that targeted observations
determined by CNOP-I have been transferred from theoretical
studies of OSSEs (observing system simulation experiments)
to OSEs. The use of CNOP-I in these OSEs represents a real-
istic implementation of self-developed targeted observation
technology  in  China  to  support  meteorological  or  oceanic
observational  campaigns  in  order  to  improve  atmospheric
and  oceanic  forecasts.  But  is  there  a  particular  kind  of
weather or climate event that is not sensitive to targeted obser-
vations? A study on the sensitive area for targeted observation
of a heavy rain event in South China in June 2008 attempted
to  answer  this  question  (Huang  and  Meng,  2014).  Specifi-
cally, the authors expressed a perspective that designing a par-
ticular  observation  plan  based  on  an  estimated  target  area
could be unnecessary or useless for heavy rainfall forecasts
when the focus is on forecasting a heavy rain case by using
a piece-by-piece DA targeting strategy. Whether or not such
a  perspective  still  holds  for  most  other  rainfall  cases  may
need further  investigation,  especially  by using the  CNOP-I
approach, which considers the interaction among the region-
dependent uncertainties of the initial field and then automati-
cally determines the most sensitive initial error.

 2.1.3.    Analyses of sensitivities and uncertainties

Sensitivities  to  initial  fields  and  model  parameters  are
one  of  the  reasons  for  prediction  uncertainties.  Studies  on

parametric sensitivity are especially important for the simula-
tion  and  prediction  of  land  surface  processes.  It  is  known
that the parametric errors depicting climate change uncertain-
ties  are  one  of  the  main  model  error  sources  that  severely
influence the prediction skill for land surface processes. Scien-
tists often explore the effects of climate change uncertainties
by superimposing on the climatology a time-invariant pertur-
bation without consideration of the effect of climate variabil-
ity. However, Sun and Mu (2013) superimposed the parame-
ter  perturbations  featured  by  CNOP-P  to  explore  the
response of the uncertainties in land surface process predic-
tion and found that the resultant perturbations provided a pos-
sible climate change scenario including the changes in both
the climatology and climate variability possibly induced by
the frequency of occurrence of extreme events. Furthermore,
these perturbations, compared with the traditional way, have
helped to fully address the impact of climate change on the
simulated net  primary production and soil  carbon in  China
(Sun and Mu, 2013, 2017a). Sun and Mu (2017b) also demon-
strated that the use of CNOP-P reveals the possibility of the
terrestrial ecosystem as a carbon sink in China. In addition,
Sun and Mu (2017a) applied CNOP-P to identify a subset of
physical parameters whose accuracy was much more impor-
tant  in  reducing  prediction  uncertainties.  They  applied  this
new strategy to simulating and predicting the net primary pro-
duction  in  arid  and  semi-arid  regions  over  the  Tibetan
Plateau and revealed significant effects of nonlinear interac-
tions  among  parameters  on  projecting  the  sensitivity  of  a
group of parameters, which compensated for the deficiencies
of traditional approaches and also greatly helped in determin-
ing the parameter set that should be preferentially calibrated
by additional observations to improve the simulation and pre-
diction (Sun et al., 2020). These works indicate that the idea

 

 

Fig. 2. (a) The track forecasts before (red) and after (green) assimilating additional observations, and the best track
(black) of TC Mulan, which is often derived using the available observations and represents a subjectively smoothed
representation of a TC’s location and intensity over its lifetime. (b) The forecast errors of the maximum wind speed
(Vmax) before (blue) and after (red) assimilating additional observations. The forecast was initialized at 0600 UTC 8
August  2022  with  a  lead  time  of  36  h.  [Reprinted  from  (Chan  et  al. 2022),  Reproduced  with  permission  from
Springer Nature].

AUGUST 2023 DUAN ET AL. 1527

 

  



of  targeted  observation  for  improving  initial  fields  can  be
extended  to  calibrate  the  values  of  sensitive  parameters  by
digesting additional observations.

Another  factor  that  causes  prediction  uncertainties  is
the boundary condition error; and Wang and Mu (2015), as
mentioned in section 2, proposed the CNOP-B approach to
explore  the  boundary condition errors  that  have the  largest
impact  on forecast  uncertainties.  Furthermore,  they applied
CNOP-B  to  an  ocean  ecosystem  model  and  identified  two
nutrient errors at the bottom boundary of the water column.
These  two  nutrient  errors  have  similar  spatial  pattern  but
opposite signs, and have significantly asymmetric nonlinear
effects on the simulated deep chlorophyll maximum [which
is  a  ubiquitous  phenomenon  in  oligotrophic  waters  in  the
global ocean (Navarro and Ruiz, 2013)]. More recently, Ma
et al. (2022) further used the CNOP-B method to investigate
the effect of Arctic Sea ice uncertainties (as a boundary) on
the  prediction  of  atmospheric  Ural  blocking  events.  They
found  that  the  use  of  CNOP-B  allows  one  to  identify  the
uncertainties  in  the  sea-ice  concentration  of  the  Greenland
Sea, Barents Sea, and Okhotsk Sea as the dominant contribu-
tors  to  the  forecast  uncertainties  of  strong  and  long-lasting
Ural  blocking  formation  in  four  pentads.  Furthermore,  the
local characteristics of perturbation distribution provided by
these  boundary  uncertainties  are  able  to  provide  the  area
where  the  additional  observations  should  be  preferentially
implemented  for  the  sea-ice  concentration  in  order  to

improve the forecasting skill of Ural blocking events.

 2.2.    Nonlinear  local  Lyapunov  exponents:  applications
to estimate the predictability time and yield ensemble
forecasting members

As  mentioned  in  section  2,  one  approach  to  obtaining
the optimal initial perturbations is to evaluate the evolution
of initial perturbations during the time period before the pre-
scribed  time  interval  of  prediction.  The  vectors  derived
from the Lyapunov exponents are the representatives. The tra-
ditional Lyapunov vectors and relevant Lyapunov exponents
are established under the framework of linear systems and,
similar to SVs, limitations exist in revealing the effect of non-
linearity  on  predictability.  To  address  this  issue,  Ding  and
Li (2007) proposed the nonlinear local Lyapunov exponent
(NLLE) method, theoretically inherited from the Lyapunov
exponent  in  a  linear  framework.  The  NLLE  measures  the
growth  rates  of  initial  errors  averaged  over  a  given  time
period in a nonlinear dynamical system and can be used to
quantify  an  averaged  predictable  time  of  the  system.  Over
the  past  decade,  the  NLLE  has  been  applied  to  determine
the predictable times of weather and climate on various time
scales.  For  different  reference  states  of  weather  or  climate
events  of  concern,  their  respective  analogous  states  can  be
extracted from the historical observational time series accord-
ing to a locally dynamical analogs algorithm proposed by Li
and Ding (2011), and then the error growth between the refer-
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Fig.  3. A  diagram of  the  predictable  time  range  of  weather  and  climate  systems  at  various
time scales estimated using the NLLE method. The weather and climate phenomena include
TC track, eastern Pacific oscillation (EP), western Pacific Oscillation (WPO), North Atlantic
Oscillation (NAO), Pacific–North American teleconnection (PNA), Arctic Oscillation (AO),
Antarctic  Oscillation  (AAO),  Blocking  High  (Block),  Madden–Julian  Oscillation  MJO,
monsoon,  Victoria  Mode  (VM),  Indian  Ocean  Dipole  (IOD),  El  Niño–Southern  Oscillation
(ENSO),  Quasi-Biweekly  Oscillation  (QBO),  Pacific  Decadal  Oscillation  (PDO),  and
Atlantic Multidecadal Oscillation (AMO).
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ence states and analogous states can be estimated, with the
predictable time range ultimately being determined according
to  the  spread  of  the  time  when  the  error  growths  are  satu-
rated.  Such  an  idea  has  been  adopted  to  estimate  the  pre-
dictable  time  ranges  of  TC  tracks  (Zhong  et  al.,  2018a, b,
2021),  the quasi-biweekly oscillation (QBO; Shi and Ding,
2012),  the  MJO (Ding  et  al.,  2010, 2011; Lu  et  al.,  2020),
the East Asian summer monsoon (Ai et al.,  2017; Li et al.,
2018), ENSO (Hou et al., 2018a, Hou et al., 2022), and the
Pacific Decadal Oscillation (PDO, Ding et al., 2016). By com-
bining these studies in terms of predictable time, a predictabil-
ity  diagram  ranging  from  synoptic  to  decadal  time  scales
was obtained.  For convenience,  we plot  this  in Fig.  3.  It  is
obvious that the predictable time of weather and climate phe-
nomena  depends  on  their  time  scale,  with  the  predictable
times increasing with the timescale length. This predictability
diagram serves as a useful reference for improving seamless
predictions.

The above studies provide a means to understand how
far  forward  one  can  predict  atmospheric  and  oceanic
motions and associated weather and climate events. Li et al.
(2019)  named  such  predictability  as  “forward  predictabi-
lity ”.  In  fact,  for  a  weather  or  climate  event  that  has  hap-
pened, the back-tracking time with which one can trace it is
also useful for understanding the predictable time and improv-
ing predictions (Mu et al., 2002). This predictable time was
termed  “backward  predictability ”  by  Li  et  al.  (2019).  The
NLLE method was also applied to explore the backward pre-
dictability  and,  eventually,  a  backward  NLLE method  was
developed  to  determine  the  backward  predictability  of
extreme weather and climate events, e.g.,  an extreme high-
temperature event (Li et al., 2019, 2020, 2021a; Li and Ding,
2022). This method can quantitatively provide the maximum
lead  time  for  predictions  of  specific  states  or  extreme
weather  and  climate  events.  In  addition,  to  examine  the
effects of different external forcing (e.g., ENSO events, the
PDO)  on  the  atmospheric  predictability,  a  conditional
NLLE was also introduced to separate the effect of each exter-
nal forcing on the predictability, which can therefore quantita-
tively estimate the relative contribution of each external forc-
ing to  the  predictability  of  the  nonlinear  dynamical  system
(Li and Ding, 2011). Combining these NLLEs may provide
insight into predictability dynamics and the effect of external
forcing, which serves as a reference to evaluate the skillful
lead times of numerical weather forecasting and climate pre-
dictions.

In  addition,  the  vectors  corresponding  to  the  NLLEs
were named the nonlinear local Lyapunov vectors (NLLVs),
which represent a group of vectors of orthogonal directions
in  phase  space  and  have  different  growth  rates  with  time.
NLLVs have been used to yield ensemble forecasting mem-
bers through a hierarchy of models (Feng et al., 2014, 2016;
Hou et al., 2018b). They have been demonstrated as able to
perform better and more reliably than BVs in ensemble fore-
casting  (Feng  et  al.,  2014).  A  comparison  of  the  ensemble
forecasting  skills  of  NLLVs  and  Ensemble  Transform
Kalman  filter  (ETKF)  schemes  suggested  that  the  skill

achieved  by  NLLVs  is  comparable  to  that  made  by  the
ETKF, but the former can be computed far more easily and
with  less  computation  time  (Feng  et  al.,  2014).  Conse-
quently,  NLLVs not  only  have  potential  for  improving  the
ensemble forecasting skill,  but are also easily implemented
in complex models, which shows a potential for application
in operational forecasts.

It  should  be  noted  that  NLLVs  are  different  from  O-
CNOPs as  reviewed in  section 2.1,  although they can both
be applied in ensemble forecasts to address the effect of initial
uncertainties. The former searches for the optimally growing
initial perturbations before the initialization time of the fore-
casts  to  estimate  the  growing-type  perturbations  employed
in the ensemble forecast, whereas the latter directly estimates
the  growing-type  perturbations  during  the  forecast  period.
In other words, one method concerns the lasting effect of his-
torical information on the present state estimation, while the
other directly estimates the present state according to the evo-
lutionary behavior of initial uncertainties during the forecast
period.  Actually,  these  two  kinds  of  information  are  both
important for estimation of the present state and forecasting
of  the  future  state.  It  is  therefore  inferred  that  combining
NLLVs and O-CNOPs may lead to a better ensemble forecast-
ing skill, which is worth investigating in the future.

 3.    New DA algorithms and novel assimilation
approaches to address the combined effect
of initial and model errors

Four-dimensional variational (4DVar) and the Ensemble
Kalman filter (EnKF) are two commonly used DA methods
for  providing high-quality  initial  conditions for  operational
forecasts  (Evensen,  1994; Talagrand,  1997).  A  few  major
operational NWP centers around the world have successfully
applied  4DVar,  EnKF,  or  a  hybrid  of  both,  to  generate
global  and/or  regional  analyses  and/or  reanalyses.  In  terms
of 4DVar, there are still two main challenges that have to be
faced  in  real-time  forecasts:  one  is  the  high  computational
cost, and the other is the lack of a global flow-dependent back-
ground error covariance (BEC) matrix [hereafter referred to
as the “B matrix” (Liu et al., 2011)]. One of the strategies to
address  these  difficulties  is  to  develop  a  four-dimensional
ensemble  variational  (4DEnVar)  algorithm  by  referring  to
the idea of EnKF, which adopts a pure ensemble covariance
predicted dynamically in DA cycles as per the EnKF to pro-
vide  the  flow-dependent  B  matrix  for  the  4DVar  cost,  and
obtains the analysis without tangent linear and adjoint models
(Liu et  al.,  2008; Tian et  al.,  2008).  Thus,  4DVar becomes
much  more  easily  realized  and  economical  owing  to  the
4DEnVar algorithm, and has been applied in some operational
centers  with  high  forecast  skill  (Buehner  et  al.,  2010a, b;
Kleist  and  Ide,  2015; Lorenc  et  al.,  2015).  Despite  the
progress  made  with  this  algorithm,  it  has  not  yet  been
applied operationally in most of the world’s major NWP cen-
ters,  including  the  CMA.  Furthermore,  relevant  challenges
regarding the flow-dependent B matrix and the localization
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for dealing with spurious correlation between the model and
observation still  need to  be  faced,  due  to  limited  ensemble
sizes and the difficulties of reasonably determining the verti-
cal coordinates of satellite radiance observations and the local-
ization radius, for instance. Therefore, one has to develop a
corresponding 4DEnVar algorithm based on specific forecast
models,  such  as  the  CMA  Global  Forecast  System  of
GRAPES  (GRAPES-GFS)  in  China.  Although  the  hybrid
4DVar-EnKF  DA  method  has  gained  great  attention  and
become  a  research  trend,  the  EnKF  itself  is  still  a  popular
DA  method  presently.  Furthermore,  many  studies  have
explored its efficiency and effectiveness in simulations and
predictions of weather and climate. One of the main difficul-
ties in implementing the EnKF is that one has to generate an
ensemble to estimate the forecast-error statistics in perform-
ing  DA.  The  large  ensembles  in  the  EnKF  always  mean
more numerical  integration,  and it  therefore comes at  huge
computational cost. However, the limited ensemble members
are  usually  insufficient  to  represent  the  statistics  of  back-
ground flows at different time scales, especially the slow-vary-
ing  part,  which  can  lead  to  filter  drift  due  to  the  misfit  of
slow-varying  signals  and  a  decrease  in  the  DA  efficiency.
Moreover,  it  is  known  that  model  error  is  another  major
source of forecast  errors (Duan and Zhou, 2013; Duan and
Mu,  2018).  Concerning  the  approaches  to  reduce  model
error effects, one has to improve numerical models by updat-
ing and/or improving physical parameterization schemes, or
increase  their  spatiotemporal  resolutions.  However,  model
errors have diverse sources; moreover, they are nonlinearly
interactive.  Therefore,  it  is  difficult  to  separate  and  debug
them to reduce their negative effects. Although the stochastic
physical perturbations used in ensemble forecasts can partly
consider model errors in the ensemble covariance of 4DEn-
Var, they are unable to reduce the model errors in DA signifi-
cantly. To overcome the above difficulties in using DA, Chi-

nese  scientists  have  invested  great  effort  in  recent  years  in
the  development  of  new  4DVar  and  EnKF  algorithms  and
novel DA approaches in order to reduce model error effects
(see the overview in Table 2).

 3.1.    New 4DVar algorithms and their applications

 3.1.1.    DRP-4DVar DA

Dimension-Reduced-Projection  4DVar  (DRP-4DVar;
Wang et al., 2010; Liu et al., 2011) is one of the representative
4DEnVar methods developed by Chinese scientists. This algo-
rithm uses a limited numbers of ensemble forecasting mem-
bers  to  project  the  optimization  problem  in  model  space
onto a low-dimensional subspace spanned by these ensemble
members;  and the necessary localization is  directly applied
to the ensemble samples based on the leading eigenvectors
of the localization correlation function in zonal, meridional
and  vertical  directions,  rather  than  being  applied  to  the
Kalman Gain matrix as the EnKF does (Wang et al., 2018).
As a result, the DRP-4DVar algorithm is not only time-saving
and easily implemented, but also realizes low dependence in
the B matrix that is applicable either inside the assimilation
window (implicitly) or from window to window (explicitly)
(Wang et al., 2010).

DRP-4DVar  has  been  successfully  applied  in  regional
and global weather forecasts. The high-quality initial condi-
tions produced by this algorithm have led to obvious improve-
ments in predicting regional heavy rainfall and typhoons in
China (e.g., Liu et al., 2009; Zhao et al., 2012). In particular,
a  4DEnVar  DA  system  for  medium-range  numerical
weather  forecasts  in  GRAPES-GFS has  been  developed  in
recent  years  (Zhu  et  al.,  2022).  This  DA  system  has  two
unique advantages.  First,  the system dynamically estimates
the BEC during the DA cycle instead of adopting a pre-esti-
mated  static  BEC as  4DVar  does;  and  second,  an  inflation

Table 2.   Overview of the improvements in DA methods achieved by Chinese scientists.

New DA method Key idea Benefit References

DRP-4DVar Project the optimization problem in model space on a low-
dimensional  subspace  spanned  by  a  limited  number  of
ensemble members

Time-saving, easily
implemented, and includes a
global flow-dependent B matrix.

Wang et al. (2010);
Zhao et al. (2012)

NLS-4DVar Converts the 4DEnVar optimization problem into a nonlin-
ear least-squares problem able to be solved using an effi-
cient Gauss–Newton iteration scheme, and uses a multi-
grid interactive technique to correct multi-scale errors

Time-saving and includes the
nonlinear effects involved in the
cost function

Tian and Feng
(2015); Tian et al.
(2018)

NFSV-DA Solves the tendency perturbation to minimize the distance
between forecasts and observation

Able to address the combined
effect of both initial and model
errors

Tao and Duan
(2019); Duan et al.
(2022b)

Modified EnKF EnOI version: perform IAUs to introduce assimilation incre-
ments calculated by EnOI to model integrations

Able to suppress the effect of
shortwave noise in the
assimilation runs

Wu et al. (2018)

EnKF-MGA  version:  uses  adaptive  multigrid  analysis  to
draw out multiscale information of background error statis-
tics

Adapts to a broader range of
impact radii, shortens the spin-
up period, and yields smaller
assimilation error

Wu et al. (2015)

MSHea-EnKF version: uses long-term simulations and the
frequency  split  technique  to  address  the  low-frequency
background error statistics

Consumes few computer
resources and provides
comparable performances to the
standard EnKF

Yu et al. (2019)
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technique, by which the current predictions of the ensemble
covariance are initiated from the linear combinations of previ-
ous  analysis  increments  produced  by  the  4DEnVar  system
and balanced RPs generated using the static climate BEC, is
utilized  to  alleviate  the  underestimation  problem  of  the  B
matrix during the DA cycle (Zhu et al., 2022). The system,
with  all  its  advantages,  created  resultant  smaller  errors  in
the ensemble mean analysis and better skill in the ensemble
mean forecast than 4DVar in a single analysis and determinis-
tic forecast (Zhu et al., 2022). In fact, the DRP-4DVar embed-
ded in GRAPES-GFS can be used not only to conduct ensem-
ble  DA  independently,  but  also  to  provide  flow-dependent
ensemble  covariance  for  the  4DVar  system,  by  which  an
ensemble 4DVar (En4DVar) DA system for GRAPES-GFS
was additionally established. Furthermore, this En4DVar sys-
tem achieved  a  more  accurate  analysis  and  higher  forecast
skill  than  the  4DVar  in  GRAPES-GFS.  It  should  be  noted
that using the DRP-4DVar (4DEnVar) approach to provide
the  ensemble  covariance  for  the  En4DVar  system  differs
from most of the presently available En4DVar systems inter-
nationally,  which  estimate  the  dynamic  covariance  via  the
EnKF-class  algorithms  or  the  4DVar  approach.  Therefore,
this is a novel algorithm for generating the dynamic ensemble
covariance for En4Dvar.

In  addition  to  its  applications  in  regional  and  global
NWPs, DRP-4DVar has also been applied in the initialization
of  decadal  climate  predictions  by  the  Flexible  Global
Ocean–Atmosphere–Land System model,  gridpoint  version
2  (FGOALs-g2),  developed  by  LASG,  Institute  of  Atmo-
spheric  Physics,  Chinese  Academy  of  Sciences  (He  et  al.,
2017, 2020a, b). Actually, it is one of the world’s first 4DEn-
Var-based  initialization  systems  for  decadal  predictions.
Due to better dynamically coordinated behavior between the
initial  conditions  of  different  component  models  obtained
by DRP-4DVar in the coupled framework of FGOALS-g2,
the tough initial shock problem was greatly alleviated. Fur-
thermore, a much higher decadal prediction skill for surface
air  temperature  anomalies  was  achieved  (He  et  al.,  2017;
Fig. 4). In addition, since DRP-4DVar has the ability to incor-
porate the constraint of air–sea–land interactions during the
process of initialization, a high prediction skill for the PDO,
East Asian summer monsoon, Sahel rainfall, and surface air
temperature  and precipitation  over  the  Tibetan  Plateau  and
Europe  has  also  been  attained  on  interannual  to  decadal
time scales [for further details, readers are referred to He et
al.  (2020a, b),  Li  et  al.  (2021b, c),  and  Shi  et  al.  (2021,
2022)].

Enlightened by these studies, ongoing projects are focus-
ing on investigating the ability of DRP-4DVar for initializing
the  difficult  but  urgent  issue  of  subseasonal-to-seasonal
(S2S)  prediction.  Furthermore,  in  view of  the  great  advan-
tages of DRP-4DVar, it is expected that high skill in S2S pre-
dictions  (e.g.,  the  MJO,  monsoon)  and  related  extreme
events  (e.g.,  extreme  precipitation,  heatwaves)  will  be
achieved. Of course, with these potential applications, more
challenging  problems  for  the  4DEnVar  algorithm  may  be

revealed, and more effort will be needed to optimize the per-
formance of 4DVar in predicting high-impact weather and cli-
mate events.

 3.1.2.    NLS-4DVar DA

The nonlinear least-squares 4DVar (NLS-4DVar) algo-
rithm,  which  was  proposed  by  Chinese  scientists  and
attracted a lot of attention due to its success, is another 4DEn-
Var DA approach. The idea of NLS-4DVar is to convert the
4DEnVar  optimization  problem  into  a  nonlinear  least-
squares  problem  that  can  be  solved  using  an  efficient
Gauss–Newton  iteration  scheme,  and  then  the  nonlinear
effect including the 4DVar cost function can be handled natu-
rally and accurately (Tian and Feng, 2015; Tian et al., 2018).
Based on this, a multigrid NLS-4DVar was further developed
to correct multi-scale errors and enhance assimilation perfor-
mance with reduced computational costs via the multigrid iter-
ative algorithm of NLS-4DVar (Zhang and Tian,  2018).  In
addition, Tian et al. (2021) considered the influence of both
initial and model errors and provided an integral correction
4DVar  algorithm  to  correct  them  simultaneously  and  then
reduce  the  impact  of  model  errors  on  the  performance  of
DA (Zhang and Tian, 2022).

With  the  above  progress  regarding  NLS-4DVar  algo-
rithms, these methods have also been applied in meteorologi-
cal  and  environmental  simulations  and  forecasts.  Specifi-
cally, Zhang et al. (2020a) constructed the SNAP system (i.
e.,  the  system  of  multigrid  NLS-4DVar  DA  for  NWP)  by
embedding  the  multigrid  NLS-4DVar  in  the  Weather
Research  and  Forecasting  (WRF)  model.  This  system  bor-
rows the data processing and observation operator modules
from the operational  Gridpoint  Statistical  Interpolation and
has  the  ability  to  assimilate  multi-source  and  multi-scale
observations from conventional, satellite and Doppler radar
observations (Zhang et al., 2020a, b; Zhang and Tian, 2021).
Furthermore,  Zhang  et  al.  (2021, 2022a)  applied  NLS-
4DVar  to  the  atmospheric  chemical  transmission  model
WRF-CMAQ  (WRF-  Community  Multiscale  Air  Quality
Modeling System) and constructed a joint assimilation system
that can simultaneously optimize initial conditions and emis-
sion fluxes for improving PM2.5 concentration forecasts.  In
addition,  a  Tan-Tracker  global  CO2 flux  inversion  system
was established to optimize the terrestrial and ocean carbon
fluxes  through  assimilating  space-based  and/or  ground-
based  CO2 observations  using  NLS-4DVar,  where  a  novel
dual-pass strategy was proposed for initialization (Jin et al.,
2021). Recently, NLS-4DVar was further upgraded to a big
data–driven  version,  which  provides  superior  performance
to the standard NLS-4DVar without additional computational
costs (Tian and Zhang, 2019).

All  these  applications  of  NLS-4DVar have shown that
this approach greatly reduces the computational cost and per-
forms  well  in  simulations  or  forecasts  for  relevant  climate
events  based  on  realistic  forecast  models.  It  is  therefore
expected that NLS-4DVar will make important contributions
to operational forecast systems, especially in terms of meso-
and  micro-scale  systems,  because  of  its  ability  in  handling
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the strong nonlinearity that exists in these systems.

 3.2.    Improvement of the EnKF scheme

The EnKF, as discussed above, is limited in terms of its
multiscale representation of BEC. To address this issue, Wu
et al. (2015) developed an adaptive compensatory approach
to  improve  the  performance  of  the  EnKF in  the  multiscale
analysis (MSA). The approach adaptively triggers a multigrid
analysis  (MGA) to  extract  multiscale  information  from the
observational residual after the EnKF without inflation is com-

pleted  at  each  analysis  step.  In  this  way,  the  MGA  can
extract multiscale information through refining the analysis
grid; furthermore, it does not introduce any correlation scale.
Particularly,  Wu  et  al.  (2015)  demonstrated  that  the  MGA
also  helps  reduce  the  computational  cost  of  the  original
MSA by 93%; and on the assimilation quality, they illustrated
that the EnKF with the adaptive MGA shows an incremental
improvement over the original EnKF-MSA and the adaptive
EnKF-MGA works for a broader range of impact radii than
the  standard  EnKF  (i.e.,  the  EnKF  with  inflation).  For
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Fig. 4. Taylor diagrams for the 10-year averaged global mean surface air temperature anomaly (SATA), with trend (top) and
without trend (bottom). The first member is shown on the left and the ensemble mean of the first three members is shown on
the right. Each circle represents one model. The radial coordinate means the standard deviation of the SATA normalized by
the standard deviation of the corresponding observed SATA. The red filled circle and red open circle correspond to the DRP-
4DVar and nudging results based on the hindcasts from the FGOALS system, respectively. The red open triangles are for the
20th historical simulation (20C) made by the FGOALS system without any initialization. The violet semicircles represent the
RMSE of the hindcasts, which is also normalized by the observed standard deviation. The correlation between the hindcast
and observation is indicated by the azimuthal variable. For the single member, the simulation from the historical experiment
by FGOALS-g2 is also plotted. Only the models with positive correlations are shown. [Reprinted from (He et al, 2017)].
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extreme  impact  radii,  the  adaptive  EnKF-MGA  causes
much smaller assimilation error than the standard EnKF; par-
ticularly,  it  shortens the spin-up period by 53%. Regarding
the accurate representation of the slow-varying part of back-
ground  error  statistics,  Yu  et  al.  (2019)  designed  a  multi-
timescale, high-efficient approximate EnKF (MSHea-EnKF)
to increase the representation of low-frequency background
error  statistics  and  then  enhance  its  computational  effi-
ciency.  MSHea-EnKF  uses  model  simulations  over  a  long
period to construct background statistics and adopts the fre-
quency split technique to address different time scales; thus,
the  performance  of  coupled  DA  on  large-scale  dynamics
can  be  expected  to  improve.  In  fact,  Yu  et  al.  (2019)
adopted  a  hybrid  coupled  ocean  circulation  model  and
showed that MSHea-EnKF only requires a small fraction of
computing  resources  to  present  a  comparable  performance
to the standard EnKF. This new EnKF scheme allows one to
assimilate multisource observations into any high-resolution
coupled Earth system model that is intractable with current
computing power for weather and climate analysis and predic-
tions.

Given  the  huge  computational  cost  of  the  EnKF,  the
Ensemble  Optimization  Interpolation  (EnOI)  approach  is
also used in realistic numerical forecasts. The EnKF adopts
the B matrix derived from a real-time computed ensemble,
while EnOI just uses a B matrix estimated by a statistic histor-
ical  ensemble  and  can  be  regarded  as  an  approximation  to
the EnKF. However, EnOI has only one forward integration
and  remarkably  reduces  the  computational  costs  in  the
EnKF (Oke et al., 2002; Evensen, 2003), consequently often
being  applied  in  operational  forecasts.  Recently,  Wu  et  al.
(2018)  developed  an  initialization  scheme  for  FGOALS
based on EnOI. In this scheme, the observed oceanic tempera-
ture and salinity profiles from the EN4 dataset produced by
the Hadley Center (Good et al., 2013) and the grid sea surface
temperature (SST) from HadISST (Rayner et al.,  2003) are
assimilated to the model with an assimilation window width
of 1 month. The feature of this initialization scheme is that
it adopts a combination of EnOI and the incremental analysis
update (IAU), where the assimilation increments are calcu-
lated by EnOI and then introduced into the model integration
by  the  IAU.  Compared  with  the  traditional  EnOI  method
that  directly  adds  analysis  increments  to  model  states,  the
EnOI-IAU  approach  gradually  superimposes  the  analysis
increments generated by EnOI to model tendency equations
during the model integration, which enhances constraints of
the assimilation on the time dimension of the model and ulti-
mately greatly suppresses the shortwave noise in the assimila-
tion runs (Bloom et al., 1996). Based on this scheme, Wu et
al. (2018) built a decadal climate prediction system, referred
to as IAP-DecPreS, which was used to conduct decadal pre-
diction  experiments  serving  the  Climate  Prediction  Project
(DCPP; Boer et al., 2016), and showed significant predictive
skill for SST anomalies in the North Atlantic and subtropical
Pacific  (Hu  et  al.,  2023).  In  addition,  Hu  et  al.  (2019)
adopted IAP-DecPreS to study the impacts  of  initialization

approaches and full-field and anomaly assimilation on the sea-
sonal to interannual climate prediction skill (see also Hu et
al., 2020). They demonstrated that the anomaly assimilation
scheme greatly reduced the model initial shocks in predictions
and  thus  improved  the  seasonal  to  interannual  prediction
skill for ENSO and Indian Ocean basin modes.

The  EnKF,  as  emphasized  above,  is  hugely  expensive
in computational terms, but with the advances in computing
capacity,  it  will  benefit  from improved computational  plat-
forms, and we could therefore profit further from these new
EnKF  schemes.  Accordingly,  we  can  easily  achieve  more
ensemble members and make higher quality assimilation. It
may  also  be  possible,  in  the  near  future,  to  have  a  global
EnKF configuration that approaches a higher spatial model
resolution.  As  shown  above,  the  hybrid  4Dvar  and  EnKF
approach makes it possible to implement a global flow-depen-
dent  B  matrix  and  enhance  the  assimilation  performance.
Alongside this, if 4DVar is reasonably combined with more
advanced  and  newly  developed  EnKF  schemes  as  above,
then higher quality initial fields and higher forecasting skill
can be expected.

 3.3.    NFSV-DA and its applications

As  discussed  above,  DA  plays  a  key  role  in  current
weather forecasting and climate prediction. However, the clas-
sical DA methods, as reviewed in sections 3.1 and 3.2, were
mainly  established  on  the  assumption  of  a  perfect  model
with  only  initial  error  effects  considered.  In  recent  years,
Duan and Zhou (2013),  as reviewed in section 2, proposed
the NFSV approach to reveal the model error that causes the
largest prediction error. Actually, the NFSV suggests adopt-
ing a total tendency perturbation for depicting the combined
effect of different kinds of model error sources. Inspired by
the  NFSV,  Duan  et  al.  (2022b)  formulated  an  NFSV  data
assimilation (NFSV-DA) approach for neutralizing not only
the  initial  error  effect  but  also  the  model  error  effect  (Tao
and  Duan  2019; Tao  et  al.,  2020).  It  should  be  noted  that
NFSV-DA, which is different from the above NFSV that con-
sists of a maximum problem that solves the total tendency per-
turbation that  causes the largest  departure from a reference
state,  is  relevant  to  a  minimization  problem that  calculates
the  optimal  tendency  perturbation  to  offset  the  prediction
errors caused by initial and model errors by assimilating a lim-
ited number of observations. This is the exact reason why it
is regarded as a DA approach.

NFSV-DA has been applied to El Niño predictions. Par-
ticularly, it helped to make a breakthrough in alleviating the
effect of the “spring predictability barrier” phenomenon for
ENSO (Tao and Duan, 2019). Results have also shown that
NFSV-DA has great capacity in revealing which type of El
Niño will occur in predictions. Figure 5 provides the predic-
tions for central (CP) El Niño events made by an intermediate
ENSO model (ICM; Zhang et al., 2003) and its corrected ver-
sion by NFSV-DA. [For eastern Pacific (EP) El Niño events,
readers can refer to Fig. 4 in Tao et al. (2020)]. Furthermore,
NFSV-DA  has  been  applied  in  real-time  predictions  of  El
Niño events  in  recent  years.  Together  with  ICM (Zhang et
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al.,  2003),  NFSV-DA  shows  superiority  in  predicting  the
2015/16 strong El Niño event and its subsequent double La
Niña  variability  from  2016  to  2018.  For  the  2019  CP  El
Niño  event,  many  models  predicted  a  strong  EP  El  Niño
event  at  the  beginning  of  the  year;  and  for  the  following
2021/22 La Niña event, quite a few models did not make suc-
cessful forecasts. However, NFSV-DA performs well in pre-
dicting  the  warm  and  cold  phases  and  even  the  types  of
those events (Duan et al., 2022b).

Despite NFSV-DA having been applied successfully in
the  prediction  of  El  Niño,  it  remains  unknown  whether  it
might  be  useful  when  applied  to  the  forecasting  of  other
weather and climate events. Therefore, more weather and cli-
mate phenomena should be investigated to explore the robust-
ness and usefulness of NFSV-DA in improving predictions.
It is anticipated that NFSV-DA could prove highly effective
when applied in numerical weather forecasting and climate
predictions.

 4.    Statistical  approaches  to  improving
prediction skill

In addition to numerical predictions of weather and cli-

mate, significant progress has also been made by Chinese sci-
entists in studies of data-driven predictions made by statistical
approaches,  including  traditional  statistics,  emerging  com-
plex networks, and machine learning (ML). They have identi-
fied the sources of climate predictability via a complex net-
work and conducted prediction experiments on high-impact
climate events. In addition, they have also proposed new sta-
tistical prediction methods for achieving high levels of fore-
casting skill.  Besides these advances,  the progress made in
the use of ML in climate predictions is also summarized in
this section.

 4.1.    An  approach  to  identify  sources  of  climate
predictability  considering  the  impact  of  climate
memory

In the past few years, a number of studies have been car-
ried out to explore the possible relationships between climate
patterns/variables  of  concern  and  external  forcing,  as  well
as the dynamical mechanisms of different interactions of cou-
pled systems, but little attention has been paid to the effects
of climate memory. In view of the potential mix of different
predictable sources, neglecting the effects of climate memory
may induce  uncertainties  in  the  subsequent  climate  predic-

 

 

Fig. 5. The winter SST pattern of central Pacific (CP) El Niño in the (a) observations, (b) ICM predictions and (c) NFSV-
ICM predictions,  where  the  lead  time is  six  months.  [Reprinted  from (Tao and  Duan,  2019),  © American  Meteorological
Society. Used with permission].
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tion. In order to quantify the effects of climate memory and
increase the prediction skill,  Yuan et  al.  (2014) proposed a
strategy  for  identifying  predictable  sources  [also  see  Yuan
et al. (2019)]. Specifically, this strategy adopts the recently
proposed fractional integral statistical model, which is a gener-
alized version of the classical stochastic climate model pro-
posed by Hasselmann (1976), to decompose a given climatic
time series into the memory part M(t) and the residual part
ε(t); and then, by calculating the variance explained by M(t),
the  climate  memory  effects—in  other  words,  the  contribu-
tions  of  climate  memory  to  predictability—can  be  quanti-
fied. Regarding the residual part ε(t), the strategy can further
use a variance decomposition method to extract the relatively
slow-varying covariance matrix, which may contain signals
related to external forcing and dynamical interactions of multi-
ple climate processes; and in this way, different predictable
sources on multiple time scales can be obtained.

With the above strategy, Nian et al. (2020) analyzed the
seasonal  predictability in observational  monthly surface air
temperatures  over  China  from  1960  to  2017.  They  found
that the climate memory component, as expected, contributes
to a large portion of the seasonal predictability in the tempera-
ture  records;  and  after  removing  the  memory  component,
the  residual  predictability  stems  mainly  from  teleconnec-
tions,  where  the  residual  predictability  is  closely  related  to
SST anomalies in the eastern tropical Pacific and the northern
Indian Ocean in summer. It is obvious that the strategy and
its application to the seasonal predictability of surface air tem-
perature provides a new way to estimate climate predictabil-
ity, and more importantly, by employing this strategy, the dif-
ferent predictability sources can be better recognized. Mean-
while, it is also necessary to emphasize the different climate
memories  over  the  corresponding  temporal  scale  since  the
long-term persistence of some climate variables [i.e., precipi-
tation (Yang and Fu, 2019)] is process dependent. It is obvious
that these predictability sources can be regarded as the predic-
tors to predict the relevant climate phenomenon by a statistical
model  or,  as  recently  popular,  a  deep  learning  model.  It  is
therefore expected that this strategy to identify the predictabil-
ity sources can be further used to carry out real predictions
and improve prediction skill.

 4.2.    Complexity-based forecasting of climate phenomena

The  novel  complexity-based  technique  of  climate  net-
works  has  been  developed  rapidly  and  implemented  to
advance our knowledge of the Earth system, especially with
respect  to  extreme  climate  events.  The  key  idea  of  the
method  is  that  the  locations  in  a  longitude–latitude  spatial
grid  can  be  regarded  as  nodes  in  the  climate  network  and
the  connections  between  the  time  series  at  different  nodes
are recognized as edges (Tsonis and Roebber, 2004; Donges
et al., 2009). Using statistical filtering facilities, one can inter-
actively filter for nodes and edges, thereby highlighting struc-
tures of particular importance for matter and energy flow in
the climate system, which promotes a deeper understanding
of climate science and even substantially improves the predic-
tion of high-impact climate events [see the review by Fan et

al. (2021)]. Here, we highlight the applications of climate net-
works in improving the forecasting skill of the Indian summer
monsoon.

The Indian summer monsoon is an intense rainy season
lasting from June to September and delivers more than 70%
of the country’s annual rainfall. Despite the development of
sophisticated statistical and dynamical climate models, a rela-
tively long-term and reliable prediction of the Indian summer
monsoon rainfall (ISMR) has remained a challenging prob-
lem. Fan et al. (2022) constructed a series of dynamical cli-
mate networks based on the global near-surface air tempera-
ture (NSAT) field, showing that there are characteristics of
the  directed  and  weighted  climate  networks  that  can  serve
as efficient long-term predictors for ISMR forecasting. Specif-
ically,  they  uncovered  the  Southwest  Atlantic  as  a  hotspot
for predicting the Indian precipitation, due to the strong con-
nection through the chain of main atmospheric circulation pat-
terns. Based on this, Fan et al. (2022) developed a climate net-
work prediction method for ISMR, which produced a forecast-
ing skill  of  0.54 (Pearson correlation)  with  a  5-month lead
time  by  using  the  previous  calendar  year’s  data  (Fig.  6).
This level of skill is higher than that of operational forecast
models, even with quite a short lead time. It is clear that the
climate  network  method  can  capture  useful  predictors  for
ISMR and provide much higher forecast skill. This network
approach  allows  the  all-India  rainfall  to  be  predicted,  as
well as the rainfall in different homogeneous Indian regions,
which is crucial for the country’s agricultural production.

The  climate  network  approach  was  also  successfully
applied  to  improving  the  forecasting  skill  for  IOD  events
(Lu et al., 2022) and exploring the weakening tropical circula-
tions (Geng et al.,  2021), the relationship between the CO2

concentration and surface air temperature (Ying et al., 2021),
and the transportation and clustering of PM2.5 concentrations
(Ying et al., 2022). Although the application of climate net-
works has achieved successes in climate predictions, improve-
ment of the prediction level is still limited.

A  promising  methodology  that  has  emerged  in  recent
years and could play an instrumental role in demystifying cli-
mate  change is  ML.  Due to  the  enhanced data  availability,
ML has been shown to have ability in making up for the defi-
ciency of traditional forecast methods. Owing to the limited
prediction skill for the IOD achieved by traditional dynamical
and statistical methods, Ling et al. (2022) developed a multi-
task deep learning model named MTL-NET to challenge the
current IOD prediction skill. The deep learning method can
extend  reliable  IOD  predictions  out  to  7  months  ahead,
which exceeds the original 3 months in the traditional predic-
tions.  By  investigating  the  precursors  revealed  by  MTL-
NET  for  strong  IOD  events,  their  studies  also  help  us
deepen  our  understanding  of  the  nonlinear  mechanisms  of
the  IOD,  and  of  the  complex  climate  variabilities  in  the
Earth system. Aside from helping enhance prediction levels,
ML  may  also  have  potential  in  reducing  computational
costs in ensemble forecasts. Since the computational cost of
large  ensemble  members  is  always  a  challenge  in  the  real-
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time  operational  chain  of  ensemble  forecasts,  Duan  et  al.
(2022a) applied deep learning to learn the dependence rela-
tionship of the control runs and ensemble forecasting mem-
bers, and then expected to produce efficient ensemble mem-
bers  in  real-time  forecasts.  The  numerical  results  showed
that the ensemble forecasts made by the deep learning models
could  not  only  reduce  the  computational  costs  in  real-time
forecasts,  but  also  achieve  comparable  forecasting  skill  to
the original ensemble forecast system. Therefore, the applica-
tion of ML may be a new research topic of interest in ensemble
forecasting.

As an emerging method of climate prediction, climate net-
works show ability in identifying spatial  information about
cooperativity and provide a new possibility of revealing pre-
cursory signals of climate or even entire causal chains of cli-
mate phenomena. However, some latent processes and rela-
tionships of climate systems cannot yet be identified by the
climate network method, and the relevant climate prediction

level  is  still  limited  from  this  perspective.  However,  the
promise  of  ML  is  superior  to  that  of  the  climate  network
method  in  learning  the  complex  nonlinear  relationships  in
data.  Therefore,  combining  the  climate  network  method
with ML may have the potential to deepen the physical under-
standing and improve the prediction skill of weather and cli-
mate events.

 4.3.    The year-to-year increment prediction approach and
its role in enhancing climate predictions

Fan et al. (2008) proposed the year-to-year increment pre-
diction approach (referred to as the DY approach) based on
the  quasi-biennial  oscillation  of  climate  variables.  The  DY
includes  both  the  predictand  and  predictor  in  the  year-to-
year  increment,  rather  than  only  the  predictor  in  the
anomaly of the traditional climate prediction approach. The
DY  can  then  amplify  the  signal  against  that  in  traditional
anomaly prediction; plus, it can capture multi-timescale vari-
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Fig.  6. (a)  The  correlation  coefficients  between  observed  All  Indian  Rainfall  Index  (AIRI)  in  summer  (June–September,
JJAS) and the network predictor during the training period (1950–88) for all nodes. The regions with statistical significance
exceeding  the  95%  confidence  level  (Student’s t-test)  are  marked  in  black.  The  region  with  the  maximal  correlation
coefficient  is  marked  by  the  yellow  box.  (b)  Scatterplot  between  the  observed  JJAS  AIRI  and  the  optimized  network
predictor  (i.e.,  only  using  the  NSAT  information  in  the  yellow  box)  in  the  training  period.  (c)  Scatterplot  between  the
observed JJAS AIRI and the predicted AIRI during the forecast period (1989–2019). [Reprinted from (Fan et al., 2022), ©
American Meteorological Society. Used with permission].
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abilities  of  climate  variables.  As  a  result,  the  DY not  only
shows high predictive skill for the interannual variability of
climate variables, but also reproduces their interdecadal vari-
ability (Fan et al., 2008). In recent years, Fan et al. (2012),
based on the DY, combined dynamic model predictions and
further proposed a new idea of statistical–dynamical hybrid
climate prediction approach. Furthermore, the idea was real-
ized in predictions of summer precipitation over China (Liu
and Fan, 2012; Dai and Fan, 2021), spring drought in China
(Tian and Fan, 2022), the summer extreme precipitation fre-
quency  in  the  Yangtze  River  basin  (Tian  and  Fan,  2020),
and  the  number  of  landfalling  TCs  in  summer  in  China
(Tian and Fan, 2019). Moreover, satisfying levels of predic-
tion  skill  benefiting  from available  predictors  and,  particu-
larly, from inheriting the contribution of dynamical coupled
model  predictions  for  large-scale  atmospheric  circulation
anomalies, were achieved not only for mid–high-latitude cli-
mate  systems such as  Arctic  sea  ice,  Eurasian snow cover,
and SST over the North Pacific, but also tropical climate sys-
tems  such  as  ENSO  and  SST  over  the  tropical  Indian  and
Atlantic oceans.

It is clear that the DY, which uses the difference in a vari-
able between the current year and preceding year, is able to
provide  higher  prediction  skills  of  the  interannual  and
decadal  component,,  as  compared with  traditional  anomaly
prediction, especially when it is inherited from the superiority
of a dynamically coupled model in predicting large-scale cir-
culations.  Evidently,  this  further  illustrates  the  great
strength of the statistical–dynamical hybrid approach in cli-
mate predictions. Consequently, it can be expected that this
approach will play a more important role in climate predic-
tions,  especially  in  the  forecasting  of  high-impact  climate
events.

 5.    Predictability  dynamics  associated  with
meso- to small-scale weather systems

The  above  sections  have  reviewed  the  advances  made
in predictability studies associated with the identification of
optimally growing errors and the development of dynamical
and statistical methods to reduce the prediction uncertainties
of weather and climate. In fact, in the evolution of prediction
errors, the errors of different variables and at different tempo-
ral and spatial scales interact with each other, and thus reveal-
ing the key factors that have large impacts on these prediction
uncertainties and identifying the dominant scale responsible
for error growth will have important implications on improv-
ing  the  forecast  skill  for  weather  and  climate  events.  In
recent  years,  Chinese  scientists  have  made  contributions
towards  understanding  these  aspects  of  error  growth  and
multi-scale interactions, particularly in meso- to small-scale
weather  systems,  which  range  from  several  meters  to
around 2000 km spatially, and from seconds to days tempo-
rally, which in particular can encompass certain types of disas-
trous weather events, such as squall lines, supercells and con-
vection (Orlanski, 1975). Such studies can help us to optimize

observational networks, assimilation algorithms, and model
configurations in order to maximize the forecasting accuracy
for  various types of  disastrous weather  and climate  events.
Studies on meso- to small-scale error growth carried out by
Chinese scientists can be summarized into two aspects, as fol-
lows:

One aspect is the identification of the key factors for an
accurate  forecast  through  either  ensemble-based  sensitive
analysis or DA. Studies show that the formation of a squall
line in China is most sensitive to the initial moisture, with a
linear response to the initial moisture error (Wu et al., 2013),
which  is  different  from  the  nonlinear  response  in  squall
lines over the United States. The mesoscale convective vortex
(MCV) has been demonstrated to be a key factor in producing
extremely  heavy  rainfall  in  China  (Yu  and  Meng,  2016;
Zhang  et  al.,  2022b),  and  operational  models  carry  larger
uncertainty  in  predicting  the  behavior  of  MCVs  owing  to
the juxtaposition between the direction of MCV movement
and the low-level  jet  (Zhang and Meng,  2018).  In  addition
to MCVs, the predictability of TCs has also been examined,
revealing  that  the  TC  intensity  forecast  error  is  closely
related  to  the  intensity  (as  well  as  the  rate  of  intensity
change) of TCs and a number of environmental parameters
(Zhang et al., 2014). A TC’s intensity and precipitation fore-
cast  largely depends on the initial  relationship between the
TC intensity and location and the initial steering flow (Zhu
et al., 2016).

Another aspect is to understand the error growth dynam-
ics.  A  pioneering  study  on  storm-scale  predictability
revealed  that  small  yet  realistic  uncertainties  in  boundary
layer  and  topographical  influence,  or  errors  much  smaller
than what can be observed, may lead to considerable differ-
ences in the initiation and subsequent organization and inten-
sity  of  the  mesoscale  convective  system and  its  embedded
supercells  (Zhang  et  al.,  2015, 2016).  The  forecast  errors
remained nearly unchanged even when the initial  perturba-
tions were reduced by 90%, which suggests an inherently lim-
ited predictability for lead times as short as 3–6 h.

The  relative  importance  of  errors  at  different  spatial
scales has been a hot topic in error growth dynamics. There
has been disagreement on whether small-scale or large-scale
error is more important. The former claims that small-ampli-
tude,  small-scale  errors  will  grow  up-scale,  saturate  at
smaller  scales,  and  transfer  to  progressively  larger  scales,
while  the  latter  claims that  errors  grow up-amplitude at  all
model-resolved  scales  simultaneously  rather  than  transfer
up-scale.  This  disagreement  is  actually  equivalent  because
the  important  scale  should  be  determined  by  the  dominant
error growth dynamics. In this regard, how sensitive the fore-
cast  error  growth  is  to  different  amplitudes  and  horizontal
scales  of  flow-dependent  unobservable  initial  uncertainties
in a high-resolution convection-permitting ensemble forecast
on a real high-impact rainfall event in China was examined
by Zhang et  al.  (2022b).  The dominance of  up-scale rather
than up-amplitude error growth was demonstrated under the
regime  of  k−5/3 power  spectra  by  revealing  the  inability  of
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large-scale errors to grow until the amplitude of small-scale
errors has increased to an adequate amplitude. An apparent
transfer  of  the  fastest  growing scale  from smaller  to  larger
scales  with  a  slower  growth  rate  at  larger  scales  was
revealed. In addition, initial perturbations with different struc-
tures have different error growth features at larger scales in
different variables in a regime transitioning from the k−5/3 to
k−3 power law; and the error growth featured by the CNOP-
type initial error mentioned in section 2 tends to be more up-
amplitude  relative  to  perturbations  of  the  NCEP’s  Global
Ensemble Forecast System or sub-grid-scale perturbations.

 6.    Summary and discussion

The advances made in predictability studies in China in
recent years have been reviewed in this article, mainly from
the  perspectives  of  new  methods  for  targeted  observation,
DA,  ensemble  forecasting,  and  statistical  predictions  and
their applications to weather and climate predictions. The arti-
cle emphasizes the great progress made in studies of nonlinear
optimal perturbations for targeted observations and ensemble
forecasting, and a family of CNOPs are presented, including
CNOP-I  for  measuring the initial  error  effect,  CNOP-P for
estimating  the  model  parametric  error  effect,  CNOP-B  for
evaluating uncertainties in boundary conditions, and CNOP-
F  for  investigating  the  combined  effect  of  various  model
errors (see section 2). Among the many studies on the sensi-
tive areas for targeted observations associated with the fore-
casting  of  high-impact  ocean–atmosphere  environmental
events,  several  field  campaigns  for  the  forecasting  of  TCs
and predictions of the vertical thermal structure in continental
shelf seas in the Yellow Sea are highlighted to demonstrate
the real-time implementation of the CNOP-I technique inde-
pendently developed in China to support meteorological and
oceanic  observational  campaigns  for  the  needs  of  weather
and  climate  predictions.  In  ensemble  forecasting,  CNOPs
have been found to be able to represent initial uncertainties
for  TC track forecasting through orthogonal  CNOP-Is,  and
to estimate model parametric uncertainties and even the com-
bined  effect  of  different  kinds  of  model  errors  for  convec-
tion-scale  forecasting  using  CNOP-P  and  -F,  respectively
(see section 2.1). Another approach, the NLLE, was proposed
to quantify the predictable time of atmospheric and oceanic
motions and associated weather and climate, and a predictabil-
ity  diagram from daily  weather,  through monthly,  sub-sea-
sonal, and seasonal, to interannual and even decadal climate
phenomena  was  achieved  for  reference  in  improving  the
level of seamless predictions. Furthermore, the vectors fea-
tured  by  the  NLLE (i.e.,  NLLVs),  were  applied  to  provide
the lasting effect on initial uncertainties of the ensemble fore-
casting  of  past  information,  which  favored  a  better  perfor-
mance and higher reliability than that of traditional BVs and
presented a skill comparable to the ETKF; due to the features
of NLLVs in the form of easier realization and less computa-
tional  time,  this  approach prevails  over  the ETKF in terms
of  ensemble  forecast  performance  (see  section  2.2).  All

these methods on targeted observation and ensemble forecast-
ing indicate that fully considering the nonlinear effects is nec-
essary in order to correct prediction biases. Concerning DA,
new  4DVar  and  EnKF  algorithms  for  initialization  and
approaches to reduce the combined effect of model and initial
errors  are  reviewed  (see  section  3).  These  new  algorithms
include  DRP-  and  NLS-4DVar,  both  of  which  are  focused
on  4DEnVar  to  address  the  challenge  of  4DVar  posed  by
the  flow-dependent  B  matrix  and  computational  efficiency
problem (see section 3.1). The former algorithm projects the
optimization problem in model space onto a low-dimensional
subspace,  using  a  particular  localization  technique  to  deal
with spurious correlation between the model field and obser-
vations, and was eventually embedded in GRAPES-GFS to
provide  flow-dependent  ensemble  covariance  for  4DVar,
which  ultimately  led  to  the  establishment  of  an  En4DVar
DA system for GRAPES-GFS. This latter algorithm focuses
on another perspective to treat the nonlinear effect included
in  the  4DVar  cost  function  by  considering  nonlinear  least-
squares. It furthermore uses a multigrid interactive technique
to  correct  multi-scale  errors  and  reduce  the  computational
cost, which was eventually applied in quite a few models to
address  relevant  practical  concerns.  Besides  4DVar  algo-
rithms,  Chinese  scientists  have  also  developed  new  EnKF
schemes to reduce the computational  costs  and address the
multiscale  background  error  statistics  (see  section  3.2).
With the newly-developed adaptive EnKF-MGA, it is possi-
ble to address the multiscale information from the observa-
tional residual by adaptively triggering an MGA, thus produc-
ing  smaller  assimilation  errors  and  shortening  the  spin-up
period; but with the further improved MSHea-EnKF, it is pos-
sible to use long-term simulations and the frequency split tech-
nique to derive the low-frequency background error statistic
and use less computing resource to provide comparable per-
formances to the standard EnKF.

Along with the development of dynamical  forecasting,
statistical approaches are also thriving in terms of acquiring
high levels of forecast skill for high-impact weather and cli-
mate events (see section 4). Chinese scientists have continued
to invest great effort in exploring new and effective statistical
forecasts methodologies. Particularly, based on the classical
stochastic  climate  model,  a  fractional  integral  statistical
model was built to quantify the predictable sources and help
us to purposely design better prediction models (see section
4.1).  Meanwhile,  the  network theory,  which emerged from
complex system science, has been recently applied in climate
science, providing critical predictive power for scientific chal-
lenges, which is sometimes even superior to dynamical fore-
casts  (see  section  4.2).  Chinese  scientists  have  also  tried
using  ML  algorithms  to  improve  IOD  predictions  and
increase the efficiency of ensemble forecasting in real-time
forecasts,  eventually  showing  that  ML  has  the  ability  to
make up for the deficiency of traditional  forecast  methods.
In addition, different from the traditional statistical prediction
approach based on climate anomalies,  a year-to-year incre-
ment  prediction  approach  (DY  approach)  was  proposed,
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which amplifies the climate signal and shows high prediction
skill  for  interannual  and  interdecadal  climate  variabilities
(see section 4.3). Nevertheless, the dynamical and statistical
approaches have their respective advantages and limitations.
How  to  effectively  combine  the  dynamical  and  statistical
approaches and improve the forecast skill may be a prospec-
tive research subject in need of further study.

It  is clear that Chinese scientists have made some out-
standing contributions  to  the  development  of  new methods
that address the forecasting uncertainties for weather and cli-

mate.  To facilitate  readers,  we summarize in Table 3 these
contributions  from the  perspective  of  targeted  observation,
DA, ensemble forecasting, and statistical predictions. In this
context, the hot topics related to the importance of errors at
the  different  spatial  scales  of  meso-  to  small-scale  weather
systems  are  also  highlighted  (see  section  5).  An  apparent
transfer  of  the  fastest  growing scale  from smaller  to  larger
scales  with  a  slower  growth  rate  at  larger  scales  was
revealed under the regime of k−5/3 power spectra, and the dom-
inant role of up-scale rather than up-amplitude error growth

Table 3.   Main advances in predictability studies in China in recent years.

Forecast strategy Old methods and limitations New methods and advantages Highlights of applications

Targeted
observation

Methods: SV, ETKF
Limitations:
● Linear approximation to nonlin-

ear initial error growth
● Only adaptive to initial field

● CNOP-I: identifies the sensitive area
for targeted observation using nonlin-
ear model

● CNOP-P: reveals sensitive parameters
for targeted observations

● CNOP-B: recognizes the most sensi-
tive perturbation on boundary condi-
tion

● CNOP-F (NFSV): discloses the most
disturbing tendency error

● Field campaigns of targeted observa-
tions for forecasting of TCs and pre-
dictions of vertical thermal structure
in continental shelf seas in the Yellow
Sea:  assimilating  targeted  observa-
tions obviously improves the forecast
skill  of  concerned  state  (Qin  et  al.,
2023; Chan  et  al.,  2022; Liu  et  al.,
2021)

Data assimilation Method: 4DVar
Limitations:
● High computational costs
● Lack of global flow-dependent

B matrix
● Insufficient handling of nonlin-

ear effect involved in cost func-
tion

● Only  addresses  initial  error
effect

● DRP-4DVar:  includes  global  flow-
dependent B matrix and reduces com-
putation time

● NLS-4DVar: addresses the nonlinear
effect  including  the  cost  function
and  saves  on  computational
resources

● NFSV-DA: deals with combined eff-
ect  of  initial  errors  and  different
kinds of model errors

● Predictions of decadal climate using
DRP-4DVar: one of the world’s first
4DEnVar-based  initialization  sys-
tems  for  decadal  predictions  and
greatly alleviated tough initial shock
problem (He et al., 2017)

● Establishment of a Tan-Tracker glo-
bal CO2 flux inversion system using
NLS-4DVar (Jin et al., 2021)

● Predictions  of  El  Niño  types  using
NFSV-DA: achieves a lead time of 6
months to recognize El Niño type in
ENSO predictions (Tao et al., 2020;
Duan et al., 2022b)

Method: EnKF
Limitations:
● High computational cost
● Inaccurate  representation  of

background flow statistics at
different time scales

● EnKF-MGA: improves  performance
of  EnKF  in  multiscale  analysis  and
reduces computational cost

● MSHea-EnKF: increases representa-
tion  of  low-frequency  background
error statistics and enhances computa-
tional efficiency

Ensemble
forecasting

Method: SVs
Limitations:
● Linear approximation to nonlin-

ear error growth
● Only adaptive to estimation of

initial uncertainties

● O-CNOPs: represents fully nonlinear
initial perturbations for ensemble fore-
casting

● C-NFSVs: estimates combined effect
of initial and model errors

● TC  track  forecasting  through  O-
CNOPs  and  convection-scale  fore-
casting  using  CNOP-P  and  -F:
achieves higher forecast skill than tra-
ditional  methods  (Huo  et  al.,  2019;
Wang  et  al.,  2020b; Xu  et  al.,
2022b)

Method: BVs
Limitation: non-orthogonality of

BVs

● NLLVs:  provides  mutually  orthogo-
nal initial perturbations for ensemble
forecasts

● Provision of a predictability diagram
from  daily  weather,  through
monthly,  subseasonal  and  seasonal
to  interannual  and  even  decadal  cli-
mate  phenomena  using  the  NLLE
(present study)

Statistical
prediction methods

Traditional  statistical
approaches  cannot  recognize
complex  and  nonlinear  rela-
tionships in data very well.

● Climate  networks  and  ML  algo-
rithms:  compensate  for  deficiencies
of traditional dynamical and statisti-
cal forecast methods

● Prediction of Indian summer monsoon
rainfall  using  climate  network:
achieves  much  higher  prediction
skill than that of operational forecast
models, even with quite a short lead
time (Fan et al., 2022)

● Predictions  of  IOD  using  ML  algo-
rithm:  extends  reliable  IOD  predic-
tions  out  to  7  months  ahead,  which
exceeds the original 3 months in tradi-
tional predictions (Ling et al., 2022)
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was demonstrated. The error growth featured by the CNOP-
I error was shown to be more up-amplitude in a regime transi-
tioning from the k−5/3 to k−3 power law, relative to perturba-
tions  of  the  NCEP’s  Global  Ensemble  Forecast  System  or
sub-grid-scale  perturbations.  These  studies  contribute  to
addressing the controversy regarding whether small-scale or
large-scale  error  is  more  important  in  meso-  to  small-scale
weather  systems.  Furthermore,  understanding  the  error
growth  dynamics  can  help  to  optimize  observational  net-
works, assimilation algorithms, and model configurations in
order to maximize the forecasting accuracy of various disas-
trous weather events.

Besides  these  above  advances,  there  studies  have  also
been  conducted  on  controversial  issues  of  predictability,
and  these  should  be  mentioned  here.  For  example,  on  the
issue  “whether  the  approaching  limit  of  predictability  for
TC track prediction is near or has already been reached”, pro-
posed  by  Landsea  and  Cangialosi  (2018),  Zhou  and  Toth
(2020)  and  Yu  et  al.  (2022)  used  TC  forecast  data  in  the
Atlantic basin and in the western North Pacific basin, respec-
tively, to explore what the past trend was in the reduction of
TC forecast track error, and how such errors may be further
reduced  in  future  decades.  Both  showed  that  the  improve-
ments  of  TC track forecast  skills  in  the past  10 years  have
mainly  been  due  to  the  reduction  in  analysis  errors  rather
than  the  reduction  in  the  error  growth  rate.  They  also
pointed out that if the current trend continues, a further two-
day improvement in TC track forecast lead times may be pro-
jected for the coming 20 years in the Atlantic basin, and 15
years in the western North Pacific basin. It is therefore clear
that we have not yet reached the limit of TC track predictabil-
ity in both basins.

Although great progress has been made in the predictabil-
ity  and  even  practical  forecasting  of  weather  and  climate,
there are greater requirements for numerical weather forecast-
ing and climate prediction related to disaster prevention and
national  security  with  the  development  of  society  and  the
progress  of  technology.  For  example,  it  is  necessary  to
strengthen the development of seamless forecasting systems
from  traditional  weather  scales  to  decadal  climate  scales,
the development of coupled forecasting systems from single
atmosphere to multi-spherical interactions between the atmo-
sphere, sea, land and ecology, and the coordinated develop-
ment of an observation–assimilation–model forecasting sys-
tem instead of an independent observation system or numeri-
cal  forecast  model.  These  requirements  undoubtedly  pose
new  challenges  to  the  study  of  predictability  for  high-
impact weather and climate events, particularly in the study
of targeted observation, DA, and ensemble forecasting with
the consideration of multiple temporal and spatial scales and
their associated interactions. Although international communi-
ties have developed various strategies to deal with the above
challenges and made progress—particularly, a few NWP cen-
ters have established weather forecasting and climate predic-
tion systems that are able to address some of the new chal-
lenges to certain extent—their DA systems, ensemble forecast-

ing systems and other technologies are not open to the pub-
lic. Therefore, in order to meet the new requirements in fore-
casting and predictions in China, Chinese scientists must try
to  study  multi-scale  error  analysis  theory  for  dealing  with
multi-scale problems in DA and ensemble forecasting, estab-
lish new theories that accurately quantify the sensitivities in
observations and uncertainties, improve current hybrid assimi-
lation techniques or develop new filtering techniques based
on  current  particle  or  mixed  filtering  algorithms,  and  con-
struct  new  models  that  incorporate  the  advantages  of  big
data analysis and artificial intelligence. It is expected that a
much advanced numerical forecasting system can be estab-
lished in China in the near future, thus addressing the chal-
lenges of numerical weather forecasting and climate predic-
tions  due  to  the  effects  of  multiple  temporal  and  spatial
scales and their interactions.
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