

B physics a probe to hunt for new physics

Wei Wang 2014 Working Month on the Frontier of Physics 20/05/2014

Content

- What is B physics?
- B experiments
- Why B physics?
- A few B decay modes
- Factorization in Effective field theory Heavy-Quark-Effective-Theory, SCET

B Physics

- Bound states of b and light quarks
 - mesons (B^-, B^0, B_s)
 - baryons $(\Lambda_b, \Xi_b^-, \Xi_b^0)$

- Heaviest stable bound states in QCD ($\geq 5.28 \text{ GeV}$)
- Rich spectrum, many decay channels
- Important source of information about CP violation, CKM parameters, new physics

B Experiments

B factories

- B factories, Starting in 1999, asymmetric collision
- KEKB (Belle), e⁺ energy 8GeV, e⁻ energy 3.5GeV
- PEP-II (BaBar), e⁺ energy 9GeV, e⁻ energy 3. 1GeV

Integrated luminosity of B factories

Super B and LHCb

- Super B(Italy)
- Super KEKB (Belle II)
- LHC-b@CERN
- • • • •

SuperKEKB luminosity projection

Prospect: B experiments in future

Experimental prospect is very promising!

Why B physics?

What is the origin for matter-antimatter asymmetry in our universe?

Quark mixing and CKM

Mass Eigenstates \neq Weak Eigenstates \Rightarrow Quark Mixing

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

CKM Matrix

Complex matrix described by 4 independent real parameters

$$\begin{split} & \underset{V_{CKM} \approx}{ \begin{array}{c} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho + i\eta) \\ & -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ & A\lambda^3 (1 - \rho + i\eta) & -A\lambda^2 & 1 \\ \end{array}} } \\ & \underset{J \approx}{ \begin{array}{c} \text{CP Violation:} \end{array}} & J = Im \left(V_{ik} V_{jk}^* V_{j\ell} V_{i\ell}^* \right) \neq 0 \\ & \\ & J \approx A^2 \lambda^6 \eta & \eta = 0 \Rightarrow \text{ no CPV from SM} \end{split}} \end{split}$$

CP violation (matter-antimatter asymmetry) in the <u>kaon-system</u> → prediction of third quark family

<u>1973</u>: M. Kobayashi, T. Maskawa, theoretical mechanism for CP-violation in the Standard Model requires b- and t-quark

M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

before J/Psi was discovered in 1974

2001: experimental proof of CP violation in <u>B-system</u> by B-factories (BELLE & BaBar)

B. Aubert et al. (BaBar Collab.), Phys. Rev. Lett. 87, 091801 (2001). K. Abe et al. (Belle Collab.), Phys. Rev. Lett. 87, 091802 (2001).

2008: Nobel prize in physics

" for the discovery of the **origin of the broken symmetry** which predicts the existence of at least three families of quarks in nature"

CP violation in K,D,B

- In Kaon CP violation is about 0.2%
- In D meson decays, CPA at 1% (LHCb and CDF) is argued to be New physics.
- In B decays $sin(2\beta) = 0.672!$ Large CPA

Good test of SM from B physics.

Where is New Physics?

Physics Goal

NP found

- determine the FV and CPV couplings of the NP Lagrangian
- look for the effect of heavier states

NP not found

- look for any deviation
 from the SM signaling
 NP in the multi-TeV
 energy region
- probe regions of the NP parameter space

Tree-level B decays: extract SM parameters

B->pi lnu

Hadronic Form factors:

Lattice QCD: pion has a soft momentum

Light-Cone Sum Rules: pion has to move fast

3σ Tension in $|V_{ub}|$

B->Dlnu for V_{cb}

 ν_{τ}

B->Dlnu

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \frac{4G_F V_{cb}}{\sqrt{2}} \left[\left(1 + V_L \right) \left(\bar{c} \gamma_\mu P_L b \right) \left(\bar{\tau} \gamma^\mu P_L \nu_\tau \right) + V_R \left(\bar{c} \gamma_\mu P_R b \right) \left(\bar{\tau} \gamma^\mu P_L \nu_\tau \right) \right. \\ &+ S_L \left(\bar{c} P_L b \right) \left(\bar{\tau} P_L \nu_\tau \right) + S_R \left(\bar{c} P_R b \right) \left(\bar{\tau} P_L \nu_\tau \right) \\ &+ T_L \left(\bar{c} \sigma^{\mu\nu} P_L b \right) \left(\bar{\tau} \sigma_{\mu\nu} P_L \nu_\tau \right) \right] + H.c., \end{aligned}$$

$$S_L = 0, S_R = -m_b m_\tau \tan^2 \beta / m_{H^{\pm}}^2$$

22

Charged Higgs to B->D\tau\nu

$$R(D^{(*)}) \equiv \frac{\Gamma(B \to \bar{D}^{(*)}\tau^+\nu_{\tau})}{\Gamma(B \to \bar{D}^{(*)}\ell^+\nu_{\ell})}.$$

Decay amplitudes

$$H_{s} = H_{s}^{\rm SM} \left[1 + (S_{R} \pm S_{L}) \frac{q^{2}}{m_{\tau} (m_{b} \mp m_{c})} \right],$$

where the upper sign is for $B \to \bar{D}\tau^+\nu_{\tau}$ and the lower is for $B \to \bar{D}^*\tau^+\nu_{\tau}$.

Theory
$$R_{\rm SM}(D) = 0.297 \pm 0.017,$$

 $R_{\rm SM}(D^*) = 0.252 \pm 0.03.$

Table 2. Results of the $B \to \overline{D}^{(*)}\tau^+\nu_{\tau}$ analysis from $BABAR^{13,14}$, showing for each mode the number of signal events, the ratio $R(D^{(*)})$, the branching fraction, and the signal significance.

Decay mode	$N_{ m signal}$	$R(D^{(*)})$	$\mathcal{B}(\%)$	Significance (σ)
$\begin{array}{c} B^+ \to \bar{D}^0 \tau^+ \nu_\tau \\ B^0 \to D^- \tau^+ \nu_\tau \\ B^+ \to \bar{D}^{*0} \tau^+ \nu_\tau \\ B^0 \to D^{*-} \tau^+ \nu_\tau \end{array}$	314 ± 60 177 ± 31 639 ± 62 245 ± 27	$\begin{array}{c} 0.429 \pm 0.082 \pm 0052 \\ 0.469 \pm 0.084 \pm 0053 \\ 0.322 \pm 0.032 \pm 0022 \\ 0.355 \pm 0.039 \pm 0021 \end{array}$	$\begin{array}{c} 0.99 \pm 0.19 \pm 0.13 \\ 1.01 \pm 0.18 \pm 0.12 \\ 1.71 \pm 0.17 \pm 0.13 \\ 1.74 \pm 0.19 \pm 0.12 \end{array}$	4.7 5.2 9.4 10.4
$\begin{array}{c} B \to \bar{D}\tau^+\nu_\tau \\ B \to \bar{D}^*\tau^+\nu_\tau \end{array}$	$\begin{array}{c} 489 \pm 63 \\ 888 \pm 63 \end{array}$	$\begin{array}{c} 0.440 \pm 0.058 \pm 0042 \\ 0.332 \pm 0.024 \pm 0018 \end{array}$	$\begin{array}{c} 1.02 \pm 0.13 \pm 0.11 \\ 1.76 \pm 0.13 \pm 0.12 \end{array}$	6.8 13.2

Table 1. Results of the preliminary $B \to \bar{D}^{(*)}\tau^+\nu_{\tau}$ analysis from Belle⁴³, showing for each mode the number of signal events, the ratio $R(D^{(*)})$, the branching fraction, and the signal significance. Where given, the third uncertainty is due to the branching fraction $\mathcal{B}(B \to \bar{D}^{(*)}\ell^+\nu_{\ell})$.

Decay mode	$N_{ m signal}$	$R(D^{(*)})$	$\mathcal{B}(\%)$	Significance
$B^+ \to \bar{D}^0 \tau^+ \nu_\tau$	$98.6^{+26.3}_{-25.0}$	$0.70^{+0.19}_{-0.18}{}^{+0.11}_{-0.09}$	$1.51^{+0.41}_{-0.39}{}^{+0.24}_{-0.19}\pm0.15$	3.8
$B^0 \to D^- \tau^+ \nu_\tau$	$17.2^{+7.7}_{-6.9}$	$0.48\substack{+0.22}_{-0.19}\substack{+0.06\\-0.05}$	$1.01^{+0.46}_{-0.41}{}^{+0.13}_{-0.11}\pm0.10$	2.6
$B^+ \to \bar{D}^{*0} \tau^+ \nu_{\tau}$	$99.8^{+22.2}_{-21.3}$	$0.47\substack{+0.11\\-0.10}\substack{+0.07}$	$3.04^{+0.69}_{-0.66}{}^{+0.40}_{-0.47}\pm0.22$	3.9
$B^0 \to D^{*-} \tau^+ \nu_\tau$	$25.0^{+7.2}_{-6.3}$	$0.48\substack{+0.14}_{-0.12}\substack{+0.06}_{-0.04}$	$2.56^{+0.75}_{-0.66}{}^{+0.31}_{-0.22}\pm0.10$	4.7

Theory

 $R_{\rm SM}(D) = 0.297 \pm 0.017,$ $R_{\rm SM}(D^*) = 0.252 \pm 0.03.$

Flavor Changing Neutral Current: hunt for/constrain New Physics

How do we study B decays?

Separation of long-distance and short-distance physics: EFT

Effective field theories

The weak and strong interactions of the SM contain many disparate scales t

b

С

 Λ_{QCD} _

u, d

s .

The good success of the SM -> low energy predictions must be insensitive to the highenergy theory

Effective theory approach:

identify small expansion parameters.

• $m_{u,d,s,c,b} \ll m_{W,Z,t}$ Effective theory of • $\Lambda_{QCD}/m_{b,c} \ll 1$ Heavy quark • frective theory

Weak interactions

Fermi 4-quark interaction

Radiative corrections

 $C(\mu/M_W)$ = Wilson coefficient containing the contributions of the hard loop momenta

Can be computed in perturbation theory at any order in $\alpha_s(M_W)$ — Matching

Typical diagrams contributing to matching beyond tree level

Flavor changing Electroweak penguin operators

$$O_{7} = \frac{\mathrm{em}_{b}}{8\pi^{2}} \bar{s} \sigma^{\mu\nu} (1 + \gamma_{5}) bF_{\mu\nu} + \frac{\mathrm{em}_{s}}{8\pi^{2}} \bar{s} \sigma^{\mu\nu} (1 - \gamma_{5}) bF_{\mu\nu}$$

$$O_{9} = \frac{\alpha_{\mathrm{em}}}{2\pi} (\bar{l}\gamma_{\mu}l) (\bar{s}\gamma^{\mu}(1 - \gamma_{5})b),$$

$$O_{10} = \frac{\alpha_{\mathrm{em}}}{2\pi} (\bar{l}\gamma_{\mu}\gamma_{5}l) (\bar{s}\gamma^{\mu}(1 - \gamma_{5})b)$$
No tree level flavor changing neutral current in SM

$$B_{d,s} \rightarrow \mu^+ \mu^-$$

 $\langle 0|\bar{d}\gamma_{\mu}\gamma_{5}b|\bar{B}(p)\rangle = if_{B}p_{\mu},$

V-A: proportional to lepton mass!

sensitive to Scalar/Pseudo-Scalar interaction

 $Q_S = (\bar{b}\gamma_5 s)(\bar{\mu}\mu), \qquad Q_P = (\bar{b}\gamma_5 s)(\bar{\mu}\gamma_5\mu).$

Data:

$$\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-) = \left(2.9^{+1.1}_{-1.0}\right) \times 10^{-9}, \quad \text{LHCb [2]}, \\ \overline{\mathcal{B}}(B_s \to \mu^+ \mu^-) = \left(3.0^{+1.0}_{-0.9}\right) \times 10^{-9}, \quad \text{CMS [3]},$$

_

_

SM: 3-Loops

$$\overline{\mathcal{B}}_{s\mu} \times 10^9 = (3.65 \pm 0.06) R_{t\alpha} R_s = 3.65 \pm 0.23,$$

B→K*I+I- & NP

1. V/A interference: forward-backward asymmetry

 $Tr[VpAp] \sim cos(\theta_K)$

2. q² dependence:

 $A-B/q^2$

Comparison of data and theory

Comparison of data and theory

1304.6325 LHCb

B_{d,s} mixing

Bs->J/psi phi