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Factorization Theorem

dσ = H
∏

i

(
⊗

Ji )
⊗

SdV

H: Hard part which can be calculated perturbatively

Ji : Collinear part which is independent of explicit process

S : Soft part which can be cancelled or absorbed into jet
functions

Gao-Liang Zhou Investigation on Proof of Factorization Theorem at Operator Level



Proof of QCD Factorization at Operator Level
Summary

Conventional Proof of QCD Factorization
Cancelation of Effects of Initial or Final State Interactions
Deformation of Integral Path
Grammer-Yennie Approximation and Effective Theory
Factorization

Physical Picture

There is at most one physical parton which participate in the hard
collision at leading order. (Scalar polarized collinear gluons?)

Coherence effects between different jets can be absorbed into
universal(process independent) functions. (Soft gluons?)
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Infrared Power counting

(G. Sterman, Phys. Rev. D17, 2773(1978))
For each Feynman diagram that contributes to the hard collision
process at leading order:

There is at most one physical parton that connect to the hard
subgraph

There can be arbitrary number of scalar polarized collinear
gluons connecting to the hard subgraph in covariant gauge

Except for the hard subgraph, correlations between different
jets can be caused only by soft gluons

Soft gluons do not connect to the hard subgraph
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Soft Gluons and Grammer-Yennie Approximation

(p + q)2 → p2 + 2p+q− Aµ → A−δµ−

Aµ(x + xn) → n · A(n̄ · (x + xn), n · x , ~x⊥)n̄µ

where,

n̄µ =
1√
2
(1,−~n)
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Glauber Gluons

For (p+, p−, p⊥) ∼ Q(1,Λ 2
QCD Q), qµ ∼ ΛQCD , we have:

2p+q− ∼ q2 − 2 ~p⊥ · ~q⊥
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Glauber Gluons and Pinch Singularities

pP

↑ q

P̄ p̄

There are pinch singular points produced by the two propagators:

(p − q)2 + iǫ ≃ p2 − 2p · q − ~q⊥
2 + iǫ

(P − p + q)2 + iǫ ≃ (P − p)2 − 2(P − p) · q − ~q⊥
2 + iǫ
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Cancelation of Effects of Final State Interactions in

Drell-Yan Process

Drell-Yan process:
p1 + p2 → l+l− + X (1)

We have:

dσ

dq2dy
=

4πα2Q2
q

3s

∫
d
2~q⊥

(2π)4
Hµν 1

q2
(
qµqν

q2
− gµν) (2)

where q denotes the total momentum of the lepton pair,
y = 1

2 ln q
+/q−, Qq is the electric charge of the active quark.

Q =
√

q2 ≫ ΛQCD is the hard energy scale of the process.
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Cancelation of Effects of Final State Interactions in

Drell-Yan Process

Hµν(q) =
∑

P,p,k

Φ∗(P + k ,P − k)Φ(P + p,P − p)

∫
d
4xe−iq·x

〈
P + k , P − k |

Ω†(−∞)e iHQCDx
0

Jµ(~x)e−iHQCDx
0

Ω(∞)

Ω†(∞)Jν(~0)Ω(−∞)|P + p, P − p
〉

where Φ is the wave function of initial packet, Jµ(~x) is the
electromagnetic currant in Schrödinger picture.

Ω(t) = e iHQCDte−iHfreet

HQCD is the Hamiltonian of QCD, Hfree is the free Hamiltonian of

hadrons.
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Cancelation of Effects of Final State Interactions in

Drell-Yan Process

According to the unitarity of Ω(t), we have:

Hµν(q) =

∫
d
4xe−iq·x

〈
p1p2|Ω†(−∞)

e iHQCDx
0

Jµ(~x)e−iHQCDx
0

Jν(~0)Ω(−∞)|p1p2
〉

We rewrite the hadronic tensor in interaction picture and have:

Hµν(q) =
∑

X

∫
d
4xe−iq·x

〈
p1p2|Ω†

0(−∞)U†
QCD(x

0,−∞)JµI (x)|X
〉

〈
X |JνI (0)UQCD(0,−∞)Ω0(−∞)|p1p2

〉
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Cancelation of Effects of Final State Interactions in

Drell-Yan Process

where
OI (x) ≡ e iH0x

0O(~x)e−iH0x
0

UQCD(t1, t2) ≡ e iH0t1e−iHQCD (t1−t2)e−iH0t2

= T exp{−i

∫ t1

t2

dt(HI )QCD(t)}

Ω0(t) = e iH0te−iHfreet

H0 is the free Hamiltonian of quarks and gluons.
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We first take the substitution:

UQCD(∞,−∞) → UQCD(x
0,−∞)

where,

UQCD(t1, t2) ≡ e iH0t1e−iHQCD(t1−t2)e−iH0t2

= T exp{−i

∫ t1

t2

dt(HI )QCD(t)}
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Thus, we should make the substitution:

(2π)4δ(4)(
∑

j

lj) → (2π)3δ(3)(
∑

j

~lj))
e−i(

∑
j l

0
j
±iǫ)x 0

(−i)(
∑

j l
0
j ± iǫ)

in perturbative calculations.
In the coupling between soft gluons and particles collinear-to-plus, we
take the substitution:

δ(
∑

j l
z

j )e−i(
∑

j l
0
j
±iǫ)x 0

(−i)(
∑

j l
0

j ± iǫ)
=

1√
2

δ(
∑

j l
z

j )e−i(
∑

j l
0
j
±iǫ)x 0

(−i)(
∑

j l
−
j ± iǫ)
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We then take the approximation:

e−i(
∑

j l
0

j
+iǫ)x 0 ≃ e

−i(
∑

j

l̃
+
j√
2
+iǫ)x 0

δ(
∑

j

l3j ) =
√
2δ(

∑

j

l+j −
∑

j

l−j )

≃
√
2δ(

∑

j

l̃+j )

where l̃
µ

j = (l +
j , lj , ~lj⊥) for l

j is collinear-to-plus, l̃j = (0, lj , ~lj⊥) for lj is

soft.
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One see that singular point of l−j in Glauber region that locate in upper
or lower half plane can only be produced by the other end of lj .

If the other end is jet with large minus momentum, then one can
deform the integral path of l−j to avoid the Glauber region

If the other end is jet collinear to plus, then lj does not affect the
factorization theorem.
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(∂µ − n · A(n̄ · (x + xn), n · x , ~x⊥)n̄µ) (xn) = Yn (∂
µ)Y †

n (xn)

where

Yn(xn) ≡ P exp(ig

∫ 0

−∞

dsn · A(n̄ · (x + xn) + s, n · x , ~x⊥))
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Effective Theory

LΛ ≡
∑

nµ

L(0)
n + Ls

=
∑

nµ

i ψ̄
(0)
n (6∂ − ig 6A(0)

n )ψ
(0)
n

+
∑

nµ

1

2g2
tr
{
([∂µ − igA

(0)µ
n , ∂ν − igA

(0)ν
n ])2

}

+i ψ̄s(6∂ − ig 6As)ψs

+
1

2g2
trc{[∂µ − igAµs , ∂

ν − igAνs ]
2}

Gao-Liang Zhou Investigation on Proof of Factorization Theorem at Operator Level



Proof of QCD Factorization at Operator Level
Summary

Conventional Proof of QCD Factorization
Cancelation of Effects of Initial or Final State Interactions
Deformation of Integral Path
Grammer-Yennie Approximation and Effective Theory
Factorization

Hard Vertex

ΓµQ =
∑

n,n̄·p,...,m,m̄·p′

ΓµQ(Yn(ψ̂
(0)
n,x)n̄·p , . . . ,Ym(∂

m⊥ − ig Â(0)m⊥
m,x )m̄·p′Y †

m)(x)

where

ψ̂(0)
n,x(xn) = W (0)†

n,x (xn)ψ
(0)
n (xn)

(∂µ − ig Â(0)µ
n,x ) = W (0)†

n,x (∂µ − igA(0)µ
n )W (0)

n,x

W (0)
n,x (xn) ≡ P exp(ig

∫ 0

−∞

dsn̄ · A(0)
n (n · (x + xn) + s, n̄ · x , x⊥))
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At leading order in ΛQCD/Q

ΓµQ is multi-linear with ψ̂
(0)
n and Â

(0)
m

For each direction nµ, ψ̂
(0)
n and Â

(0)
n do not both appear in ΓµQ

simultaneously

ΓµQ can rely on soft gluons only through the Wilson lines Yn,

Y
†
m,. . .
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We then have

Hµν(q) =

∫
d
4xe−iq·x

〈
p1p2|Ω†

Λ(−∞)

e iHΛx
0
Γµ(~x)e−iHΛx

0
Γν(~0)ΩΛ(−∞)|p1p2

〉

where

Ω0(t) = e iH
0
Λte−iHfreet

with H0
Λ the free part of HΛ and Hfree free Hamiltonian between

hadrons.
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S =
〈
0|S†(x)S(0)|0

〉

≃
〈
0|S†(0)S(0)|0

〉

= 1

Hµν(q) =
∑

Γ

1

N2
c

∫
dn̄1 · k1
n̄1 · k1

∫
dn̄2 · k2
n̄2 · k2

D(k1, p1)D(k2, p2)

σµνhard (k1, k2, q)
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where

σµνhard (k1, k2, q)

=

∫
d
4xe−iq·x

〈
k1k2|Ω†

Λ(−∞)e iHΛx
0
Γµ(~x)e−iHΛx

0

Γν(~0)ΩΛ(−∞)|k1k2
〉
|
n̄i ·A

(0)
ni

=ψs=As=0
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Effects of Glauber gluons can be absorbed into Wilson lines
for process in which effects of final interactions cancel out

Effective theory in which soft gluons decouple from collinear
particles can be constructed. It is equivalent to QCD in the
level of cross section for processes in which pinch singular
singularities caused by Glauber gluons cancel out.

Operator method based on effective theory is important in
proof of QCD factorization. It exhibits some general aspects
of factorization theorem
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Thank you !
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