

CP Violation Measurements in Wrong-Sign $D^0 \rightarrow K\pi$ Decays

Liang Sun University of Cincinnati

2014 Working Month, May 20, Beijing

Outline

- Motivation & formalism for measuring D-D mixing & CPV
- Experimental status
- LHCb 3fb⁻¹ observations
 - Published in Phys. Rev. Lett. 111, 251801 (2013)
- Interpretation of the LHCb results

Formalism in neutral meson mixing

• Schrödinger equation describing the time evolution:

$$i\frac{\partial}{\partial t}\begin{pmatrix} |P^{0}(t)\rangle\\ |\overline{P}^{0}(t)\rangle \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} M_{11} & M_{12}\\ M_{12}^{*} & M_{22} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12}\\ \Gamma_{12}^{*} & \Gamma_{22} \end{pmatrix} \end{bmatrix} \begin{pmatrix} |P^{0}(t)\rangle\\ |\overline{P}^{0}(t)\rangle \end{pmatrix}$$

• Mass eigenstates can be different from their flavor eigenstates: *CPT* invariance => $M_{11} = M_{22}$, $\Gamma_{11} = \Gamma_{22}$

$$P_{L,H}\rangle = p|P^{0}\rangle \pm q|\overline{P}^{0}\rangle \quad \text{where} \quad \frac{q}{p} = \sqrt{\frac{M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*}}{M_{12} - \frac{i}{2}\Gamma_{12}}}$$
$$x = \frac{\Delta m}{\Gamma} = \frac{m_{H} - m_{L}}{(\Gamma_{H} + \Gamma_{L})/2}, \quad y = \frac{\Delta\Gamma}{2\Gamma} = \frac{\Gamma_{H} - \Gamma_{L}}{\Gamma_{H} + \Gamma_{L}}$$

• If CP is conserved, q and p are real, i.e. |q/p| = 1and $\phi = arg(q/p) = 0$

Mixing of neutral mesons: phenomenology

Motivation in measuring charm mixing & CPV

- $D^0 \overline{D}^0$ oscillation is slow (x, y ~ 1%), and goes through two different mechanisms:
 - Long distance contribution is dominant but hard to predict
 - Short distance contribution is CKM + GIM suppressed. NP might manifest in the loop
 - FCNC processes with up-type quark, complementary to those with down quarks (K or B mesons, already studied with observed CPV)
- Observation of enhanced CPV (>> 1%) in the charm sector would be a clear indication of new physics

Long-distance contribution

Short-distance contribution CKM suppression: *b* GIM suppression: *d*, *s*

Motivation in measuring charm mixing & CPV

- $D^0 \overline{D}^0$ oscillation is slow (x, y ~ 1%), and goes through two different mechanisms:
 - Long distance contribution is dominant but hard to predict
 - Short distance contribution is CKM + GIM suppressed. NP might manifest in the loop
 - FCNC processes with up-type quark, complementary to those with down quarks (K or B mesons, already studied with observed CPV)
- Observation of enhanced CPV (>> 1%) in the charm sector would be a clear indication of new physics

Long-distance contribution

Short-distance contribution NP might manifest in the loop

Charm mixing with $D^{\scriptscriptstyle 0} \to K\pi$

Two-body decays with only tree-level contribution

CPV in charm mixing

 Allowing for CPV, the WS-to-RS ratios are expressed separately for D⁰ and D⁰:

$$- R^{+}(t) = R_{D}^{+} + \sqrt{R_{D}^{+}} y'^{+}t + \frac{(x'^{+})^{2} + (y'^{+})^{2}}{4} t^{2},$$
$$R^{-}(t) = R_{D}^{-} + \sqrt{R_{D}^{-}} y'^{-}t + \frac{(x'^{-})^{2} + (y'^{-})^{2}}{4} t^{2}.$$

Mixing measurements on $R_{D^{\pm}}, x'^{2\pm}$, and y'^{\pm} in D^{\pm} , and look for the differences

$$x'^{\pm} = \left(\frac{1 \pm A_M}{1 \mp A_M}\right)^{1/4} (x' \cos \phi \pm y' \sin \phi)$$
$$y'^{\pm} = \left(\frac{1 \pm A_M}{1 \mp A_M}\right)^{1/4} (y' \cos \phi \mp x' \sin \phi)$$

$$A_M = \frac{|q/p|^2 - |p/q|^2}{|q/p|^2 + |p/q|^2}, \quad \phi = \arg\left(\frac{q}{p}\right),$$

CPV in mixing / interference between mixing and decay

$$A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-}$$

CPV in WS decay
amplitude
(Direct CPV)

Common methods in charm mixing/CPV measurements

- Divide RS and WS events into a number of bins of D⁰ decay time
- In each time bin, the RS and WS signal yields are collected from fits to get the WS-to-RS ratio
 - The WS signal shapes are fixed to the RS ones
- Fit the WS/RS ratio vs. D decay time to extract charm mixing parameters
- Correction to account for (secondary) D* from B decays with mis-assigned decay time
- Search for CPV: separate mixing measurements for D / $\overline{\text{D}}$

History of experimental observations

Ś

- 2006: "Improved constraints" from Belle
- 2007: Evidence for D⁰-D⁰ mixing from BABAR
- 2008: Evidence for D⁰-D⁰ mixing from CDF
- Observation (> 5σ) only when all the above results are combined

D^o mixing @ CDF in 2013

LHCb experiment

- Single-arm forward spectrometer covering the pseudo-rapidity range 2 $<\eta<5$
- Detection of particles containing *b* or *c* quarks

LHCb experiment as a charm factory

• 20x larger charm cross-section than beauty:

$$\sigma(pp \rightarrow b\bar{b}X) = 75 \pm 14 \ \mu b$$

$$[PLB694:209-216]$$

$$\sigma(pp \rightarrow c\bar{c}X) = 1419 \pm 134 \ \mu b$$

$$[arXiv:1302.2864]$$

$$\Rightarrow at 7 \text{ TeV in the LHCb acceptance}$$

The world's largest charm samples!

LHCb detector

LHCb detector

LHCb trigger on hadronic charm decays

Time-integrated fits

TOS: events that meet the hardware trigger requirement

Charge asymmetry in Kπ detection

• In the WS/RS ratio separated by D* charge:

$$\frac{N_{WS}^{\pm}}{N_{RS}^{\pm}} = \frac{N(D^{*\pm} \to [K^{\pm}\pi^{\mp}]_D\pi_s^{\pm})}{N(D^{*\pm} \to [K^{\mp}\pi^{\pm}]_D\pi_s^{\pm})} = R^{\pm}\frac{\epsilon(K^{\pm}\pi^{\mp})}{\epsilon(K^{\mp}\pi^{\pm})}$$

- D* production and soft pion instrumental asymmetries cancel out in the ratio
- Still needed to consider: the non-zero detection asymmetry $A_{k\pi}$: $A_{K\pi} = \frac{\epsilon(K^+\pi^-) - \epsilon(K^-\pi^+)}{\epsilon(K^+\pi^-) + \epsilon(K^-\pi^+)}$

– The efficiency ratio
$$\varepsilon_r^+ = 1/\varepsilon_r^- = \varepsilon(K^+\pi^-)/\varepsilon(K^-\pi^+)$$
 is obtained from dedicated control samples:

$$\frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)} = \frac{N(D^- \to K^+\pi^-\pi^-)}{N(D^+ \to K^-\pi^+\pi^+)} \times \frac{N(D^+ \to K^0_s\pi^+)}{N(D^- \to K^0_s\pi^-)}$$

Charge asymmetry in Kπ detection

independent of decay time

Background from secondary D decays

- D⁰-s from B decays are assigned with wrong decay-time
- Suppressed with requirement on χ²(IP)
- The fraction of this secondary component $f_B^{RS}(t)$ can induce bias $\Delta_B(t)$ in time-dependent WS/RS ratio. The bias is bounded by:

 $0 \leq \Delta_B(t) \leq f_B^{RS}(t) [1 - R_D / R(t)],$

with observed ratio $R^{m}(t) = R(t)[1 - \Delta_{B}(t)]$

- Due to small level of contamination, we can simply assume the maximum bias
- No charge asymmetry observed, contamination assumed to be symmetric in the fit

Background from secondary D decays

- D⁰-s from B decays are assigned with wrong decay-time
- Suppressed with requirement on $\chi^2(IP)$
- The fraction of this secondary component $f_B^{RS}(t)$ can induce bias $\Delta_B(t)$ in time-dependent WS/RS ratio. The bias is bounded by:

 $0 \leq \Delta_B(t) \leq f_B^{RS}(t) [1 - R_D / R(t)],$

with observed ratio $R^{m}(t) = R(t)[1 - \Delta_{B}(t)]$

- Due to small level of contamination, we can simply assume the maximum bias
- No charge asymmetry observed, contamination assumed to be symmetric in the fit

Peaking background

• RS events with both K and π being mis-IDed as each other will be indistinguishable with real WS signals in m(D₀ π_s) fits, and cause

bias in the WS/RS ratio

- The overall effect is well below 1% of WS signals due to tight requirements on PID and M(Kπ) window
- No charge asymmetry observed, contamination assumed to be symmetric in the fit

Time-dependent fit configuration

 The mixing parameters are determined by minimizing: Predicted ratios corrected for the peaking and secondary backgrounds

$$\chi^{2} = \sum_{\tau^{i}} \left[\left(\frac{r_{i}^{+} - \epsilon_{r}^{+} R_{i, \text{ pred}}^{+}}{\sigma_{i}^{+}} \right)^{2} + \left(\frac{r_{i}^{-} - \epsilon_{r}^{-} R_{i, \text{ pred}}^{-}}{\sigma_{i}^{-}} \right)^{2} \right] + \chi^{2}_{\epsilon} + \chi^{2}_{B} + \chi^{2}_{p}$$

Sum over 13 time bins for separately for 2011 and 2012 data, and for TOS and TOS samples

$$\chi_{\epsilon}^{2} = \left(\frac{a_{K\pi} - A_{K\pi}}{\sigma_{A_{K\pi}}}\right)^{2}$$
$$\chi_{p}^{2} = \sum_{j} \left(\frac{p_{j} - P_{j}}{\sigma_{P_{j}}}\right)^{2}$$
$$\chi_{B}^{2} = \sum_{l} \left(\frac{b_{l} - B_{l}}{\sigma_{B_{l}}}\right)^{2}$$

Constraint for detection asymmetry

Constraint for peaking background: Mainly candidates with K, π from D° both being mis-IDed, suppresed by tight PID requirements

Constraint for secondary background

Systematic effects are accounted for in the final fits

WS/RS yield ratio fits

• Fits to the 3fb⁻¹ data for 3 different hypotheses on the CP symmetry

t/τ

Systematics

- Data are divided into independent subsets to check for difference in time-dependence of WS-to-RS ratios
 - The χ² values in the TOS sample, suggest a systematically better consistency than those in the TOS sample
 - The statistical uncertainty of each of the WS-to-RS ratios in the TOS samples is increased by a factor of $\sqrt{17/12}$

LHCb results

Results are consistent with CP conservation

 $A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-}$

From Phys.Rev.Lett. 111 (2013) 251801

Table 1: Results of fits to the data for different hypotheses on the *CP* symmetry. The reported uncertainties are statistical and systematic, respectively.

Direct and	indirect CP violation					
R_D^+ [10 ⁻³]	$3.545 \pm 0.082 \pm 0.048$					
y'^{+} [10 ⁻³]	$5.1 \pm 1.2 \pm 0.7$					
x'^{2+} [10 ⁻⁵]	$4.9 \pm \ 6.0 \ \pm 3.6$					
R_D^- [10 ⁻³]	$3.591 \pm 0.081 \pm 0.048$					
y'^{-} [10 ⁻³]	$4.5 \pm 1.2 \pm 0.7$					
x'^{2-} [10 ⁻⁵]	$6.0 \pm 5.8 \pm 3.6$					
χ^2/ndf	85.9/98					
No dii	ect CP violation					
R_D [10 ⁻³]	$3.568 \pm 0.058 \pm 0.033$					
y'^+ [10 ⁻³]	$4.8 \pm 0.9 \pm 0.6$					
x'^{2+} [10 ⁻⁵]	$6.4 \pm 4.7 \pm 3.0$					
y'^{-} [10 ⁻³]	$4.8 \pm 0.9 \pm 0.6$					
x'^{2-} [10 ⁻⁵]	$4.6 \pm 4.6 \pm 3.0$					
χ^2/ndf	86.0/99					
No CP violation						
R_D [10 ⁻³]	$3.568 \pm 0.058 \pm 0.033$					
$y' = [10^{-3}]$	$4.8 \pm 0.8 \pm 0.5$					
x'^2 [10 ⁻⁵]	$5.5 \pm 4.2 \pm 2.6$					
χ^2/ndf	86.4/101					

From Phys.Rev.Lett. 111 (2013) 251801

Table 2: Detailed fit results. Reported uncertainties and correlation coefficients include both statistical and systematic sources.

Direct and indirect CP violation							
Results			Correlations				
Parameter	Fit value	R_D^+	y'^+	x'^{2+}	R_D^-	y'^-	x'^{2-}
R_D^+ [10 ⁻³]	3.545 ± 0.095	1.000	-0.942	0.862	-0.016	-0.007	0.006
y'^+ [10 ⁻³]	5.1 ± 1.4		1.000	-0.968	-0.007	0.007	-0.007
x'^{2+} [10 ⁻⁵]	4.9 ± 7.0			1.000	0.005	-0.007	0.008
R_D^- [10 ⁻³]	3.591 ± 0.094				1.000	-0.941	0.858
y'^{-} [10 ⁻³]	4.5 ± 1.4					1.000	-0.966
x'^{2-} [10 ⁻⁵]	6.0 ± 7.0						1.000

No direct CP violation						
Results			(
Parameter	Fit value	R_D	y'^+	x'^{2+}	y'^-	x'^{2-}
$R_D \ [10^{-3}]$	3.568 ± 0.066	1.000	-0.894	0.770	-0.895	0.772
y'^+ [10 ⁻³]	4.8 ± 1.1		1.000	-0.949	0.765	-0.662
x'^{2+} [10 ⁻⁵]	6.4 ± 5.5			1.000	-0.662	0.574
y'^{-} [10 ⁻³]	4.8 ± 1.1				1.000	-0.950
x'^{2-} [10 ⁻⁵]	4.6 ± 5.5					1.000

No <i>CP</i> violation					
Re	Correlations				
Parameter	Fit value	R_D	y'	x'^2	
$R_D \ [10^{-3}]$	3.568 ± 0.066	1.000	-0.953	0.869	
y' [10 ⁻³]	4.8 ± 1.0		1.000	-0.967	
x'^2 [10 ⁻⁵]	5.5 ± 4.9			1.000	

Comparison of mixing results

 The current LHCb results are consistent with other results, and provide an update to the previous ones with 1fb⁻¹ 2011 data

Interpretation of the LHCb results

 $\phi = \arg$

• Using only the LHCb results, and with the constraints of:

 $\begin{aligned} x'^{\pm} &= (|q/p|)^{\pm 1} (x' \cos \phi \pm y' \sin \phi) \\ y'^{\pm} &= (|q/p|)^{\pm 1} (y' \cos \phi \mp x' \sin \phi) \end{aligned}$

- The 68.3% C.L. constraints
 - 0.75 < |q/p| < 1.24 for all CPV allowed
 - 0.91 < |q/p| < 1.31 for the case without direct CPV
- The LHCb results contribute in the global fits for $D^0 \overline{D}^0$ mixing

WS/RS ratio versus D^o decay time

- In the case of no DCPV, and x', y', φ being very close to 0
 - The slope of the ratios and differences in the ratios are proportional to y', and (|q/p|-|p/q|) y', respectively
 - Within six decay-times:
 - The ratios vary within $\sim 2x10^{-3}$
 - The differences of the ratios vary within $\sim 0.1 \times 10^{-3}$

In the limit of ||q/p|-1| << 0: $\phi = \tan^{-1}$ A. L. Kagan, M. D. Sokoloff, PRD 80, 076008 (2009)

|q/p| can be constrained with the precision of a few percent at most t'

Global Fit for D⁰ - D⁰ Mixing (allowing for CP violation)

September, 2013

Much improved constraints on |q/p| and φ after the inclusion of the most recent LHCb D mixing/CPV results and CDF D mixing results, as well as the LHCb A_r results (*PRL 112 (2014) 041801*)

Summary

- The WS mixing and CPV results from hadron colliders are presented with unprecedented level of precision
- We now have the observation of D⁰-D⁰ oscillations from one single experiment
- Neither direct CPV or CPV in mixing is observed, being consistent with SM
- The LHCb CPV results are capable of playing an important role in constraining |q/p|

