

Search for Heavy Quarks at ATLAS

Jun Guo

Shanghai Jiaotong University

LHC Mini-Workshop, Zhejiang University, Hangzhou, 2014.11.10

Introduction

- The last missing piece of Standard Model(SM) Higgs boson(125 GeV) was discovered. However, SM still can not explain some questions
 - Mass patterns of quarks and leptons
 - Dark matter and dark energy
 - Matter-antimatter asymmetry
 - Naturalness problem
 -

- Many models beyond SM(BSM) predict heavy quarks:
 - Vector-like quarks(VLQ) are under study: left- and right-handed components transform identically under the SU(2)_L weak isospin gauge symmetry
 - VLQ couples strongly to 3rd generation quarks

Vector-Like Quarks

- Chiral t', b' decay into Wb and Wt 100%, respectively, while VLQ quarks can have up to 3 decay modes
 - T -> Wb, Zt, or Ht
 - B -> Wt, Zb, or Hb
- Plan to cover all decays without assumption on Branching Ratios
 - TT -> WbWb, ZtZt, HtHt, WbZt, WbHt, ZtHt
 - BB -> WtWt, ZbZb, HbHb, WtZb, WtHb, ZbHb
- Various search channels that use final signatures containing exactly one lepton + jets
 - T T -> Ht+X
 - T T -> Wb+X
 - BB -> Wt+X
 - T T/BB -> Zt/Zb+X

VLQ Pair production: T T

VLQ analyses(pair production) at ATLAS

- Lepton+jets:
 - Wt+X(what I am working on):
 - Optimized for BB->WtWt->W(Wb)W(Wb)
 - 1 lepton + MET + \geq 6-8 jets
 - Also sensitive to WtHb, WtZb
 - Ht+X:
 - Sensitive to HtHt, HtZt & HtWb
 - H->bb is dominant
 - Wb+X:
 - Optimized for TT->WbWb, the previous Chiral t' signature
 - 1 lepton + MET + ≥ 4 jets, ≥ 2 bjets
- Zt/Zb+X
- Same-Sign leptons

Final Signatures of Decay Modes

- Dileptonic
 - Very clear signature
 - Relatively low branching fraction
 - Ambiguity in invariant mass reconstruction due to two undetected neutrinos
- Lepton+jets(semileptonic)
 - Clear signature
 - High branching fraction
- Fully hadronic(not probed so far)
 - Busy environment: lots of jets
 - Huge QCD background
 - High branching fraction

Top Pair Branching Fractions

Large Hadron Collider(LHC)

- Proton-proton collider, with design collision energy = 14 TeV
 - Center-of-mass energy: 0.9TeV(2009), 7TeV(2010, 2011), 8TeV(2012)
- Six detectors, two of which are large general purpose detectors
 - ATLAS: balanced performance across sub-systems; excellent jet and E_T^{miss} resolution
 - CMS: high magnetic field(3.8T); excellent tracker and EM calorimeter
- Data collected
 - ~5 fb⁻¹ (2011), 7 TeV
 - ~20 fb⁻¹ (2012), 8TeV

Introduction

Challenge: search signatures at high p_T/E_T

- Electrons/photons: isolated energy in EM Calorimeter(|η|<2.47)
- Muons: combined tracks from ID + MS ($|\eta|$ < 2.0)
- Neutrinos: total missing transverse energy of objects in calorimeter(with muon corrections)
- Jets: total transverse energy of objects in calorimeter

BB->Wt+X

- Search for vector-like heavy down-type quark B in pair production with 8TeV(20fb⁻¹):
 - BB->tWtW->WWbWWb->lepton+v+8jets
 - BB->tWbZ->WWbZb->lepton+v+6jets
- Selection:
 - High p_T isolated lepton(e/ μ); high p_T jets
 - High E_t^{miss},
 - Main variables:
 - HT = $p_T(lepton) + E_T^{miss} + p_T(selected jets)$, # of jets, # of W's
- Challenge:
 - Not easy to remove ttbar+jets due to event topology close to signal
 - Difficult to efficiently reconstruct b' candidate
 - Low xsection of signal: 0.33pb(500 GeV), 0.001(800 GeV)
 - Modeling of high jet multiplicity
 - Large systematics: Jet energy scale, theory model, ...
- Two approaches:
 - Cut-based
 - Using TMVA BDT

BB->Wt+X: W/Z boson tag

- Decay products from VLQ tend to have large transverse momentum
 - Decay products from W/Z could get collinear as $p_T(W/Z)$ gets large, or even merge into one single jet
 - $\Delta R(jet, jet) \approx 2*m_w/p_T(W), \Delta R=sqrt(\Delta \eta^2 + \Delta \phi^2)$

BB->Wt+X: W/Z boson tag

- Single jet W: (decided to drop it, see later slide)
 - $p_{T}(antikt4) > 200 \text{ GeV}$
 - 60 GeV < mass(jet) < 110 GeV</p>

- Di-jet W:
 - $p_T(dijet) > 120 \text{ GeV}$
 - $\Delta R(dijet) < 1.0$
 - 60 GeV < mass(dijet) < 110 GeV</p>

Optimization and Discriminant

- N_{jets} vs N_w after selection(1 lepton; >=6 jets; >=1 bjet) was used in previous search
 - 9-bins was originally used as in the right-hand side plot
 - 12 and 6 bins were also tried
 - H_T cut was optimized for different binning choices
 - Cuts on other variables such as leptonic boson pT, objects relative angles were also tried as well to optimize signal/bkg
- H_T spectrum in different N_W bins(1, >=2) turns out very effective discriminant(expected sensitivity) from recent optimization
 - Currently using H_T in 2 channels(1W, >=2 W's), H_T>800 GeV after trying different HT cuts and N_W binnings

9bins: 6jets: 0W, 1W, >=2W's 7jets: 0W, 1W, >=2W's >=8jets: 0W, 1W, >=2W's

BB->Wt+X: Cut-based

- Previous result @7 TeV was for chiral b'->Wt->lepton+jets
- Discriminant: N_{jets} vs N_W
- Limit setting: CL_s, using LLR = -2log(L_{s+b}/L_b)
- Observed(expected) limit at 95% CL:

 Chiral: m_B > 480(470) GeV

BB->Wt+X: BDT

- B->Wt->WWb makes it extremely hard to reconstruct the invariant mass of B
 - Discrimination between signal and background using H_T , N_{jets} , N_W , etc. are not as good as using mass
- Turned to use Multi-Variate-Analysis(MVA), which combines info from a set of less powerful variables
 - Boosted Decision Tree(BDT) is used
 - Developed by Haijun Yang, Byron Roe and Ji Zhu

BB->Wt+X: BDT

TMVA overtraining check for classifier: BDT 10 xb /Nb (N/1) Signal (test sample) Signal (training sample) Background (test sample) Background (training sample) Kolmogorov-Smirnov test: signal (background) probability = 0.994 (0.46) 1 10 0.8 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 BDT response

- Selection: lepton, jet selection, triangle cut, HT>500 GeV, >=6 jets, >= 1 btag, >=1 W's
- Started with >30 variables and reduce to 12 variables that have high rankings and small correlation among them:
 - Н_т

٠

- # of W's
- # of jets
- E of leading bjet
 - E_Tmiss
- p_T(lepton)
- $\Delta R(lepton, leading b)$
- min∆R(lepton, hadronic W)
- Average ΔR (jet, jet) from dijet W
- pT of leptonic W
- # of bjets
- Mt of leptonic W

BDT training variables

Signal region : cut-based

- These two H_T plots will be used to search for a signal and set limits
- The sensitivity mainly comes from N_W ≥ 2, while N_W = 1 is more useful for constraining systematics

Signal region : BDT

- The BDT spectrum with optimized cut of BDT > 0.3 will be used to search a signal and set limits
- WtWt channel provides the main sensitivity

- Systematics impact common to both cut-based and BDT analyses
- Assume 100% uncorrelated among different systematics
- Total systematics impact: ~30%

Systematic	tŦ	W⊥iets	Diboson	7 ⊥iets	Single top	tīV	QCD	Total	VLB
Systematic	"	w +jets	Dibosoli	Z+jets	Single top	11 V		bkg.	700 GeV
Luminosity	±2.8%	±2.8%	±2.8%	±2.8%	±2.8%	±2.8%	-	±2.8%	±2.8%
JES	±17	±19%	±11%	±15%	±15%	±12%	-	±17%	±4%
JER	±3%	±6%	±14%	±9%	±2%	±1%	-	±6%	±1%
JVF	±3%	±6%	±5%	±4%	±4%	±2%	-	±3%	±2%
b-tagging	±5%	±2%	±1%	±4%	±5%	±5%	-	±5%	±6%
MET	0	±1%	±2%	±4%	±1%	0	-	0	0
<i>tī</i> Theory	+5% -6%	-	-	-	-	-	-	+5%	-
<i>tī</i> reweighting	±16%	-	-	-	-	-	-	±13%	-
tī Parton Shower	±6%	-	-	-	-	-	-	±5%	-
<i>tī</i> PDF	+9%	-	-	-	-	-	-	±7%	-
W+jets norm	-	±59%	-	-	-	-	-	±6%	-
W+jets shape	-	±8%	-	-	-	-	-	±1%	-
Z+jets	-	-	-	±59%	-	-	-	±1%	-
Single Top	-	-	-	-	±48%	-	-	±3%	-
Diboson	-	-	±48%	-	-	-	-	±1%	-
tīV	-	-	-	-	-	±30%	-	±1%	-
Multijet	-	-	-	-	-	-	±50%	±1%	-

signal region: $N_{jets} \ge 6$, $N_{bjets} \ge 1$, $N_W \ge 1$, HT > 800 GeV

Expected Limits

- Limits are set considering different BRs of B->Wt, Hb, Zb, with the constraint that the BR sum of the 3 decays =1
- Red regions are expected exclusions for each signal mass
- BDT analysis has better sensitivity relative to cutbased
- The analysis just got approved last week by the ATLAS Exotics group. Paper draft is being prepared

TT->Ht+X

- Selection:
 - High p_T isolated lepton(e/ μ) , high p_T jets
 - − N_{jets} ≥ 6
 - $N_{bjets} \ge 2$
- Discriminant:
 - H_T, independent from decay mode
- Main background:
 - ttbar+jets, largely affected by b tagging, jet energy scale, modeling of heavy-flavor content

TT->Ht+X

- Split events into 3 channels based on number of bjets to optimize sensitivity:
 N_{bjets}: 2, 3, ≥ 4
- Fit overall scaling factors to tt+light jets and tt+HF to "calibrate" background prediction to data and reduce impact of systematics:
 - 2-tag and 3-tag channels play an important role

ATLAS-CONF-2013-018

- SU(2) doublet: m_T>790 (745) GeV
- SU(2) singlet: m_T>640 (615) GeV

Selection:

- High p_T isolated lepton(e/ μ) , high p_T jets
- $\mathbf{N}_{jets} \ge 4$
- $N_{bjets} \ge 2$
- Hadronic W reconstruction: W_{had}
 - Type-I: single jet, p_T>200 GeV, 60<m<120 GeV
 - Type-II: di-jet, ∆R(j,j)<0.8, p_T>200 GeV, 60<m<120 GeV</p>
 - In case of multiple candidates, choose the one with highest p_T
- Leptonic W reconstruction: W_{lep}
 - Use nominal W mass to constrain neutrino longitudinal momentum

- Further suppression of background using kinematic variables
 - H_T>800 GeV
 - $p_{T}(b_{1}) > 160 \text{ GeV}$
 - $p_{T}(b_{2}) > 80 \text{ GeV}$

- Further suppression of background using angular variables
 - $-\Delta R(lepton,v) < 1.2$
 - $-\min \Delta R(lepton, b_{1,2}) > 1.4$
 - $\min \Delta R(W_{had}, b_{1,2}) > 1.4$

	Selection	Requirements		
	Preselection	One electron or muon		
		$E_{\rm T}^{\rm miss} > 20 \text{ GeV}, E_{\rm T}^{\rm miss} + m_{\rm T} > 60 \text{ GeV}$		
		\geq 4 jets, \geq 1 <i>b</i> -tagged jets		
	loose selection	Preselection		
		$\geq 1 W_{had}$ candidates		
		$H_{\rm T} > 800~{ m GeV}$		
		$p_{\rm T}(b_1) > 160 \text{ GeV}, p_{\rm T}(b_2) > 80 \text{ GeV}$		
		$\Delta R(\ell,\nu) < 1.2$		
	tight selection	loose selection		
		$\min\Delta R(\ell, b) > 1.4, \min\Delta R(W_{\text{had}}, b) > 1.4$		

- Final discriminant: m_{reco}
 - From W_{had} and one b-jet
 - Pairing W_{had/lep} with b-jet to get the smallest absolute difference between the two reconstructed heavy quark masses

ATLAS-CONF-2013-060

Observed(expected) limit at 95% CL:

- Chiral: m_T > 740(770) GeV
- Vector-like singlet T: m_T > 505(630) GeV

TT/BB->Zt/Zb+X

- Selection:
 - High $p_T Z$ boson, which decays leptonically _

 - N_{bjets} ≥ 2 p_T(Z) > 150 GeV
 - H_T > 600 GeV
- Discriminant: m(Zb)
- **Dominant background:**
 - Z+jets
 - ttbar

TT/BB->Zt/Zb+X

Observed(expected) limit at 95% CL:

- T singlet: m_T > 585 GeV
- T doublet: m_T > 680 GeV

TT/BB->Zt/Zb+X

ATLAS-CONF-2013-056

T doublet: m_T > 725 GeV

- Low SM backgrounds:
 - 2 leptons with same charge
 - $N_{bjets} \ge 2$
 - Large MET(> 40 GeV)
 - Large H_τ
- Dominant background:
 - Faked leptons estimated from data-driven method
 - Charge mis-identification, determined from Z events
 - Irreducible diboson(VV), and ttbar+V

ATLAS-CONF-2013-051

ATLAS-CONF-2013-051

Summary

- Tremendous effort has been put into Vector-Like Quarks search in different channels at ATLAS in the last 2 years
- Search strategies are optimized independently for different channels
- Results are being updated with 20fb⁻¹ 8TeV data
 - Wt+X: approved for paper publication
 - Ht+X: pre-approved, will open box soon
 - Zt/Zb+X: paper draft ready, soon to be published
 - Same-sign di-leptons: paper draft ready, soon to be published
- Gain a lot of experience from 7/8 TeV and ramp up for 13 TeV data in 2015

backup

Inner Detector

Calorimeter(Liquid Argon/Tile)

Energy measurement and identification for electrons, photons and jets
 Barrel and Endcaps
 Electromagnetic and Hadronic

- **Full coverage** : $|\eta| < 4.9$
- Fine segmentation in lateral and longitudinal directions of showers(3 longitudinal sections in EM)

Backgrounds		Channel	
Samples	ee	еµ	$\mu\mu$
Charge misidentification	$0.6 \pm 0.1 \pm 0.2$	$0.9 \pm 0.1 \pm 0.3$	—
Fakes	$0.8 \pm 0.4 \pm 0.3$	$0.2\pm0.4\pm0.1$	< 1.1
Diboson			
• WZ/ZZ+jets	$0.3 \pm 0.2 \pm 0.1$	$0.3 \pm 0.1^{+0.4}_{-0.2}$	$0.4 \pm 0.2 \pm 0.1$
• $W^{\pm}W^{\pm}+2$ jets	$0.17 \pm 0.09 \pm 0.05$	$0.3 \pm 0.2 \pm 0.1$	$0.2 \pm 0.1 \pm 0.1$
$t\bar{t} + W/Z$			
• $t\bar{t}W(+jet(s))$	$0.6 \pm 0.2 \pm 0.3$	$1.9 \pm 0.2 \pm 0.6$	$1.3 \pm 0.2 \pm 0.4$
• $t\bar{t}Z(+jet(s))$	$0.18 \pm 0.03 \pm 0.06$	$0.66 \pm 0.05 \pm 0.22$	$0.31 \pm 0.04 \pm 0.10$
• $t\bar{t}W^+W^-$	$0.024 \pm 0.003^{+0.010}_{-0.007}$	$0.072 \pm 0.005^{+0.028}_{-0.020}$	$0.055 \pm 0.004^{+0.022}_{-0.016}$
Total expected background	$2.7 \pm 0.5 \pm 0.4$	$4.4 \pm 0.5^{+0.9}_{-0.7}$	$2.3 \pm 1.2 \pm 0.5$
Observed	3	10	2

Process	Channel				
	ee	еμ	$\mu\mu$		
$b'(400 \text{ GeV}) \rightarrow Wt$	0.11 ± 0.01	0.39 ± 0.02	0.25 ± 0.02		
$b'(600 \text{ GeV}) \rightarrow Wt$	0.30 ± 0.02	0.82 ± 0.03	0.53 ± 0.02		
$b'(800 \text{ GeV}) \rightarrow Wt$	0.37 ± 0.02	1.02 ± 0.03	0.64 ± 0.02		
$b'(1000 \text{ GeV}) \rightarrow Wt$	0.35 ± 0.02	1.11 ± 0.03	0.63 ± 0.02		
$b'(400 \text{ GeV}) \rightarrow Wq$	0.024 ± 0.004	0.082 ± 0.007	0.060 ± 0.006		
$b'(600 \text{ GeV}) \rightarrow Wq$	0.09 ± 0.01	0.25 ± 0.01	0.14 ± 0.01		
$b'(800 \text{ GeV}) \rightarrow Wq$	0.13 ± 0.01	0.32 ± 0.01	0.19 ± 0.01		
$b'(1000 \text{ GeV}) \rightarrow Wq$	0.10 ± 0.01	0.32 ± 0.02	0.20 ± 0.01		

Jet Selection

- Use AntiKt4 jet
- |η|< 2.5
- Pt > 25 GeV
- |JVF| > 0.75
- Remove jet overlapped with e candidate within $\Delta R < 0.2$
- Bad jet event removal

Jet multiplicity after Jet selection

Event cuts

- Exactly one selected lepton
- Reject events with LAr noise burst
- Triangle cut(suppress QCD):
 - e: MET>30 GeV , W m_T>30 GeV
 - μ : MET>20 GeV, MET + W m_T > 60 GeV
- >=6 selected jets(signal region)
- Hadronic W reconstruction:
 - 2 jets within $\Delta R < 1.0$ (open angle : ~ 2*m_w/P_T)
 - Di-jet mass within (70, 100)

• Dominant:

- JES: 17%
- ttbar reweighting(ttH recipe: 9 components): 17%

• Other systs:

- ttbar:
 - PDF: 9%
 - parton shower: Powheg+Pythia vs Powheg+Herwig, 6%
- Lumi: 2.8%
- JER: a few %
- btag: a few %
- QCD: quote conservative 50%

• Theoretical errors:

- ttbar: +5%, -6%
- Wjets, Zjets, diboson: 4 or 5% plus 24% for each additional jet
- Single top: ~5%
- ttbarV: 30%

 ${}^{(a)}H_T = p_T(j_1) + p_T(j_2) + p_T(j_3) + p_T(j_4) + p_T(l) + E_T^{\text{miss}}$

 W_{had}^{typeI} : single merged jet ($p_T > 250$ GeV, $m_j \in [60, 120]$ GeV)

- ► W_{had}^{typell} : two close-by jets ($\Delta R(j, j) < 0.8, p_T > 200$ GeV, $m_{jj} \in [60, 120]$ GeV)
- one lepton (e or mu), $E_T^{\text{miss}} > 20 \text{ GeV}$, $E_T^{\text{miss}} + m_T(W) > 60 \text{ GeV}$
- ▶ ≥ 4 jets AND (one W_{had}^{typeI} OR one W_{had}^{typeII})
- \geq 1 *b*tagged jet (consider also the 2nd highest *b*-tag weight jet)
- $H_T^{(a)} > 800 \text{ GeV}$
- ▶ $p_T(b_1) > 160 \text{ GeV}, p_T(b_2) > 80 \text{ GeV}$
- $\blacktriangleright \Delta R(l,\nu) < 1.2$
- $int(\Delta R(l, b_{1,2})) > 1.4$

$$\min(\Delta R(W_{had}, b_{1,2})) > 1.4$$

Define tight sample

49

Combine Wb + X & Ht + X

Observed (expected) 95% CL limit:

- SU(2) singlet: m_T>670 (675) GeV
- 2D exclusion: completely exclude 350 550 GeV

- Also set limit on other models:
 - b'->Wq_{light}
 - 2UED/RPP

.

- 4-fermion Contact interaction
- Sgluon pair production

