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Scaling Equation for Invariant Measure∗
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Abstract An iterated function system (IFS) is constructed. It is shown that the invariant measure of IFS satisfies
the same equation as scaling equation for wavelet transform (WT). Obviously, IFS and scaling equation of WT both
have contraction mapping principle.
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1 Introduction
It is well known that a contracted iterated function

system (IFS) can produce self-similar fractal set.[1] And
the scaling equation for wavelet transform (WT)[2] shows
that the scaling function φ(t) for a scale is equal to the
sum of a very few scaling function φ(2t) whose scale is
half as large as that of φ(t). What relation is between IFS
and scaling equation of WT? So far, IFS is only consid-
ered in chaos and fractal field, and scaling equation only
in wavelet field. In this paper, we will show this relation.

2 Iterated Function System
The following map

xn+1 =

{
1
3xn, xn ∈ [0, 1] ,
1
3xn + 2

3 , n = 0, 1, 2 . . .
(1)

is a contraction mapping in unit interval, i.e. IFS.[3]

Assuming transform in Eq. (1) is
w1(x) = 1

3x, w2(x) = 1
3x + 2

3 , (2)

where w(A) is Hutchinson operator[4]

w(A) = w1(A) ∪ w2(A) . (3)
Then the attractor of IFS

An+1 = w(An), A0 ∈ [0, 1], n = 0, 1, 2 . . . (4)
is the well-known Cantor set.

Obviously, A1 = w(A0) = w1(A0) ∪ w2(A0) = [0, 1
3 ] ∪

[ 23 , 1], A2 = w(A1) = w1(A1) ∪ w2(A1) = [0, 1
9 ] ∪ [ 29 , 1

3 ] ∪
[ 23 , 5

9 ] ∪ [ 89 , 9
9 ], . . . .

Fig. 1 Similar transform about Cantor set w1 and w2.

It is shown in Fig. 1, from which we can see that if
we iterate every one step, the scale is one third of the last
image, so they form a self-similar structure.

3 Scaling Equation
The scaling equation used to construct wavelet func-

tion can be written as[5]

φ(t) =
+∞∑

k=−∞

ckφ(2t− k) , (5)

where φ(t) is called the scaling function, also the father
wavelet.[6]

The advantage of scaling equation (5) lies in that most
of the coefficients ck on the right-hand side are zero, only
very few ck are nonzero.

For example, there is c0 = 1, c1 = 1 for Haar scaling
equation. i.e., Haar scaling equation is

φ(t) = φ(2t) + φ(2t− 1) . (6)

There is c0 = 1/2, c1 = 1, c2 = 1/2 for hat scaling
function, i.e., hat scaling equation is

φ(t) = 1
2φ(2t) + φ(2t− 1) + 1

2φ(2t− 2) . (7)

For quadratic Battle–Lemarie scaling function, there
is c0 = 1/4, c1 = 3/4, c2 = 3/4, c3 = 1/4, i.e., the scaling
equation is

φ(t) =1
4φ(2t) + 3

4φ(2t− 1) + 3
4φ(2t− 2)

+ 1
4φ(2t− 3) . (8)

The scale of φ(2t) on the right-hand side of Eqs. (5), (6),
(7), and (8) is only half as that of φ(t) on the left part.

The Haar scaling function is

φ(t) =

{
1, 0 ≤ t ≤ 1 ,

0, otherwise ,
(9)

and φ(2t) and φ(t) in Eq. (6) are shown in Fig. 2.

Fig. 2 Haar scaling function.
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From Fig. 2 we can see that the scale of φ(2t) is half as
that of φ(t), and φ(2t−1) is the result that φ(2t) is shifted
to the right by half unit. Obviously, the scale of φ(4t) is
half as that of φ(2t). The process of scale decreasing down
forms the self-similar structure.

4 Invariant Measure of Iterated Function
System
The research about IFS is considered through orbit

of point sets which is divided into fixed point, periodic
orbit and chaotic orbit. But the research can also consid-
ered through evolution of global density.[7] The equation
for density evolution is also an IFS whose fixed point is
invariant measure.

The following IFS is constructed,

w1(x) = 1
2x, p1 = 1

2 ,

w2(x) = 1
2x + 1

2 , p2 = 1
2 , (10)

where p1 and p2 are probabilities, which control the evo-
lution distribution of w1(x) and w2(x).

According to the theory of density evolution,[8] the
density f(x) for mapping satisfies the density evolution
equation

fn+1(x) = Mfn(x), n = 0, 1, 2, . . . (11)
with

M(f) = p1f(w−1
1 ) + p2f(w−1

2 ) , (12)

which is called Markov operator. Sometimes the operator
is also replaced by Frobenius–Perron operator, which is a
special case for Markov operators. w−1

1 and w−1
2 are the

inverse mapping of w1 and w2.
Now we assume the probability density over the initial

interval [0, 1] is

f0(x) =

{
1, x ∈ [0, 1] ,

0, otherwise ,
(13)

then what will happen for f0(x) under the operator M?
First, we notice that there is difference between map-

pings (10) and (1), the coefficient before x in w1(x) and
w2(x) is 1/3 for mapping (1), but 1/2 for mapping (10).
According to Eq. (4), the attractor of Eq. (10) is the unit
interval, i.e. A∞ = [0, 1].

Next, for a subset A ⊂ [0, 1/2], we have w−1
1 (A) ⊂

[0, 1], w−1
2 (A) ⊂ [−1, 0], then

f(w−1
2 (A)) = 0 . (14)

In the same way, for a subset A ⊂ [1/2, 1], there is
w−1

1 (A) ⊂ [1, 2], w−1
2 (A) ⊂ [0, 1], and
f(w−1

1 (A)) = 0 . (15)
Thus after the first step, f0 becomes

f1(x) =


p1, x ∈ [0, 1

2 ] ,

p2, x ∈ [ 12 , 1] ,

0, otherwise ,

(16)

under the operator M . In other words
Mf0(x) = f1(2x) + f1(2x− 1) , (17)

which is shown in Fig. 3.

Fig. 3 Transform from p3 and p2 over unit interval.

The scale of f1(2x) on the right-hand side of Eq. (17)
is half as that of f1(x), and f1(2x − 1) is the result of
shifting f1(2x) to right by half interval.

Because the value of the right-hand side of Eq. (17) is
1, so equation (17) can also be written as

f1(x) = f1(2x) + f1(2x− 1) . (18)
Thus equation (18) is the same as scaling equation (6).

In the same way, under the operator M acting on
f1(x), there is

Mf1(x) = f2(2x) + f2(2x− 1) = f2(x) . (19)
If mapping (10) is extended to the general mapping

wk(x) =
1
2
(x+k), pk =

1
2
ck, k = 0, 1, 2, . . . ,K , (20)

where K is a finite number. Then we can find the evolu-
tion equation for density

Mf(x) =
+∞∑

k=−∞

ckf(2x− k) , (21)

which is the same one as Eq. (5).
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