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Generation of two-mode entanglement between
separated cavities
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We propose a scheme for the generation of two-mode entangled states between two spatially separated cavities.
It utilizes a two-level atom sequentially coupling to two high-Q cavities with strong classical driving fields. By
suitably choosing the intensities and detunings of the fields and precisely controlling the dynamics, entangled
coherent states and Bell states can be produced between the modes of the two cavities. These entangled states
should have applications in quantum information processing. © 2008 Optical Society of America
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. INTRODUCTION
he preparation of quantum entangled states continues
o attract great theoretical and experimental interest.
hese nonclassical states are utilized not only to test fun-
amental quantum mechanical principles such as Bell’s
nequalities [1], but they also play an important role in
ractical applications of quantum information processing
2] such as quantum computation [3,4], quantum telepor-
ation [5], and quantum cryptography [6]. In quantum op-
ics the generation of various nonclassical states, espe-
ially entangled states of electromagnetic fields, is a
entral topic [7]. In the context of cavity quantum electro-
ynamics (QED) [8–10], experimental realizations of the
ntanglement between two different modes sharing a
ingle photon or between two polarized photons in a cav-
ty have been reported [11,12]. In recent years, great ef-
ort has been put into preparation of the Schrödinger cat
tates [13–16], where the extreme cat states are reduced
o mesoscopic quantum states with classical counterparts,
.e., coherent states. There are also several other propos-
ls for producing entangled field states between sepa-
ated cavities [17–21].

In this paper, we propose a scheme for generating two-
ode entangled states between two separated cavities. A

wo-level Rydberg atom is sent sequentially into two spa-
ially separated cavities, with a strong classical field driv-
ng it additionally in each cavity. We demonstrate that, by
uitably choosing the intensities and detunings of the
elds and precisely controlling the dynamics, different en-
angled states, such as entangled coherent states and Bell
tates, can be produced between the modes of the two
avities. Especially, this scheme can generate the en-
angled states 1/�2��0�A�0�B± �1�A�1�B�. Up to our knowl-
dge, this is the first proposal for generating these kinds
f entangled states between spatially separated cavities.
ifferent from previous proposals for generating en-

angled field states between distant cavities [17–21], in
0740-3224/09/010189-5/$15.00 © 2
his proposal only one setup is utilized to produce several
ifferent entangled states. The target entangled states
an be achieved only through tuning the experimental pa-
ameters and controlling the dynamics. Other advantages
re that it needs only one Rydberg atom sent through two
avities and that initially the cavity field has only to be in
he vacuum state. These entangled states of fields can
ave both fundamental applications in quantum mechan-

cs and practical applications in quantum information
rocessing. With presently available experimental setups
n cavity QED, this protocol could be implemented.

. GENERATING ENTANGLED COHERENT
TATES AND BELL STATES
onsider two distant high-Q cavities and a two-level
tom, as sketched in Fig. 1. The atom sequentially
ouples to the cavities A and B (with frequencies �A and
B). The ground state of the atom is labeled as �g�, and the
xcited state as �e�. In each cavity, the transition �g�↔ �e�
transition frequency �0) is coupled by the cavity mode
ith the coupling constants gA and gB, respectively. Fur-

hermore, a strong classical field (frequency �L
A or �L

B)
rives the same transition with a Rabi frequency �A��B�
n each step. The associated Hamiltonian in each cavity
nder the dipole and rotating wave approximations is
iven by (let �=1)

Hj = �0�†� + �jâj
†âj + �j�e−i�Lt�† + ei�Lt��

+ gj��†âj + �âj
†�, �j = A,B� �1�

here �= �g��e� and �†= �e��g� are the atomic transition op-
rators and âj and âj

† are the annihilation and creation
perators with respect to cavity j. To simplify the discus-
ions, we consider first that gA and gB are constant in
ime. However, in Section 3 we will treat them as time-
ependent parameters and perform numerical simula-
009 Optical Society of America
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ions to verify the analytical results.
The Hamiltonian of Eq. (1) can be changed to a refer-

nce frame rotating with the driving field frequency �L,

Hj
L = ��†� + �jâj

†âj + �j��† + �� + gj��†âj + �âj
†�, �j = A,B�

�2�

ith �=�0−�L and �j=�j−�L. In the following we set �
0 for simplicity. We now switch to a new atomic basis

± �=1/�2��g�± �e��. In the interaction picture with respect
o H0

j =�jâ†âj+�j��†+��, we obtain the following Hamil-
onian:

Hj
I =

gj

2
�� + ��+ � − �− ��− � + e2i�jt� + ��− � − e−2i�jt�− ��+ ��âje

−i�jt

+ H.c. �3�

he Hamiltonian of Eq.(3) is the starting point in the fol-
owing discussions, from which we show that several
inds of entangled states of the two distant cavities can
e generated through different approximations. Though
his scheme requires no complicated setups, entangled co-
erent states and Bell states can be generated only
hrough tuning the experimental parameters and pre-
isely controlling the dynamics.

Entangled coherent states—We first show how to pro-
uce the entangled coherent states between the two cavi-
ies. Assuming that �A��B�� �gA ,�A�gB ,�B��, this strong
riving condition can allow one to realize a rotating-wave
pproximation and neglect the fast oscillating terms. Now

j
I reduces to

Hj
I =

gj

2
�� + ��+ � − �− ��− ���âje

−i�jt + âj
†ei�jt�

=
gj

2
��† + ���âje

−i�jt + âj
†ei�jt�. �4�

f we choose �j=0, this Hamiltonian corresponds to the si-
ultaneous realization of Jaynes–Cummings (JC) [22]

nd anti-Jaynes–Cummings (AJC) interaction in each
avity. The evolution operator for the system is given by

ig. 1. Proposed experimental setup. A two-level atom sequen-
ially couples to two distant cavities A and B, driven by a strong
lassical field.
Uj�t� = e−iHj
It = e−igjt/2��†+���âj+âj

†�

= D̂��j�� + ��+ � + D̂�− �j��− ��− �, �5�

ith D̂��j�=e�jâj
†−�j*âj, and �j=−igjt /2. Assume that at the

ime t=0 the system is prepared in the ground state
g��0�A�0�B=1/�2��+ �+ �−���0�A�0�B, i.e., the atom stays in
g�, and the two cavities are in the vacuum states. The
tom enters cavity A and undergoes the dynamics of Eq.
5). The evolved state after a time tA will be

1

�2
�� + ����A + �− ��− ��A��0�B, �6�

here �=−igAtA /2. This microscopic–mesoscopic en-
angled state is the so-called Schrödinger cat state. After
n interaction time tA in cavity A, the atom enters cavity
. It will also undergo the evolution according to Eq. (5).
fter a time tB, the system consisting of the two cavities
nd the atom will become

1

�2
�� + ����A�	�B + �− ��− ��A�− 	�B�, �7�

ith 	=−igBtB /2. Expression (7) describes a tripartite en-
angled state involving one microscopic and two mesos-
opic systems. If we measure the atomic state in the bare
asis ��g� , �e��, the entangled coherent states of the fields
an be generated:

NAB
± ����A�	�B ± �− ��A�− 	�B�, �8�

here NAB
± is the normalized factor. It is known that these

tates can act as an important tool in the field of quantum
nformation such as quantum teleportation and quantum
omputing with coherent states [13–16]. Here, utilizing
ying atoms, we propose to generate the entangled coher-
nt states between two distant resonators.

Bell states—We then show that using the interaction
escribed by Eq. (3) one can generate the Bell states [1]
/�2��0�A�1�B± �1�A�0�B� and 1/�2��0�A�0�B± �1�A�1�B�. If we
hoose �j=2�j and ��j��gj, then we can bring the Hamil-
onian (3) to the JC interaction in the

� atomic dressed basis

Hj
JC =

gj

2
�� + ��− �âj + �− ��+ �aj

ˆ †�. �9�

ssume that at t=0, the system stays in �+ ��0�A�0�B. Then
fter an interaction time tA=� / �2gA� in cavity A, the sys-
em will evolve into

1

�2
�� + ��0�A − i�− ��1�A��0�B. �10�

ubsequently, the atom enters cavity B and undergoes the
ynamics of Eq. (9). Then the atom-field state will be
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1

�2
�cos�gBt/2�� + ��0�B − i sin�gBt/2��− ��1�B��0�A −

i

�2
�− �

��1�A�0�B. �11�

f the interaction time tB=� /gB or 3� /gB is taken, the fi-
al states will be

1

�2
��0�A�1�B ± �1�A�0�B��− �, �12�

here a common phase factor −i or i has been discarded.
learly, at this time the atomic state has been factorized
ut and the modes of two distant cavities end up in the
instein–Podolsky–Rosen (EPR) pair states [23]:

1

�2
��0�A�1�B ± �1�A�0�B�. �13�

hese are maximally entangled states of two qubits
tored in the modes of two distant cavities.

Now we consider the case of generating the entangled
tates 1/�2��0�A�0�B± �1�A�1�B� between the two cavities. If
e choose �A=2�A and ��A��gA, then we can realize the
C interaction in cavity A, which is described by Eq. (9).
owever, in cavity B we need the AJC interaction, which

equires the relations �B=−2�B and ��B��gB be chosen to
eglect the fast oscillating terms. Then we can bring the
amiltonian (3) to the AJC interaction in the


� atomic dressed basis

HB
AJC =

gB

2
��− ��+ �âB + � + ��− �âB

† �. �14�

he brief idea of producing the target entangled states is
s follows. We send a Rydberg atom prepared in state


� into cavity A. Then at t=0, the total system is in state
+ ��0�A�0�B. At the stage of the atom interacting with cav-
ty A, the system is governed by the interaction of Eq. (9).
hen after an interaction time tA=� /2gA in cavity A, the
tom-field state will be the same as Eq. (10). Subse-
uently, the atom enters cavity B and undergoes the dy-
amics of Eq. (14). Then the atom-field state will be

1

�2
�− ��0�A�0�B −

i

�2
�cos�gBt/2��− ��0�B − i sin�gBt/2�� + ��1�B�

��1�A. �15�

f the interaction time tB=� /gB or 3� /gB is taken, the fi-
al states will be

1

�2
��0�A�0�B � �1�A�1�B�� + �. �16�

he atomic state has been factorized out, and the modes
f two distant cavities end up in the following entangled
tates:

1

�2
��0�A�0�B ± �1�A�1�B�. �17�

hese states are also maximally entangled states. To-
ether with states in expression (13), they form the well-
nown Bell states. Up to our knowledge, this is the first
roposal for producing these Bell states of expression (17)
etween separated cavities. Hence, these states should
ave applications in quantum information processing,
uch as entanglement distribution, teleportation, distrib-
ted quantum computation and quantum communication
2]. In particular, since cavities are the promising quan-
um nodes for quantum information processing, the pro-
uced entanglement between distant cavities may pro-
ide some applications in quantum networks [24].

. PRACTICAL CONSIDERATIONS
t is necessary to analyze the proposal requirements and
iscuss some practical issues associated with it. The de-
oherence in a cavity QED system comes from spontane-
us emission of the atomic excited states and damping of
he cavity fields [8–10]. To eliminate the effects of these
ecoherence processes on the generated entangled states,
he preparation time should be much smaller than the de-
ay time of the atomic excited states and the cavity
odes, i.e., the conditions T��1, T��1 are required for

roducing the entangled states with high fidelities, where
and � represent the decay rates of the cavity mode and

tomic excited states, respectively. Therefore, realizing
his protocol for entangled field states requires that the
tom and two cavity modes not decay during this process.
ne can control the interaction time of the Rydberg atom
ith the two cavities in the experiments and implement

his proposal in the strong coupling regime to meet the re-
uirements [9].
As the atom moves through the two cavities, it encoun-

ers the time-dependent atom-field coupling constants. To
e more realistic, we consider a Gaussian profile for the
tom-field interaction, gA�t�=gAe−�vt−vt1�2/wA

2
, gB�t�

gBe−�vt−vt2�2/wB
2
, where v is velocity of the atom, and wA

nd wB are the waists of the cavity modes. In this case,
hen taking into account the temporal variation of the

oupling constants, we can use an effective interaction
ime Ti	wi /v [9] to consider the issue. However, we will
ntegrate the time-dependent expressions to obtain the
xact interaction time in the next paragraph. So the in-
eraction time of the atom with each cavity could be pre-
isely adjusted by controlling the motion of the atom.
ypically, in experiments with a microwave cavity the in-
eraction time is adjusted by sending the atom through
he cavity at a well-controlled velocity [9]. Generating the
ell states requires that TAgA /TBgB=1/2. If the coupling
trengths are the same, the interaction time in each cav-
ty differs by a factor of TA /TB=1/2. One could first adjust
he atomic velocity to satisfy the interaction time TA and,
n cavity 2, reduce the atomic velocity to satisfy the inter-
ction time TB [19]. Alternatively, one could consider
qual interaction time and adjust the coupling strengths
o gA /gB=1/2 through the cavity volume g�1/�V, which
an be implemented in the experiments with two different
avities.

In order to verify the model for generating Bell states,
e numerically solve the Schrödinger equation with the
ffective Hamiltonian of Eq. (9) from the initial state
+ ��0� �0� . Figure 2(a) displays the time-dependent cou-
A B
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ling strengths gA�t� and gB�t�. Here the cavity modes are
ssumed to be a Gaussian profile, gA�t�=gAe−�vt−vt1�2/wA

2
,

B�t�=gBe−�vt−vt2�2/wB
2
. The parameters are taken as gA

gB=40� ,wA /v=0.02�−1, wb /v=0.045�−1, t1=0.05�−1,
nd t2=0�−1. �−1 is a characteristic time, with the value

10�	2� KHz for microwave cavity QED [9]. The cou-
ling strengths are also satisfied: �0

TAgA�t�dt=� /2,

TA+tf

TA+tf+TBgB�t�dt=�, where tf is the free flight time between
he cavities. Figure 2(b) shows the dynamics of the system
ith the time-dependent cavity couplings gA�t� and gB�t�.
ne can see from Fig. 2(b) that, for t=TA, the system is

ompletely transferred to the state 1/�2��+ ��0�A− i�
��1�A��0�B. At the end of the process the two cavities end
p in the entangled state 1/�2��0�A�1�B+ �1�A�0�B�.
We now discuss the effect of some imperfections in the

xperiments on the final states. For generating Bell
tates, the interaction time of the atom with each cavity
ust be precisely controlled. In the experiments, fluctua-

ions of the parameters will induce some imperfections to
he produced entangled states. To quantify the final
tates prepared in this protocol, we exploit the fidelity F
��B��f��B�, where ��B� refers to the ideal Bell states, and
f is the final density matrix of the cavity modes. Here we
ive an example to estimate the fidelity for the state of ex-
ression (13) when taking into account the fluctuation of
he interaction time. Assume that the interaction time Ta
r TB takes a deviation of �t from the ideal value owing to
ome experimental fluctuations such as the velocity fluc-
uation of the atom. Figure 3 plots the fidelity as a func-
ion of the parameter �t / t. One can see that under rela-
ively small fluctuations of the interaction time, the
delity is still very close to unity. When the fluctuation of
he interaction time �t / t is larger than 10%, the fidelity
ill reduce to 0.98.
Finally, we consider some experimental matters. For a

otential experimental system and set of parameters in

ig. 2. (a) Time-dependent coupling strengths gA�t�, gB�t�. The
arameters are gA	gB=40�, wA /v=0.02�−1, wb /v=0.045�−1, t1
0.05�−1, and t2=0.25�−1. (b) Coherent evolution of the system
ith the effective Hamiltonian [Eq. (9)] from the initial state �
��0�A�0�B.
icrowave resonators [9], the promising atomic candidate
ould be Rydberg atoms with much longer radiative time.
esonators stable beyond 100 ms have been reported re-
ently [25]. The radiative lifetime for Rydberg atoms is
bout Ta
30 ms [9]. We choose the single-photon dipole-
oupling strength as gA
gB=g / �2��
50 kHz [9]. Then,
or generating entangled coherent states, the preparation
ime is about T
0.06 ms with averaged photon number
��2= �	�2=25 in each cavity. In the case of producing Bell
tates, the preparation time is about T
0.02 ms. There-
ore, the time needed to complete the procedure is much
horter than the decay time of the atom and the cavities.
hese results are in line with the current experimental
etups.

. CONCLUSION
n conclusion, we have proposed a scheme for the genera-
ion of two-mode entangled states between two separated
avities. It relies on a two-level atom sequentially cou-
ling to two high-Q cavities with a strong classical driving
eld. We demonstrate that, by suitably choosing the in-
ensities and detunings of the fields and precisely control-
ing the dynamics, entangled coherent states as well as
ell states can be produced between the two cavity
odes. With presently available experimental setups in

avity QED, the realization of this proposal is feasible.
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