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Subcycle nonadiabatic strong-field tunneling ionization
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We present a subcycle nonadiabatic strong-field tunneling theory and derive the position of tunnel exit,
the transverse and longitudinal momentum distributions at the tunnel exit, and the ionization rate in an
instantaneous laser field. These tunneling coordinates are shown to nonadiabatically couple with each other
in an instantaneous laser field when the electron tunnels through the barrier. We have further incorporated the
nonadiabatic tunneling theory with the quantum-trajectory Monte Carlo approach to investigate the nonadiabatic
effect on the photoelectron angular distributions. The simulated photoelectron angular distributions with the
nonadiabatic corrections have been validated by comparison with the ab initio results through numerically
solving the time-dependent Schrödinger equation. The nonadiabatic coordinates at the tunnel exit play important
roles in both the direct ionization and rescattering process. The nonadiabatic tunneling theory provides an intuitive
understanding on subcycle dynamics of tunneling ionization.
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I. INTRODUCTION

The process of tunneling is among the most fundamental
quantum processes and it is of central importance to a
variety of fields. Traditionally, according to the pioneering
work by Keldysh [1], the ionization rates of an atom in an
alternating strong electric field in both the multiphoton and
tunneling ionization can be treated with averaging over a
single period of the electric field’s oscillation. Perelomov et al.
further considered arbitrary laser polarization and included
the Coulomb interaction through the first-order correction in
the quasiclassical action of a short-range potential (which is
known as the PPT model) [2–4]. Based on the PPT theory,
the Ammosov-Delone-Krainov (ADK) model is in the limit
when the Keldysh parameter (γ = ω

√
2Ip/E0, where E0 is

the laser field amplitude, ω is the field frequency, and Ip is the
ionization potential) approaches zero (quasistatic limit) [5,6].
In this adiabatic picture, the tunneling process was treated as if
the electron penetrates a static or quasistatic barrier formed by
the electric field and the binding potential of the atom, as the
electron tunneling time is negligible compared with the period
of the laser electric field.

Recently, nonadiabatic effects in the tunneling process
have attracted considerable interest motivated by the precise
experiments (see [7–9], for example). The reconstructed
initial transverse momentum distribution at the tunnel exit in
circularly polarized laser fields was shown to be larger than
the prediction of the adiabatic tunneling theory [7]. As to the
initial longitudinal momentum at the tunnel exit, a common
assumption widely used is to set it to zero in the adiabatic
picture. Through high-harmonic generation by orthogonally
polarized two-color laser fields, a nonzero initial longitudinal
momentum offset at the tunnel exit was revealed [8]. In a recent
experiment, the width of the initial longitudinal momentum
spread was claimed to be around 1 a.u. [10]. In reality, the
value of the initial longitudinal momentum spread at the tunnel
exit is still in debate [11,12]. By measuring the tilt angle of
the photoelectron momentum distributions in an elliptically
polarized laser field, it was shown that the nonadiabatic

theories contradict the experimental trends of the data [9].
Subsequently, this conclusion was found to be in contrast with
the findings from the ab initio calculations with solving the
time-dependent Schrödinger equation (TDSE) [13] and the
nonadiabatic simulations [14]. The most important issue we
address is that, in these experimental tests of nonadiabaticity,
only one physical quantity was measured and the other
physical quantities were still treated in the adiabatic picture,
which will lead to contradictory conclusions. We therefore
believe that it is very necessary to look at subcycle ionization
dynamics, including the instantaneous ionization rate [15–18]
and the tunneling coordinates, in self-consistent consideration
of the nonadiabatic effect for strong-field tunneling ionization.

In Sec. II of this paper, we present a subcycle nonadiabatic
tunneling ionization theory based on the strong-field
approximation. We obtain the nonadiabatic description of the
position of the tunnel exit, the initial momentum distribution
at the tunnel exit, and the ionization rate in the instantaneous
laser field. All the physical quantities at the tunnel exit are
strongly coupled in the laser field because of nonadiabatic
effects. Especially, the distribution of the longitudinal
momentum and the position of the tunnel exit are derived
self-consistently. In Sec. III, we have further incorporated
the nonadiabatic theory into the quantum-trajectory Monte
Carlo simulation [19] to calculate the photoelectron angular
distributions. We compare the calculated photoelectron
angular distributions using the nonadiabatic theory with the
ab initio results by numerically solving the TDSE. Then we
conclude the topic presented in this paper.

II. NONADIABATIC MODEL

Within the strong-field approximation, the transition am-
plitude can be approximated by a sum over the quantum orbits
using the saddle-point method (see, e.g., [20,21]),

MSFA
p =

∑
s

2−1/2(2Ip)5/4

E(ts) · [p+A(ts)]
eiSs,p , (1)
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where Ss,p = − ∫
dt{ 1

2 [p + A(ts)]2 + I }
p

is the classical ac-
tion and ts is the saddle point that should satisfy

∂Ss,p

∂t
= 1

2
[p+A(ts)]

2 + Ip = 0. (2)

Since Ip > 0 and p is a real value, the complex time ts
can be given with ts = tr + iti , where tr is the ionization
time and ti is the so-called tunneling time (or Keldysh
time) [1]. For a linearly polarized monochromatic laser
field with E(t) = E0 cos(ωt)z [the vector potential is A(t) =
−E0

ω
sin(ωt)z], the real and imaginary parts of Eq. (2) read

(pz − E0/ω sin ωtr cosh ωti)2 − (E0/ω cos ωtr sinh ωti)2 +
p⊥2 + 2Ip = 0 and pz − E0/ω sin ωtr cosh ωti = 0, respec-
tively.

The conserved canonical momentum p = (pz,p⊥) can be
related to the momentum at the tunnel exit where the time
becomes real,

pz = vz + E0 sin(ωtr )/ω
(3)

p⊥ = v⊥,

where vz and v⊥ are the initial longitudinal and transverse
momentum with respect to the laser polarization direction
at the tunnel exit point. Combining those relations, we can
establish the relation of the ionization time (tr ) and the
tunneling time (ti) as

sinh ωti = γ (tr ,v⊥), (4)

and we can also obtain the nonadiabatic longitudinal momen-
tum at the tunnel exit,

vz = E0 sin ωtr

ω
[
√

1 + γ 2(tr ,v⊥) − 1], (5)

where the effective Keldysh parameter is given by γ (tr ,v⊥) =
ω

√
2Ip + v⊥2/|E(tr )|. Both the tunneling time and the ini-

tial longitudinal momentum are functions of the parameter
γ (tr ,v⊥). Different with the Keldysh parameter, γ (tr ,v⊥)
depends on the ionization time and the initial transverse
momentum [22].

The instantaneous ionization rate is determined by the
classical action under the barrier, given by

Ss,p = −
∫ tr

ts

dt

{
1

2
[p + A(t)]2 + Ip

}
. (6)

Inserting the laser field into the above equation, one ob-
tains Ss,p = i[p2

2 + Ip + Up]ti − pz
E0
ω2 (cos ωtr − cos ωts) +

E0
2

8ω3 (sin 2ωtr − sin 2ωts). The real part and the imaginary part,
respectively, read ReSs,p = −pz

E0
ω2 cos ωtr (1 − cosh ωti) +

E0
2

8ω3 sin 2ωtr (1 − cosh 2ωti) and ImSs,p = (p2

2 + Ip + Up)ti −
pz

E0
ω2 sin ωtr sinh ωti − E0

2

8ω3 cos 2ωtr sinh 2ωti , where Up =
E2

0
4ω2 is the ponderomotive energy. The real part of the sub-
barrier action is related to a phase shift for the trajectory
under the barrier [21], and the imaginary part is related to
the ionization rate.

We further consider the preexponential factor in Eq. (1);
we set R = E(ts) · [p + A(ts)], whose real and imaginary
parts are given by R1 = −γ 2(tr ,v⊥)E0

2

ω
sin ωtr cos ωtr and

R2 = −E0
2cos2ωtr

ω
γ (tr ,v⊥)

√
1 + γ 2(tr ,v⊥), respectively. Thus

the nonadiabatic instantaneous ionization rate can be expressed
as

W (tr ,v⊥) = ω2(2Ip)5/2

2E0
4γ 2(tr ,v⊥)[γ 2(tr ,v⊥) + cos2ωtr ]cos2ωtr

× exp
(

−E0
2

ω3

{[
sin2ωtr + γ 2(tr ,v⊥) + 1

2

]

× sinh−1γ (tr ,v⊥)

− 1

2
γ (tr ,v⊥)

√
1 + γ 2(tr ,v⊥)(1 + 2sin2ωtr )

})
.

(7)

Another important tunneling coordinate is the position of
the tunnel exit point. In the nonadiabatic picture, the tunnel exit
is related to the sub-barrier trajectory r(tr ) = ∫ tr

ts
dt[p + A(t)].

In the linearly polarized laser field, it is given by

z(tr ,v⊥) = px(tr − ts) + E0

ω2
(cos ωtr − cos ωts). (8)

The tunnel exit point is the real part of Eq. (8) [23],

Rez(tr ,v⊥) = E0

ω2
cos ωtr [1 −

√
1 + γ 2(tr ,v⊥)]. (9)

The subcycle tunneling coordinates have been derived.
From Eqs. (4), (5), and (9), one can find that all those tunneling
coordinates are coupled with each other at an instantaneous
laser phase.

III. RESULTS AND DISCUSSIONS

Using the Monte Carlo method, we have calculated the
nonadiabatic tunneling coordinates of H atoms in a linearly po-
larized laser field at the intensity of 1×1014 W/cm2 (800 nm),
as shown in Fig. 1. With averaging over a single laser cycle,
both the longitudinal momentum and transverse momentum at
the tunnel exit reveal the Gaussian distribution [Fig. 1(a)].
As shown in Fig. 1(b), the initial transverse momentum
shows a time-dependent Gaussian distribution with respect
to the laser phase. Usually, the longitudinal momentum at
the tunnel exit was assumed to be zero in the adiabatic
tunneling picture. In the nonadiabatic picture, one can see
that the longitudinal momentum at the tunnel exit depends
on the ionization phase with respect to the laser field (or the
vector potential) [Fig. 1(c)]. Since most of electrons tunnel
near the field maximum where the vector potential is zero,
the longitudinal momentum assumed to be zero is a good
approximation in the adiabatic limit. However, the parameter
γ (tr ,v⊥) will increase when the electrons tunnel at a laser phase
away from the field maximum. Thus, the initial longitudinal
momentum at the tunnel exit and nonadiabatic effects become
largely important when the vector potential increases [8].

In the nonadiabatic picture, the tunnel exit is not fixed with
respect to the instantaneous laser field, and the tunnel barrier is
nonadiabatically mediated by the oscillating field. The tunnel
exit depends on the instantaneous laser field and the initial
transverse momentum. Compared with the adiabatic tunnel
exit [the white solid line in Fig. 1(d)], the position of the
nonadiabatic tunnel exit exhibits a broader distribution and is
closer to the nucleus, as seen in Fig. 1(d).
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FIG. 1. The nonadiabatic tunneling coordinates. (a) The cycle-
averaged longitudinal momentum distribution and transverse mo-
mentum distributions at the tunnel exit. The dashed curve shows the
cycle-averaged transverse momentum distribution predicted by ADK
theory. (b,c) show the transverse momentum and the longitudinal
momentum distribution at the tunnel exit with respect to the tunneling
phase, respectively. (d) The distribution of the tunnel exit with respect
to the tunneling phase. The white curves in (d) show the tunnel exit
ze = −Ip/E(tr ) in the adiabatic picture. The light field [the red solid
curve in (b–d)] and the negative value of the vector potential [the
green solid curve in (c)] are shown in arbitrary units.

We show the calculated width of the cycle-averaged
transverse and longitudinal momentum distribution at the
tunnel exit with respect to the laser intensity (800 and 1400 nm)
in Fig. 2 by the Gaussian fit. The width of the transverse
momentum distribution increases with the laser intensity.
Instead, the width of the longitudinal momentum distribution
decreases with the laser intensity, i.e., the nonadiabatic
tunneling correction can converge to the adiabatic theory
when the Keldysh parameter approaches zero. Increasing the
laser wavelength to 1400 nm, the cycle-averaged width of the
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FIG. 2. The width of the cycle-averaged longitudinal momentum
distribution and transverse momentum distributions at the tunnel
exit with respect to the laser intensity at 800 and 1400 nm,
respectively.
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FIG. 3. The simulated photoelectron angular distributions of H
atoms using the nonadiabatic (a,c) and adiabatic (b,d) tunneling
theory at the intensity of 1.5×1014 W/cm2 (800 nm). In order to
remove the rescattering effect, the Coulomb potential effect is not
included in the electron propagation after the tunneling in (c,d). The
white dashed lines show the position of ±E0/ω.

longitudinal momentum distribution substantially decreases,
while the width of the transverse momentum distribution
is slightly changed. Thus, it will be difficult to reveal the
nonadiabatic tunneling effect by measuring the wavelength-
dependent transverse momentum distributions [7].

We further investigate the nonadiabatic effect on the
photoelectron angular distributions, which can be directly
compared with the ab initio TDSE calculation. We incorporate
the nonadiabatic tunneling coordinates into the quantum-
trajectory Monte Carlo approach [19]. Briefly, the subsequent
electron motion after the tunneling is calculated with the
combination of the Newtonian equation [r̈ = −Zr/r3 − E(t)]
and the phase equation [S = ∫ ∞

t0
(v(t)2/2 − Z/|r(t)| + Ip)dt]

in the presence of the combined Coulomb and laser fields,
where r is the distance between electron and nucleus and Z

is the nuclear charge. The trajectories will interfere with each
other when their asymptotic momenta are the same. In all the
calculations, we use a nine-cycle laser pulse (two-cycle ramp-
on, five-cycle constant amplitude, and two-cycle ramp-off).
The simulated photoelectron electron angular distributions for
H atoms at 800 nm at 1.5×1014 W/cm2 using the nonadiabatic
theory are shown in Figs. 3(a) and 3(c) with (Z = 1) and
without (Z = 0) considering the Coulomb potential and the
rescattering effect, respectively.

For comparison, we have also performed the adiabatic
calculations using the adiabatic tunneling coordinates accord-
ing to the ADK model [5,6]. The position of tunnel exit is
calculated with the Landau-Lifshitz theory [24], which is given
by ze ≈ −Ip/E(tr ) [the white solid curve in Fig. 1(d)]. The
cycle-averaged transverse momentum distribution predicted
by the ADK theory for H atom at 1×1014 W/cm2 is compara-
ble with the nonadiabatic transverse momentum, as seen in the
dashed curve in Fig. 1(a). In the adiabatic model, we take the
longitudinal momentum along the laser polarization direction
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FIG. 4. The calculated two-dimensional photoelectron angular
distributions of H atom with the TDSE (a), nonadiabatic tunneling
theory (b), and adiabatic tunneling theory (c) at the intensity of
1×1014 W/cm2 (800 nm). The black solid, red solid, and white
dashed curves show the momentum cutoff predicted by the nona-
diabatic theory, the adiabatic theory, and the simple model with zero
initial position and momentum, respectively.

as zero. The simulated photoelectron angular distributions
for H atoms at 1.5×1014 W/cm2 (800 nm) with the adiabatic
tunneling theory are shown in Figs. 3(b) and 3(d) with (Z = 1)
and without (Z = 0) considering the Coulomb potential and
the rescattering effect, respectively.

The overall structure of the simulated photoelectron angular
distributions based on the nonadiabatic and adiabatic models
look quite similar. With the inclusion of the Coulomb potential,
the multiple rescattering rings [25] can be recaptured by
both nonadiabatic and adiabatic models. However, there are
important differences caused by the nonadiabatic effects, as
will be discussed below.

In order to validate the nonadiabatic theory, we now
compare photoelectron angular distributions with the ab
initio TDSE calculation. In Fig. 4(a) we present the cal-
culated photoelectron angular distributions of the ionization
of H atom by TDSE in a linearly polarized laser field
at 1×1014 W/cm2 (800 nm). The final photoelectron angular
distributions are obtained by projecting the wave function
onto the Coulomb continuum scattering eigenstates after the
time-dependent propagation using a grid-based split-operator
method [26]. In Figs. 4(b) and 4(c) we also present the results
of the nonadiabatic and adiabatic tunneling theory at the same
laser parameters, respectively.

As discussed above, in the nonadiabatic picture, the
tunneling coordinates are very important, and will have
significant effects on both the direct ionization electrons and
rescattered electrons. We will extract the nonadiabatic effect
on photoelectron angular distributions by the comparison with
the ab initio TDSE calculation in which all effects are naturally
included.

We first look at the low-energy photoelectron angular dis-
tribution, which is mostly related to the direct ionization elec-
trons. In the adiabatic picture, with the longitudinal momentum
at the tunnel exit taken as zero, the direct ionization electrons
can usually obtain an energy below 2Up (|pz| < E0/ω),
as seen in the white lines in Fig. 3. However, in the nonadiabatic
picture, because of the initial longitudinal momentum at the
tunnel exit, some direct ionization electrons can obtain a final
energy larger than 2Up. We also show the comparison of the
low-energy photoelectron angular distributions between the
results using the TDSE and the nonadiabatic theory in Fig. 5.
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FIG. 5. The low-energy photoelectron angular distributions using
the TDSE (a) and the nonadiabatic theory (b) at the intensity of
1×1014 W/cm2 (800 nm).

One can find that the detailed interference structure of low-
energy photoelectrons calculated by the nonadiabatic theory
[Fig. 5(b)] agrees with the TDSE result [Fig. 5(a)]. In order
to reveal the nonadiabatic effect on the low-energy electrons
more clearly, we have removed the Coulomb potential effect
and the rescattering effect after the tunneling. As seen in
Figs. 3(c) and 3(d), the longitudinal momentum spreads much
broader than the adiabatic case. It should be noted that the
TDSE result reveals a minimum when pz = 0 while the
nonadiabatic simulation reveals a maximum for the first-order
above threshold ionization (ATI) ring. This difference comes
from the negligence of the sub-barrier Coulomb-corrected
phase [21] in the nonadiabatic simulation.

As to the rescattered electrons, one can compare the cutoff
in the momentum distribution of the TDSE result with that of
the nonadiabatic or the adiabatic theory. The cutoff on photo-
electron angular distributions can be obtained using the rescat-
tering model [27–29]. The electron velocity before recollision
can be calculated as vz(t) = vz0 − E0/ω[sin(ωt) − sin(ωt0)],
where vz0 is the initial longitudinal momentum given by Eq. (5)
in the nonadiabatic picture and it is zero in the adiabatic picture.
For these re8scattered electrons, the recollision time tc can
be obtained by numerically solving the classical equation of
motion E0/ω

2[cos(ωtc) − cos(ωt0) + ω(tc − t0) sin(ωt0)] +
vz0(tc − t0) + ze = 0, where ze is the tunnel exit point. At
tc, the electron is elastically rescattered off the nucleus
with a scattering angle with respect to its impact direction.
The asymptotic momentum of the rescattered electron is
PZ = F0/ω sin(ωtc) + vc cos(θc) and px = vc sin(θc), where
vc = vz(tc) is the electron momentum at recollision. We choose
the maximum and the minimum of pz at each px to obtain
the cutoff in the momentum plane. The calculated ring of the
largest rescattering momentum cutoff is illustrated as the black
and red solid lines in Figs. 4(b) and 4(c) for the nonadiabatic
and adiabatic theory (with or without the initial longitudinal
momentum), respectively [30]. If one takes the initial longi-
tudinal momentum and the tunnel exit point to be zero (the
initial condition of the so-called Simpleman model, which
was initially proposed by van Linden van den Heuvell and
Muller [31]), the calculated boundary is shown as the white
dashed curve in Fig. 4(a). One can see that, considering the
nonadiabatic corrections to the initial longitudinal momentum
distribution and the position of tunnel exit, the calculated cutoff
boundary [the black solid line in Figs. 4(a) and 4(b)] agrees
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well with the results using both the TDSE calculation and the
nonadiabatic quantum-trajectory Monte Carlo simulation. In
this spirit, nonadiabatic corrections should be important for the
phenomena closely related with the rescattering in strong-field
community, e.g., high-harmonic generation and nonsequential
double ionization.

IV. CONCLUSION

In summary, all the tunneling coordinates at the tunnel
exit have been derived nonadiabatically in a subcycle time
scale. We have shown that these tunneling coordinates are
correlated in the instantaneous laser field. The nonadiabatic
results will converge to the ADK theory in the adiabatic
limits. We further incorporate the nonadiabatic corrections
into the quantum-trajectory Monte Carlo model to calculate the

photoelectron angular distributions. The photoelectron angular
distributions calculated by the nonadiabatic model have been
validated by the ab initio TDSE results. Compared with
the quantum simulation, the nonadiabatic quantum-trajectory
Monte Carlo approach makes the strong-field ionization more
transparent and all spectral features can be interpreted in terms
of trajectories. The semiclassical nonadiabatic model sketched
above provides intuitive insights and possesses a predictive
power for strong-field tunneling ionization.
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