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Abstract Time-irreversible symmetry is a fundamental
property of nonlinear time series. Time-irreversible behav-
iors of mean temperature measured on 182 stations over
China from 1960 to 2012 are analyzed by directed hori-
zontal visibility graph (DHVG for short), and significance
of results has been estimated by Monte Carlo simulations.
It is found that dominated time irreversibility emerges in
nearly all daily temperature anomaly variations over China.
Further studies indicate that these time-irreversible behav-
iors result from asymmetric distributions of persistent daily
temperature increments and decrements, and this kind of
symmetry can be quantified by distributions of consecu-
tive daily mean temperature increasing or decreasing steps.
At the same time, the findings above have been confirmed
by artificially generated time series with given value of
multiscale asymmetry.

1 Introduction

It has been defined that a stationary process x(t) is
time reversible if for every n the series {x1, ..., xn} and
{xn, ..., x1} have the same joint probability distributions
(Weiss 1975). This means this kind of process is invari-
ant under the reversal arrow of time, and Gaussian linear
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processes belong to this kind of reversible processes. Con-
versely, time series irreversibility is believed to be indicative
of the presence of nonlinearities in the underlying dynamics
(Roldán and Parrondo 2010; Lacasa et al. 2012). Since non-
linearity results in an asymmetry of certain statistical prop-
erties under time reversal, studying temporal irreversibility
of time series is taken to be an important indirect quantita-
tive assessment of nonlinearity (Diks et al. 1995; Stone et al.
1996). To quantify the nonlinearity effect from the view
point of time irreversibility has been applied to study obser-
vational time series from various fields of research such as
physiological series (Yang et al. 2003; Costa et al. 2005;
Cammarota and Rogora 2006; Costa et al. 2008; Donges
et al. 2013).

Several statistical tests have been developed to detect
and quantify irreversibility in time series (Daw et al. 2000;
Cammarota and Rogora 2006; Costa et al. 2008; Lacasa
et al. 2012; Donges et al. 2013). Most of these methods
firstly perform a time series symbolization and usually make
an empirical partition of the data range and then analyze
the symbolized series by statistical comparison of symbol
string occurrence in the forward and backward series (Daw
et al. 2000). Due to an extra amount of ad hoc informa-
tion for symbolization procedure, it has been thought that
the results from these methods may depend on these extra
parameters (Lacasa et al. 2012). Most recently, Lacasa and
his colleges developed another method (Lacasa et al. 2012)
based on horizontal visibility graph (Luque et al. 2009),
which is an algorithmic variant of visibility graphs (Lacasa
et al. 2008). Without an extra amount of ad hoc informa-
tion for symbolization procedure, they show that irreversible
dynamics results in an asymmetry between the probability
distributions of the numbers of incoming and outgoing links
in directed horizontal visibility graphs of given time series
(Lacasa et al. 2012; Donges et al. 2013).
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Since nonlinear processes govern the dynamics of many
real-wold systems, temporal irreversibility may be an
important property of many time series derived from pro-
cesses in nature (Burykin et al. 2011). As one of the most
important measures of natural changes, temperature records
(Koscielny-Bunde et al. 1998; Bunde et al. 2005; Zhai and
Pan 2003; Li et al. 2009; Yuan et al. 2010; Yuan and Fu
2014) are the best choice to carry on analysis of temporal
irreversibility. Is there time-irreversible behavior in the daily
mean temperature series? We will address this issue by the
directed horizontal visibility graph (DHVG) method devel-
oped by Lacasa and his colleges (Lacasa et al. 2012). To our
best knowledge, there is no answer in the literature to this
issue. Though it has been found that there is a markedly non-
linear feature of daily terrestrial mean temperature, where
the number of warming steps is significantly different from
the number of cooing steps (Bartos and Jánosi 2005; Gyüre
et al. 2007). There is also no answer whether this kind of
local asymmetry found in daily mean temperature records is
related to global temporal irreversibility; we will solve this
problem from two aspects, observational analysis and cal-
culations of deterministic time series with given asymmetric
parameters.

The rest of the paper is organized as follows. In Section 2,
we will make a brief introduction to the datasets used in this
paper. We will focus on the DHVG method, the probability
distributions of the steps of continuous increments or decre-
ments, and the method quantifying the relationship between
time irreversibility and asymmetry in Section 3. The results
are discussed in Section 4. In Section 5, discussions and
conclusions are made.

2 Data

In this article, daily mean temperatures from 182 stations
are used for our analysis. The data are obtained from
the China Meteorological Data sharing Service System
(http://cdc.cma.gov.cn), with length of 53 years, from 1960
to 2012. Observations from all 182 meteorological stations
are taken part in international exchange, and they have been
homogenized (Li et al. 2009). Before our analysis, we first
standardize the data by removing the seasonal trend through
subtracting the annual cycle, as T ′

i = Ti − 〈Ti〉 (Koscielny-
Bunde et al. 1998), where Ti is the daily temperature and
〈Ti〉 is long-time climatological average for each calendar
day. Just as has been accepted, this procedure cannot remove
slow background trends such as a gradual shift of annual
mean temperature (Bartos and Jánosi 2005).

In order to investigate nonlinear impact in original tem-
perature anomaly variations, surrogate procedures such as
shuffling (Makse et al. 1996; Govindan et al. 2007) have
been applied to normalized temperature anomaly series to

generate surrogated data with 1000 samples for each group.
Fourier-filtering techniques can produce stochastic series
which have the same power spectral density as the orig-
inal series. However, for non-Gaussian distributions, the
shape of probability density function (PDF) will not be pre-
served after Fourier filtering. In these cases, we applied
an iterative algorithm introduced by Schreiber and Schmitz
(1996) and Eichner et al. (2007) to keep the power spectral
density and PDF unchanged. This is the so-called phase ran-
domize surrogate procedure (PRS). These surrogated series
will be analyzed and compared with original temperature
anomaly series to investigate the effect of linear correla-
tion and nonlinear correlations on asymmetrical behaviors.
Meanwhile, a linear stochastic first-order autoregressive
(AR(1)) process fitted to original temperature anomaly vari-
ations has been generated to check the nonlinear effect on
asymmetrical behaviors. Since there are short memory and
long-term memory in the mean daily temperature fluctu-
ations, an improved version of AR(1), an extension of a
first-order autoregressive model with power-law correlated
noise, introduced by Király and his colleague (Király and
Jánosi 2002), to simulate long-term memory and short-term
memory in daily mean temperature fluctuations is adopted
to generate surrogate series:

xi = (δ1 − c)xi−1 + εηi, (1)

where

c = 2(α − 0.5)3/2 (2)

δ1 = 0.805 and ε = 2 (as given by Király and colleagues),
ηi is a long-term memory series which α = 0.63.

Apart from above observational and surrogated series, a
simple deterministic time series with exactly known prop-
erties (such as prescribed value of multiscale asymmetry)
introduced by Burykin and his colleagues (Burykin et al.
2011) has been applied to generate determistic series for
the sake of understanding the relation between tempo-
ral irreversibility and time asymmetry. They introduced
an asymmetric Weierstrass function WA (constructed from
asymmetric sawtooth functions instead of cosine waves),
and it is defined as follows:

WA(t) =
kmax∑

k=1

f −kH
min St (2πf k

mint + ε(k), ω) (3)

Here, ω(0 < ω < 1) is an asymmetry parameter that
determines the relative position of the maximum within one
period of the sawtooth function St (t), and St (t) generates
a sawtooth wave with period 2 for its argument t . H is the
so-called Hurst exponent which is equal the detrended fluc-
tuation analysis (DFA) exponent α. ε(k) is a random series
with uniform distribution within interval (−π, π). Other
parameters like fmin is the minimum frequency of oscilla-
tions and kmax is the maximum number of modes. And we
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set H = 0.67 and different ω with range from 0 to 1 to gen-
erate 1000 group sequences for each w. Then we choose the
length of each dataset Tmax = 10 s, the sampling frequency
fs = 5000 Hz, and the minimum frequency fmin = 1.5 Hz.

3 Methods

3.1 DHVG

Following the works of Lacasa and his colleagues (Luque
et al. 2009; Lacasa et al. 2012), we firstly transform each
datum of a real-value time series {xt }t=1,...,N of N data
points to a node in the horizontal visibility graph. And then
links between two nodes i and j in the graph are calculated
according to the following geometrical criterion (Lacasa
et al. 2012; Luque et al. 2009; Donner et al. 2010):

xn < xi, xj , ∀ n |i < n < j (4)

According to DHVG first introduced by Lacasa and his
colleagues (Lacasa et al. 2012), the degree k(t) of node t

is now split into an ingoing degree kin(t), and an outgo-
ing degree kout(t), such that k(t) = kin(t) + kout(t). For a
graphical illustration of the method, see Fig. 1. The in and
out degree distributions of a DHVG are defined as the prob-
ability distributions of kout(t) and kin(t) of the graph, where

Fig. 1 Graphical illustration of DHVG and steps of consecutive incre-
ments and decrements. In the bottom, we plot a sample time series
{x(t)}with 11 data points. Each datum in the series is mapped to a node
in the graph. Arrows, describing allowed directed visibility, link nodes.
In this graph, each node has an ingoing degree kin, which accounts for
the numbers of links entering this node, and an outgoing degree kout,
for the numbers of links departing from this node; see the top parts.
In the middle parts, dash lines outline the steps of consecutive incre-
ments and decrements, and s is step length of consecutive increments
or decrements

pout(k) ≡ p(kout = k) and pin(k) ≡ p(kin = k). Lacasa
and his colleagues (Lacasa et al. 2012) have proven

pout(k) ≡ pin(k) =
(
1

2

)k

, k = 1, 2, 3, . . . (5)

for uncorrelated stochastic series.
The DHVG method has not been applied to analyze the

observational series, though it has been successfully applied
to series from chaotic systems or generated stochastic series
(Lacasa et al. 2012). In this paper, we will employ it to check
the temporal irreversibility in observational temperature
time series.

3.2 Steps of consecutive increments and decrements

Cooling rapidly and warming gradually asymmetry found
in daily mean temperature records have been quantified
by number differences between warming steps and cooling
steps (Bartos and Jánosi 2005; Gyüre et al. 2007; Ashkenazy
et al. 2008). In order to calculate steps of consecutive incre-
ments and decrements, symbolization procedure is applied
to convert continuous valued time series measurements into
a stream of discrete symbols. Typically, the range of the
observed variable is partitioned into a finite number of bins,
such that all measurements falling within a given bin are
transformed into the same symbolic value. The objective in
making such a transformation is to faithfully preserve dom-
inant dynamical features while simplifying and speeding up
subsequent computations. Let {xt }t=1,...,N be a real-value
time series ofN data points. We can classify a series into the
two states: one is decreasing, the other is increasing. These
two states are mapped to the symbols 0 and 1, respectively;
see Fig. 1:

In =
{
0, if xn � xn−1

1, if xn > xn−1
(6)

We map the original series of length N to a binary sequence
of lengthN−1 and calculate steps of consecutive symbols 0
(or 1). So s decreasing steps are defined as follows: for con-
tinuous time [t, s + t + 1], we have condition xt < xt+1 >

xt+2... > xt+s < xt+s+1. s increasing steps is defined
as follows: we have condition xt > xt+1 � xt+2... �
xt+s > xt+s+1. And then probability distributions of s

increasing or decreasing steps are pi(s) ≡ p(si = s) and
pd(s) ≡ p(sd = s). Let {xt }t=1,...,∞ be an infinite sequence
of independent and identically distributed random variables
extracted from a continuous probability density f (x). Then,
distributions of both consecutive decreasing and increasing
steps are

pd(s) ≡ pi(s) = 3

[
1

(s + 1)! − 2

(s + 2)! + 1

(s + 3)!
]

. (7)

Next, we will give an explanation of the increasing states.
For a given s, the probability is πs

(s+3)! in a stochastic series,
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where πs are the permutation of xt > xt+1 � xt+2... �
xt+s+1 > xt+s+2 . We can get πs = s2 + 3s + 1 and

p(s) ∼ 1

(s + 1)! − 2

(s + 2)! + 3

(s + 3)! . (8)

Using
∞∑

s=1

p(s) = 1, (9)

we finally get

pd(s) = pi(s) = 3

[
1

(s + 1)! − 2

(s + 2)! + 1

(s + 3)!
]

.

(10)

3.3 Quantifying time asymmetry and temporal
irreversibility

We now study the information stored in the in and out
distributions, taking into account the amount of temporal
irreversibility and distributions of consecutive decreasing
and increasing steps distributions taking into account the
amount of time asymmetry of the associated series. And this
can be measured as the distance (in a distributional sense)
between the in and out degree distributions or the decreasing
and increasing distributions. We make use of the absolute
distance as the distance between two distributions. Given
a random variable x and two probability distributions p(x)

and q(x), absolute distance between p and q is defined as
follows:

L(p, q) =
∑

x∈χ

|p(x) logp(x) − q(x) log q(x)|. (11)

with |10−m log 10−m(m → +∞)| = 0 log 0 = 0, where
it is obvious that L(p, q) = L(q, p), which vanishes if
and only if both probability distributions are equal p = q

and it is bigger than zero otherwise. Why do we choose
this measure to quantify the difference between two prob-
ability distributions p(x) and q(x), not other well defined
measures? Two aspects let us make this choice. First, usu-
ally the maximum kout (or sd ) is not equal to the maximum
kin (or si), and then we may meet the case p(kout) = 0 (or
p(sd) = 0) but p(kin) �= 0 (or p(si) �= 0) and vice versa,
which will result in some singular points in some measures,
but this will not occur in measure (11). Second, results from
measure (11) is robust and will not qualitatively differ from
results from other well-defined distance measures; we will
show this in the last section.

The distance between pd(s) and pi(s) is

L1(pd, pi) =
∑

s

|pd(s) logpd(s) − pi(s) logpi(s)|, (12)

while that between pin(k) and pout(k) is

L2(pin, pout) =
∑

k

|pin(k) logpin(k) − pout(k) logpout(k)|. (13)

Fig. 2 The in and out degree
distributions of DHVG
associated to the a white noise
series of 105 data points, b
observational daily mean
temperature anomaly series over
Chongqing from 1960 to 2012, c
AR(1) process fitted to the
observational daily mean
temperature anomaly series over
Chongqing from 1960 to 2012,
and d PRS generated series from
the observational daily mean
temperature anomaly series over
Chongqing from 1960 to 2012.
Hollow circle is pin and solid
circle is pout

a)

c) d)

b)
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Fig. 3 The distributions of
steps of consecutive increments
and decrements associated to the
a white noise series of 105 data
points, b observational daily
mean temperature anomaly
series over Chongqing from
1960 to 2012, c AR(1) process
fitted to the observational daily
mean temperature anomaly
series over Chongqing from
1960 to 2012, and d PRS
generated series from the
observational daily mean
temperature anomaly series over
Chongqing from 1960 to 2012.
Hollow circle is pi and solid
circle is pd

a)

c)

b)

d)

4 Results

4.1 Temporal irreversibility of temperature variations

First of all, the DHVG method is employed to daily mean
temperature anomaly variations over a representative sta-
tion, Chongqing (29◦ N, 106◦ E) situated at the transitional
area between the Qinghai-Tibet Plateau and the plain on the
middle and lower reaches of the Yangtze River in the sub-
tropical climate zone often swept by moist monsoons. The
DHVG results indicate that the difference between degree
distributions of pin and pout over Chongqing is markedly
predominant (see Fig. 2b), while this dominated differ-
ence cannot be found in linear processes, such as Gaussian
white noise process (see Fig. 2a), where the degree distri-
butions of pin and pout collapse toward a single line over
a nearly whole range, the scatter over large k is caused by
finite size of samples. Similar behaviors can be found in
the AR(1) process (see Fig. 2c) and PRS surrogated series
from original daily mean temperature anomaly variations
over Chongqing (see Fig. 2d). Meanwhile, it is obvious
that link length k is different for ingoing and outgoing
link of daily mean temperature anomaly variations over
Chongqing, the maximum kout is 17, while the maximum
kin is only 11. However, the lengths of ingoing and outgoing
link for Gaussian white noise process are equal, AR(1) and
PRS surrogated processes. All these results suggest that the

daily mean temperature anomaly variations over Chongqing
is a time-irreversible process, and quantitative measure of
time irreversibility given by L2 is L2(pout, pin) = 0.328.

What causes this markedly global time irreversibil-
ity in daily mean temperature anomaly variations over
Chongqing? One possible mechanism is the time asym-
metry found in the local trend in daily mean temperature
anomaly variations over mid-latitudes (Ashkenazy et al.
2008). This kind of time asymmetry can be quantified by
steps of consecutive increments and decrements of tempera-
ture variations; see Fig. 3. Figure 3b shows that the distribu-
tion of steps of consecutive increments si departs from that
for steps of consecutive increments sd in the observational
records. However, this feature cannot be found in the lin-
ear processes, such as Gaussian white noise process given
in Fig. 3a, AR(1) process fitted to the observational records
shown in Fig. 3c, and PRS surrogated series in Fig. 3d.
We can also find that the maximum length of consecutive
increments and decrements of temperature variations is

Table 1 L1 and L2 calculated from observational series, AR(1) fitted
to the same observational series, PRS generated series from the same
observational series, and from Gaussian white noise series

Obs. AR(1) PRS White noise

L1 0.328 0.0126 0.0125 0.00249

L2 0.412 0.0177 0.0201 0.00281
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Fig. 4 Spatial distributions of L1 and L2. Hollowed symbols for L2 and solid symbols for L1. The circles denote L̄i < Li, (i = 1, 2), squares
denote Lic < Li ≤ L̄i , (i = 1, 2), and rhombuses denote Li ≤ Lic, (i = 1, 2)

different; there are longer length for consecutive increments
(11) than decrements (8), i.e., cooling quickly and warming
gradually will be often found in the temperature variations.
The quantified difference is L1 = L(pi, pd) = 0.412.
The better concordance between L1 and L2 is revealed in
Table 1 for comparison between results in Figs. 2 and 3.

Compared to the linear processes, AR(1) or PRS surrogated
processes, the value of L1 or L2 from observational series
is one order larger, even two orders larger than those from
Gaussian white noise processes.

Apart from these results, Fig. 4 displays the bet-
ter spatial concordance between L1 and L2 over whole

Fig. 5 The scatter plots of L1
vs L2 and L′

1 vs L′
2. a, b

Theoretical series with
H = 0.67; c, d observational
daily mean temperature anomaly
series over 182 stations from
1960 to 2012. Here, the
horizontal and vertical dash
lines denote statistically
significant time series
irreversibility when L1 and L2
are above or right over these
lines

a) b)

c) d)
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Fig. 6 Variations of L1 and L2 with different H and ω = 0.066
calculated from 1000 samples. Hollow circles for maximal L1 and
solid circles for mean L1 with one standard deviation. Hollow squares
for maximal L2 and solid squares for mean L2 with one standard
deviation

regions of China. The largest time series irreversibility or
temporal asymmetry simultaneously can be found over
south of China, and larger time series irreversibility or tem-
poral asymmetry simultaneously occurs over northeast and
southwest of China. Although we adopt different measures,
this spatial distribution of time series irreversibility or tem-
poral asymmetry recovers the results given in Ashkenazy
et al. (2008), where NCEP reanalysis temperature records
have been applied to study surface daily mean temperature
cooling rapidly and warming gradually at the mid-latitudes.
This great concordance between L1 and L2 can also be
found in their scatter plots in Fig. 5c, d, where Fig. 5c
is result for L1 and L2 from observational records over
182 stations, while Fig. 5d is for re-scaled L1 and L2 by
L′

i = Li−min(Li)
max(Li)−min(Li)

, i = 1, 2. It is obvious there is great
linear correspondence between L1 and L2 over the whole
range.

4.2 Results from deterministic time series

Analysis for the observational records suggests there is great
well concordance between qualifier L1 and L2. Could this
concordance be justified in theoretical records? Over the
range (the values that L2 takes) the same as observational
records, similar linear concordance between L1 and L2 is
found for theoretical records, only when L2 takes smaller
value in a narrower range, i.e., L2 < 0.15, there is a little
depart from the linear behavior; see Figs. 5a, b, where H is
set to be 0.67, the same as the mean value calculated from
the observational daily mean temperature variations (Yuan
et al. 2010). Actually, it can be found that over the whole
range that L2 could cover, linear feature between L1 and L2

can be found only in some intervals (see Fig. 5a), and there
are some transition points. The reason causing this feature is
that there are two parameters to control the variations for the
theoretical time irreversibility process, i.e., H and ω. And
these two parameters affect two qualifiers differently. L1 is
much sensitive to the variation of H , but L2 is not, which
can be found in Fig. 6. This results from that L2 quanti-
fies the time series irreversibility, which is not affected by
memory intensity of associated processes, and L1 quantifies
intensity of the local asymmetrical variations of associated
processes, which can be affected by the memory intensity
of associated processes, since there will be more large-scale
structures in the stronger long-range correlated processes.
Over the weak range of asymmetry parameter ω, both L1

and L2 change nearly linearly with variation of ω, and only
L1 has some weakly jumping points; see Fig. 7a. With the
asymmetry intensity increasing (the value of ω decreases),
both L1 and L2 dramatically depart from their linear vari-
ation with ω. And the ratio between L1 and L2 provides a
vivid feature for these variations (see Fig. 7b), where there
are two dominated linear ranges over the middle parts of
asymmetry intervals. Surprisingly, both L1 and L2 calcu-
lated from daily mean anomaly temperature variations over
all stations in China are within these two linear ranges; see
Figs. 5c and 7.

a) b)

Fig. 7 a Variations of L1 and L2 with different ω and H = 0.67. b Variations of L2/L1 with different ω and H = 0.67
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Fig. 8 Variations of L1 and L2 with different series length calculated
from white noise series

5 Conclusion and discussion

To determine whether daily mean anomaly temperature
variations are irreversible or not, a criteria is required to
test its statistical significance. We calculate L1(pi, pd) and
L2(pin, pout) for Gaussian noise of different lengths (from
103 to 105), as shown in Fig. 8, and we can conclude that
both mean and maximum values of L1 and L2 decrease
with increasing series length. To reach a reliable numeri-
cal statistics, there are 1000 samples in each group with the
same length. Detailed statistics for L1 and L2 have been
listed in Table 2, where the mean value, standard devia-
tion, and maximum of L1 and L2 have been provided. The
criteria to define a piece of time series with given length
to be time series irreversible here is to set the maximum
L2(pin, pout) and L1(pi, pd) in the 1000 simulations as the
lowest boundary for time series irreversibility. For series
of length 2 × 104, nearly equal to the series length of
observational temperature variations used in this paper, the
critical value for L1c is 0.0572 and L2c is 0.0481, which
have been plotted as the horizontal and vertical dash lines
in Fig. 5 to denote as statistically significant time series
irreversibility when L1 and L2 are above or right over
these lines. Obviously, daily mean anomaly temperature

variations over all but one stations are significantly (confi-
dence level >99.99 %) time series irreversible.

The above results show that statistics calculated from
DHVG and steps of consecutive increments and decre-
ments over certain ranges can be employed to give the
same quantified measure on time series irreversibility or
temporal asymmetry. Actually, DHVG describe the global
links between different nodes, especially for those nodes of
extreme values; however, steps of consecutive increments
and decrements quantify mainly the local interactions. If
the asymmetry intensity of associated processes is not so
large, quantifiers from both DHVG and steps of consecutive
increments and decrements will give the same results. Since
calculation of steps of consecutive increments and decre-
ments is much simpler than that for DHVG, in some cases,
we can choose calculation of steps of consecutive incre-
ments and decrements to quantify time series irreversibility
of associated processes.

All the above results are calculated from measure (11);
are they robust to other well-defined measures? We will
answer this question next. Here, we compare results from
measure (11) to those from other two well-defined mea-
sures: the Kullback-Leibler divergence (Cover and Thomas
2006; Kowalski et al. 2011) used by Lacasa et al. (2012) and
Euler distance between distributions (Cover and Thomas
2006; Kowalski et al. 2011).

The Kullback-Leibler divergence (Lacasa et al. 2012;
Cover and Thomas 2006; Kowalski et al. 2011) is defined as

D(p(x)‖q(x)) =
∑

x∈χ

p(x) log
p(x)

q(x)
. (14)

where D(p(x)‖q(x)) �= D(q(x)‖p(x)) in general and we
use the convention that 0 log 0

0 = 0, 0 log 0
q

= 0 and

p log p
0 = ∞ (Cover and Thomas 2006). However, in our

calculation of D(p(x)‖q(x)) from the observational series,
p = 0 or q = 0 only occurs when the value of links k

or steps s is larger, but its probability is much smaller (see
Figs. 2b and 3b), in order to avoid that this case (p log p

0 =
∞) determines the calculation of D(p(x)‖q(x)), we take
p log p

0 = 0. This is also why we do not choose

D(p(x)‖q(x))

as a major measure in our works.

Table 2 Statistics of L1 and L2 calculated Gaussian white noise series of different length sizes

Length (103) 0.5 1 2 4 8 10 20 100

L̄2 0.144 0.105 0.0771 0.0566 0.0405 0.0368 0.0262 0.0120

max(L2) 0.306 0.226 0.147 0.113 0.0748 0.0700 0.0481 0.0230

σ(L2) 0.0404 0.0275 0.0199 0.0140 0.0100 0.00884 0.00624 0.00285

L̄1 0.129 0.0928 0.0677 0.0493 0.0354 0.0321 0.0229 0.0104

max(L1) 0.345 0.233 0.177 0.116 0.0813 0.0712 0.0572 0.0227

σ(L1) 0.0518 0.0365 0.0262 0.0184 0.0125 0.0116 0.00804 0.00347
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And then the Kullback-Leibler divergence between pd(s)

and pi(s) is

D1(pd‖pi) =
∑

s

pd(s) log
pd(s)

pi(s)
, (15)

while Kullback-Leibler divergence between pin(k) and
pout(k) is

D2(pin‖pout) =
∑

k

pin(k) log
pin(k)

pout(k)
. (16)

The Euler distance between distributions (Cover and
Thomas 2006; Kowalski et al. 2011) is defined as

E(p(x), q(x)) =
∑

x∈χ

|p(x) − q(x)|. (17)

where it is obvious E(p(x), q(x)) = E(q(x), p(x)).
And then the distance between pd(s) and pi(s) is

E1(pd, pi) =
∑

s

|pd(s) − pi(s)|, (18)

while distance between pin(k) and pout(k) is

E2(pin, pout) =
∑

k

|pin(k) − pout(k)|. (19)

Actually, the results are robust and not sensitive to
the measure we have chosen; see Fig. 9. It is obvious
that both the Kullback-Leibler divergence and Euler dis-
tance reach the similar conclusion as we have shown from
measure (11). Nearly all the temperature variations over

China are time asymmetric and temporal irreversible. And
the results from both the horizontal visibility graph and
consecutive steps of increase or decrease variations are lin-
early dependent each other. Due to this, here we only present
comparisons between measure (12) with measures 15 and
18 (see Figs. 9c, d), where both measures give qualitatively
the same results, although the Euler distance seems a little
scattering.

At last, we want to point out that fluctuations of many
atmospheric variables are considered to be well approxi-
mated by low-order autoregressive (AR) processes on small
time scales (von Storch and Zwiers 1999). An AR model
describing a fluctuating signal as a linear function of its past
values plus an uncorrelated noise term is taken to be fully
adequate and there seems to be a consensus in the litera-
ture for daily surface temperature records that higher than
the second-order AR models are rarely needed after proper
detrending (Bartos and Jánosi 2005). However, the results
shown in this paper indicate that the linear processes can-
not capture the nonlinear features hidden in the measured
series. Since nearly all daily mean temperature anomaly
series are time series irreversible or temporal asymmetry,
in order to properly describe the nonlinear features of daily
mean temperature anomaly variations, new statistical model
is required. Since it has been found that cooling rapidly and
warming gradually asymmetry found in daily mean temper-
ature records over mid-latitudes is partially related to cold
fronts (Ashkenazy et al. 2008), where nonlinear behavior

Fig. 9 The scatter plots of a D1
vs D2, b E1 vs E2, c L1 vs D1,
and d L1 vs E1 from the
observational daily mean
temperature anomaly series over
182 stations from 1960 to 2012.
Here, the horizontal and vertical
dash lines denote statistically
significant time series
irreversibility when calculated
measures are above or right over
these lines a) b)

c) d)



170 Fenghua Xie et al.

is more important, incorporating nonlinearity to understand
and correctly model this kind of time asymmetry or tem-
poral irreversibility is of great importance to reproduce
physical system in more details and to explain fundamental
dynamics from a higher-order approximation.
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