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Experimental verification of the nonadiabatic effect in strong-field
ionization with elliptical polarization
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We perform high-resolution measurement of ellipticity-resolved momentum distributions from tunneling
ionization of atoms along the major and minor axes in strong elliptically polarized fields, respectively. With
developing a subcycle nonadiabatic strong-field tunneling theory for arbitrary laser polarization, we show that
the electron initial conditions for positions and momenta after the tunneling are nonadiabatically intertwined with
the instantaneous laser field. We extract the transverse and longitudinal momentum distributions at the tunnel
exit with respect to the field ellipticity. We calibrate the laser intensity with ab initio calculation by solving the
time-dependent Schrödinger equation. The nonadiabatic effects are confirmed experimentally and theoretically.
Disentangling the effect of the long-range Coulomb potential from the laser field, we have further demonstrated
that the momentum-time structure of the tunneling wave packet in strong laser fields can be approximatively
imaged when treating the Coulomb effect perturbatively.
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I. INTRODUCTION

Electron tunneling is one of the critical processes when
atoms and molecules are exposed to strong laser fields [1].
In low-frequency fields, tunneling is usually treated as if the
electron penetrates a static barrier created by the binding
potential and the instantaneous electric field in adiabatic
approximation. This picture is traditionally described by the
Ammosov-Delone-Krainov (ADK) theory [2,3]. Increasing
the laser frequency, i.e., when the Keldysh parameter γ ∼ 1
(γ = √

Ip/2Up, Ip is the ionization potential, Up the pon-
deromotive potential, Up = E2

0/4ω2, E0 the field amplitude,
and ω the field frequency; atomic units are used throughout
unless otherwise specified), the tunneling barrier would be
time dependent and nonadiabatic effects are expected to be
important in the tunneling process [4]. Recently, there have
been considerable theoretical works which have predicted
the existence of nonadiabatic effects in the strong-field
tunneling process [5–13]. However, the experimental test of
nonadiabaticity is particularly complicated, and it has been
shown that nonadiabatic effects are less significant [14,15]. A
controversial, even conflicting conclusion between the theory
and experiment has been made.

In reality, both steps, electron tunneling and subsequent
motion in the laser and Coulomb fields, are intrinsically
intertwined, preventing an unambiguous investigation of the
isolated tunneling process itself [13]. Nonetheless, some mod-
ern powerful techniques, such as the attoclock [16], principally
rely on a well-defined relation between the measured electron
momentum and the laser phase at the moment of electron
emission. Using the angular streaking method, the position of
the tunnel exit was revealed in near-circularly polarized laser
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fields within the tunnel ionization in parabolic coordinates
with induced dipole and Stark shift (TIPIS) model [17].
The reconstructed momentum distribution transverse to the
instantaneous laser field direction at the tunnel exit (initial
transverse momentum) in circularly polarized laser fields was
shown to be larger than the prediction of the adiabatic tunneling
theory [14]. The discrepancy was improved by consideration
of the effect of the preexponential factors [18]. As to the
momentum parallel to the instantaneous laser field at the tunnel
exit (initial longitudinal momentum), a common assumption
widely used is to set it to zero in adiabatic theory [3]. Through
high-harmonic generation by orthogonally polarized two-color
laser fields, a nonzero initial longitudinal momentum offset at
the tunnel exit was revealed [19]. The width of the initial
longitudinal momentum spread is still controversial [20,21].
In all experimental cases, only one physical quantity was mea-
sured and the other physical quantities were regarded to vary
independently. The position of the tunnel exit and momentum
at the tunnel exit cannot be determined to arbitrarily high
accuracy because of Heisenberg’s uncertainty principle. Hence
it is necessary to describe the tunneling current consistently
and to solve the controversy between the theory and the
experiment.

In this paper, we perform high-resolution experimental
measurements of the ellipticity-resolved momentum distri-
butions from tunneling ionization of atoms along the minor
and the major axes of the laser ellipse, respectively. Then
we present a subcycle nonadiabatic tunneling theory based
on the strong-field approximation (SFA) in terms of quantum
orbits [22,23]. The electron initial conditions are shown to
be nonadiabatically coupled with each other at each elec-
tron emission time. By investigating the ellipticity-resolved
photoelectron momentum distributions, we show that the
nonadiabaticities lead to very different initial momentum
distributions compared to the adiabatic case. We further single
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out the effect of the long-range ionic potential and demonstrate
that the momentum-time structure of the tunneling wave packet
can be reconstructed using strong elliptically polarized laser
fields.

II. EXPERIMENTAL METHOD

Experimentally, linearly polarized laser pulses (25 fs,
790 nm, 3 kHz) were produced from a multipass amplifier
Ti:sapphire laser system. The momentum spectra of ions were
measured by a cold target recoil-ion momentum spectrom-
eter (COLTRIMS) setup [24] applied with a static electric
field (∼3 V/cm). When rotating the laser polarization, it is
very difficult to measure the ellipticity-dependent momentum
distribution for electrons. Thus we turn to measuring the
ellipticity-dependent momentum distribution of ions because
the momenta of electrons and ions are conserved for single
ionization. For the input linearly polarized laser pulses, the
ellipticity was controlled by rotating the relative orientation
of the fast axis of a half-wave plate, which was put in front
of a quarter-wave plate before the vacuum chamber. The
ellipticity-dependent momentum vectors along the major axis
and the minor axis in the polarization plane can be measured,
respectively, along the time-of-flight (TOF) direction where
we have the best momentum resolution for ions.

As known, the calibration of the laser intensity in the strong-
field community is a hard task and is always model dependent.
In this work, we calibrated the laser intensity with an ab initio
method, i.e., solving the time-dependent Schrödinger equation,
which is independent of particular models (see the Appendix).
The effective intensity of the laser pulse was calibrated to be
∼1.2 × 1014 W/cm2 for the experiment. Using the calibrated
effective intensity Ieff , one obtains the peak intensity I0 with the
relationship Ieff = 1

N

∫ I0

0 I dN
dI

dI , where N is the relative num-
ber of photoelectron, dN

dI
∝ W (I ) dV

dI
, W (I ) is the ionization

probability, and dV
dI

∝ 1
I 5/2 (I0 + 2I )(I0 − I )1/2 is the volume

in the laser focus. The peak intensity is ∼1.52 × 1014 W/cm2

when the effective intensity is 1.2 × 1014 W/cm2.

III. THEORETICAL MODEL

A. Adiabatic model

To test nonadiabaticity, we first calculate the ellipticity-
dependent momentum distributions along the major and minor
axes using the classical-trajectory Monte Carlo method within
the adiabatic approximation (see [21] for more details). In this
adiabatic model, the electron initial position along the laser
polarization direction is derived from the Landau’s effective
potential theory [25]. The tunneled electrons have a Gaussian-
like distribution on the transverse momentum perpendicular to
the instantaneous laser field and zero longitudinal momentum
along the instantaneous laser field. Each electron trajectory
is weighted by the ADK ionization rate [4,5]. After tunneling
the electron evolution in the combined laser field and Coulomb
field is solved via the classical Newtonian equation; i.e., r̈ =
−r/r3 − F(t) [r is the distance from the electron to the nucleus
and F(t) is the electric field of the laser pulse]. After the
momenta and the positions of the electrons are recorded at

the end of the laser field, the three-dimensional asymptotic
momenta are obtained.

B. Nonadiabatic model

To overcome the controversial situation between the adia-
batic theory and measurement, we have further developed a
subcycle nonadiabatic theory for arbitrary laser polarization.
A laser field with arbitrary ellipticity ε is given by the vector
potential and the electric field, respectively,

A(t) = −F0

ω
sin(ωt)z + ε

F0

ω
cos(ωt)x,

(1)
F(t) = F0 cos(ωt)z + εF0 sin(ωt)x,

where z is the major axis and x is the minor axis. Based on the
strong-field approximation involving the quantum orbits (see,
e.g., Refs. [22,23,26,27]), the transition rate from the ground
state to a continuum state can be calculated with exponential
accuracy,

W = exp{−2 ImS}, (2)

S =
∫ t0

ts

dt

{
1

2
[P + A(t)]2 + Ip

}
, (3)

where t0 is a point on the real axis of t (the ionization time),
and ts is the complex transition point. Here P is the drift
momentum (the conserved canonical momentum), which is a
real value. Thus the complex transition point ts should satisfy
the saddle-point equation [26,27],

1
2 [P + A(ts)]

2 + Ip = 0. (4)

We assume ts = t0 + iti , where t0 is the ionization time and
ti is the so-called tunneling time [1]. Using the laser field of
Eq. (1), we have

1
2 (Pz − F0/ω sin ωt0 cosh ωti − iF0/ω cos ωt0 sinh ωti)

2

+ 1
2 (Px + εF0/ω cos ωt0 cosh ωti

− iεF0/ω sin ωt0 sinh ωti)
2 + 1

2P 2
y + Ip = 0. (5)

Using the relationship between the initial momentum v =
(vx,vy,vz) and the conserved canonical momentum P,

Pz = vz + F0 sin(ωt0)/ω

Px = vx − εF0 cos(ωt0)/ω (6)

Py = vy,

where vx,vy , and vz are the initial momentum at the tunnel
exit point along the x, y, and z directions, respectively. At an
instantaneous laser phase, the initial longitudinal momentum
vp and initial transverse momentum v⊥ with respect to the
instantaneous laser polarization direction at the tunnel exit
should satisfy

vz = vp cos β − v⊥ sin β
(7)

vx = vp sin β + v⊥ cos β,

where β = tan−1(ε tan ωt0) is the angle between the instanta-
neous laser polarization direction and the z axis. vp is positive
when the direction is the same as that of the instantaneous laser
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field. Thus Eq. (6) can be rewritten as

Pz = sgn(Fz)[vp/
√

1 + ε2tan2ωt0 − v⊥ε tan ωt0/
√

1 + ε2tan2ωt0] + F0 sin ωt0/ω

Px = sgn(Fz)[vpε tan ωt0/
√

1 + ε2tan2ωt0 + v⊥/
√

1 + ε2tan2ωt0] − εF0 cos ωt0/ω

Py = vy, (8)

where sgn(Fz) = 1 for Fz � 0, and sgn(Fz) = −1 for Fz < 0. Substituting Eq. (8) into Eq. (5), one obtains

cosh ωti =
⎧⎨
⎩

1
a4−ε2

[
ε
(
a ω

F0
v⊥ − ε

) ± a2
√(

a ω
F0

v⊥ − ε
)2 + (a4 − ε2)(1 + γeff

2/a2)
]
, a2 �= |ε|

1
2

(
1 − aω

εF0
v⊥

) + a2

ε2 (1 + γeff
2/a2)/

[
2
(
1 − aω

εF0
v⊥

)]
, a2 = |ε|

, (9)

vp = (1 − ε2)F0 sin ωt0 cos ωt0

aω
(cosh ωti − 1), (10)

where a = |F (t0)|/F0 =
√

cos2ωt0 + ε2sin2ωt0 is the normal-
ized instantaneous laser field and γeff = ω

√
2(Ip + vy

2/2)/F0

is the effective Keldysh parameter [28]. Both the tunneling
time ti and the initial longitudinal momentum vp are functions
of the ionization time t0 and the initial transverse momentum
v⊥, vy .

To calculate the ionization probability, one needs to calcu-
late the classical action under the barrier, which is expressed
as

S = −
∫ t0

ts

dt

{
1

2
[P + A(t)]2 + Ip

}
. (11)

Using the laser field of Eq. (1), then

S = i

[
P 2

2
+ Ip + Up

]
ti − Pz

F0

ω2
(cos ωt0 − cos ωts)

−Px

εF0

ω2
(sin ωt0 − sin ωts)

+ (1 − ε2)F 2
0

8ω3
(sin 2ωt0 − sin 2ωts), (12)

where Up = (1+ε2)F 2
0

4ω2 is the ponderomotive energy. The real
part of Eq. (12) is related to a phase shift for the trajectory
under the barrier [27], while the imaginary part is related to
the ionization probability. Thus the ionization probability is
expressed as

Ws = exp(−2 ImS)

= exp

[
−2

(
P 2

2
+ Ip + Up

)
ti + 2Pz

F0

ω2
sin ωt0 sinh ωti

− 2Px

εF0

ω2
cos ωt0 sinh ωti

+ (1 − ε2)F 2
0

4ω3
cos 2ωt0 sinh 2ωti

]
. (13)

The instantaneous tunneling time v and the asymptotic
momentum P =

√
P 2

x + P 2
y + P 2

z are given by Eq. (8). Substi-
tuting Eq. (8) into Eq. (13), the instantaneous ionization rate
and the initial momentum distributions are obtained, which
makes no assumption on the electron momentum at the tunnel
exit.

The position of the tunnel exit point is related to the sub-
barrier trajectory [27]:

r0(t) =
∫ t

ts

dt ′[P + A(t ′)]. (14)

Thus r0(t) is expressed as

z(t) = Pz(t − ts) + F0

ω2
(cos ωt − cos ωts)

x(t) = Px(t − ts) + εF0

ω2
(sin ωt − sin ωts)

y(t) = Py(t − ts). (15)

The tunnel exit point is the real part of the position when
τ = 0; thus it is written as

Rez(t0) = F0

ω2
cos ωt0(1 − cosh ωti)

Rex(t0) = εF0

ω2
sin ωt0(1 − cosh ωti) (16)

Rey(t0) = 0.

From Eq. (16), one can see that the tunnel exit point is
along the instantaneous laser field direction in the nonadiabatic
model.

We further consider the effect of the under-the-barrier
Coulomb potential on the ionization probability and the initial
momentum distributions. The Coulomb effect can be included
by [29]

SC = −
∫ t0

ts

dtV [r0(t)], (17)

where r0(t) is the unperturbed trajectory in the laser field given
by Eq. (15). Because the Coulomb potential is divergent at
r = 0(t = ts), we use a matching procedure the same as in
Ref. [29]. Therefore Eq. (17) can be transformed into

SC = −i
Z

κ
ln κr1 − i

∫ 0

t1

dtV [r0(t)], (18)

where t1 (and the corresponding position r1) is the matching
point, κ = √

2Ip, and Z is the nuclear charge. The first term
in Eq. (18) comes from the asymptotic wave function of the
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field-free atom, which can be expressed as

− i
Z

κ
ln κr1 = i

Z

κ

∫ t1

ti− 1
κ2

dτ

ti − τ

= i
Z

κ

∫ t1

0

dτ

ti − τ
− i

Z

κ
ln κ2ti . (19)

Thus Eq. (18) can be rewritten as

SC = −i
Z

κ
ln κ2ti − i

Z

κ

∫ ti

0
dτ

[
κ

r0(τ )
− 1

ti − τ

]
. (20)

We have taken in Eq. (20) a limit as t1 → ti ; therefore
the dependence of SC on the matching point has dropped
out. Generally, r0(τ ) and SC are complex. We focus on the
imaginary part of SC , which is responsible for the Coulomb-
corrected ionization rate. Thus

ImSC = −Z

κ
ln κ2ti − Z

κ

∫ ti

0
dτ

(
κ|r1|

r1
2 + r2

2
− 1

ti − τ

)
,

(21)

where r1 and r2 are the real and imaginary part of r0(τ ),
respectively. As a result, the Coulomb-corrected ionization
probability is

WL =
[

2(2Ip)3/2

F0
C(t0,v⊥,vy)

] 2Z
κ

WS, (22)

where WS is the ionization probability of Eq. (13), and

C(t0,v⊥,vy) = φi

2γ
exp

{∫ φi

0
dφ

[
κ|r1|

ω
(
r2

1 + r2
2

) − 1

φi − φ

]}
,

(23)

with φi = ωti . In this part, we have derived the subcycle-
resolved nonadiabatic tunneling theory.

From Eqs. (9) and (10), one can see that the ionization
time ti and the initial momentum at the tunnel exit are coupled
in the laser field because of nonadiabatic effects. Here, the
distribution of the initial longitudinal momentum and the
position of the tunnel exit are derived self-consistently. One
should note that the nonadiabatic tunneling coordinates, i.e.,
the tunnel exit and the initial momentum distribution, will
converge in the adiabatic theory [2,3,26] when the Keldysh
parameter approaches zero.

Starting with the initial nonadiabatic coordinates derived
above, one can calculate photoelectron momentum distribu-
tions on the detector by numerically solving the classical
Newtonian equation with consideration of the Coulomb effect.

IV. RESULTS AND DISCUSSIONS

We have measured the ellipticity-dependent momentum
distribution of rare gases, i.e., Ne, Ar, and Kr atoms. Here,
we present the typical results of Ar as an example. In Fig. 1,
we show the measured ellipticity-dependent TOF spectra of
Ar+ ions along the minor axis (the red rectangle) and along
the major axis (the blue rectangle). In order to reveal the
width of ellipticity-dependent momentum distributions, we
normalize the momentum spectra using the maximum yields
at each ellipticity value, as seen in Figs. 2(a) and 2(d).

angle of /2 wave plate (degree)
0 30 60 90

T
O

F
 (arb. units)

500

100

50

10

5

1

FIG. 1. The measured ellipticity-dependent TOF spectra of Ar+

ions along the minor axis (framed red, left) and along the major axis
(framed blue, right).

Generally, the ellipticity-resolved momentum distribution
along the minor axis show a “cross” structure. The ellipticity-
resolved momentum distribution along the major axis reveals
a “bridge” structure. Note that the ponderomotive energy is
fixed in the experiment. The ellipticity-resolved measurement
allows us to calibrate the laser intensity with high resolution
(see the Appendix).

Using the calibrated effective laser intensity, i.e., 1.2 ×
1014 W/cm2, we obtain the ellipticity-resolved final momen-
tum distributions along the major and minor axes of the laser
ellipse, respectively, within the adiabatic model as shown in
Figs. 2(c) and 2(f). Compared with the experimental data
[Figs. 2(a) and 2(d)], one can find that both the peaks of
the momentum px and the width of momentum pz using the
adiabaticity-based simulation are underestimated by ∼17%
and 20%, respectively. In fact, the simulated momentum
distributions by the adiabatic model reveals a smaller ring
structure as compared with the TDSE result in circularly
polarized laser fields [30].

We have also simulated the ellipticity-dependent momen-
tum distributions along the minor and major axes using the
nonadiabatic model, as seen in Figs. 2(b) and 2(e), respectively.
The nonadiabatic simulation agrees with the measured spectra
much better than that of the adiabatic model.

To further validate the nonadiabatic model, we show
the direct comparison of the simulated final momentum
distributions with the ab initio TDSE results using the same
laser parameters in Fig. 3. In order to lower the influence of
electron interferences on the momentum distribution from the
TDSE, we have considered the intensity averaging effect in
the focal volume. We calculate the photoelectron momentum
spectra for a series of laser intensities with the effective
intensity of 1.2 × 1014 W/cm2. Then the momentum spectrum
of each intensity is weighted by the volume in the laser focus,
i.e., dV

dI
∝ 1

I 5/2 (I0 + 2I )(I0 − I )1/2, where I0 is the peak laser
intensity. As seen in Fig. 3, the nonadiabatic simulation agrees
much better with the TDSE result for ε = 0.6, as compared
with the adiabatic simulation. The size of the momentum
distribution from the adiabatic simulation is smaller than that
of the TDSE result and the nonadiabatic simulation. The most
probable momentum along the radial direction of the adiabatic
simulation is also smaller than that by the TDSE and the
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FIG. 2. The ellipticity dependence of final momentum distribution along the minor axis (top row) and the major axis (bottom row) at the
effective intensity 1.2 × 1014 W/cm2 of Ar for the measurement (a), (d), nonadiabatic simulation (b,e), and adiabatic simulation (c), (f). The
counts of the plots are normalized for each ellipticity value. The black curves indicate where the ion yield dropped to half of the maximum.

nonadiabatic simulation. Moreover, an evident tilt angle can
be observed in all the momentum spectra, which is a result of
the Coulomb potential effect [21]. Note that the propagation of
the electron wave packet after the tunneling is the same for the
adiabatic and nonadiabatic simulations. The only difference
between the nonadiabatic and the adiabatic simulations is that
the initial momentum-temporal distribution of the tunneling
wave packet is given by the nonadiabatic model in Fig. 3(b)
while it is given by the ADK theory in Fig. 3(c). Thus
nonadiabaticities have left a pronounced imprint on the
momentum-temporal distribution of the tunneling electron
wave packet.

In light of the good agreement between the nonadiabatic
simulation with the measurement (Fig. 2) and the TDSE result
(Fig. 3), we have calculated the ellipticity-dependent half-
cycle averaged initial transverse and longitudinal momentum
distribution predicted at the intensity of 1.2 × 1014 W/cm2

(800 nm) using the nonadiabatic theory [Eq. (22)], as shown
in Figs. 4(a) and 4(b), respectively. The initial transverse
momentum at half maximum is given by the dark gray

lines in Fig. 4(a). In the elliptically polarized laser field,
the initial transverse momentum distribution is not centered
at zero due to the rotation of the laser electric field, which
is in contrast with the ADK theory [3]. Increasing the field
ellipticity, the most probable initial transverse momentum
also increases. This agrees with the result predicted by the
Perelomov-Popov-Terent’ev (PPT) theory [5], as shown by the
white dashed curve in Fig. 4(a). The width of the distribution
slightly decreases with the increase of the field ellipticity.

More interestingly, from this model, we can further obtain
the half-cycle averaged initial longitudinal momentum dis-
tribution at the tunnel exit with respect to the ellipticity, as
shown in Fig. 4(b). Different from the transverse momentum
at the tunnel exit, the longitudinal momentum reveals much
narrower distribution and its width is around 0.2 a.u. It is
insensitively dependent on the ellipticity when ε < 0.8 and
will decrease to zero for a circularly polarized laser field. The
calculated longitudinal momentum distributions at the tunnel
exit agree with the experimental calibration [21,31], in which
an arbitrary longitudinal momentum distribution is put into the

FIG. 3. The simulated photoelectron momentum distributions from (a) the TDSE result, (b) the nonadiabatic model, and (c) the adiabatic
model. The Coulomb potential effect and the focal volume effect are included in the simulations. The effective laser intensity is 1.2 × 1014 W/cm2

and the ellipticity is 0.6.
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FIG. 4. (a) Theoretical prediction of the half-cycle averaged initial transverse momentum distribution. The white dashed line indicates
the center of the initial transverse momentum distribution predicted in Ref. [5]. (b) Theoretical prediction of the half-cycle averaged initial
longitudinal momentum distribution. (c) Theoretical prediction of the ionization probability as a function of the ionization time. The black
solid lines indicate where the yield is the half maximum. The experimentally extracted ionization time at half maximum is shown with black
squares in (c).

ADK model. As known, it was assumed to be zero in the ADK
model.

Both the initial transverse and longitudinal momentum
distributions at the tunnel exit have important effects on
the final momentum distributions on the “detector.” In order
to experimentally extract the initial tunneling coordinates at
the tunnel exit, one should consider the Coulomb effect on
photoelectron momentum distributions, but it has been usually
ignored in attosecond angular streaking experiments. In the
nonadiabatic picture, the initial transverse momentum and
longitudinal momentum distributions, and the position of the
tunnel exit are coupled with the rotating instantaneous laser
field. The electrons with an initial transverse momentum and
longitudinal momentum will be streaked to a certain final
momentum along the minor and major axes in the laboratory
frame, respectively. Since the electrons are most probably
released at the field maximum (along the major axis of an
elliptically polarized field), the final momentum along the
minor axis and major axis will approximately be linear with
the initial transverse momentum and the ionization time,
respectively. As a result, the ellipticity-dependent momentum-
temporal structure of the tunneling wave packet at the tunnel
exit could be directly mapped onto the final momentum
distribution along the major and minor axes if the Coulomb
effect can be properly estimated.

The center of the final momentum along the minor axis
(with the maximum ionization probability) in an elliptically
polarized field can be predicted by the PPT theory [4], i.e.,
p0 = εF0/ω sinh(ωτ0)/(ωτ0) where τ0 is the tunneling time for

the most probable trajectory, as shown by the green solid line
in Fig. 5(a). The measured and simulated centers of the final
momenta along the minor axis with respect to the ellipticity
are shown in Fig. 5(a) by the black squares and the red dots,
respectively. Due to the Coulomb focusing effect, the measured
and simulated centers of the final momentum along the minor
axis are smaller than the prediction by PPT theory.

If ignoring the effect of the Coulomb potential, the
momentum along the minor axis at half maximum will shift
up parallel with the field momentum εF0/ω, as shown by
the green triangles in Fig. 5(b). Experimentally, the measured
final momentum along the minor axis at half maximum is also
shown in Fig. 5(b). One clearly find that the Coulomb potential
has two important effects on the final momentum: (i) reducing
the final momentum along the minor axis significantly because
of strong Coulomb focusing when the ellipticity is below 0.3,
and (ii) reducing the final momentum along the minor axis by
around 0.1 a. u. compared with the Coulomb-free case (the
PPT case) when the ellipticity is larger than 0.3.

Compared with Figs. 5(a) and 5(b), one finds that the
Coulomb potential leads to a shift of around 0.1 a.u. for the
momentum distributions along the minor axis as a whole when
the ellipticity is larger than 0.3. Therefore, the full width at half
maximum (FWHM) of the final momentum along the minor
axis [the gray arrow in Fig. 5(b)] directly reflects the width of
the initial transverse momentum when ε > 0.3.

With treating the Coulomb potential as a perturbation when
ε > 0.3, the initial transverse momentum at the tunnel exit can
be directly related to the final momentum px along the minor

0.00 0.25 0.50 0.75 1.00
0.0

0.4

0.8

0.00 0.25 0.50 0.75 1.00
-0.5

0.0

0.5

1.0

1.5(b)(a)

p x
 m

ax
 (a

. u
.)

ellipticity

 experiment
 Nonadiabatic
 adiabatic
 PPT

p x
 h

al
f m

ax
 (a

. u
.)

ellipticity

 experiment
 Nonadiabatic
 adiabatic
 prediction

0.00 0.25 0.50 0.75 1.00

0.50

0.75

1.00
(c)  Experiment

 Nonadiabatic
 Adiabatic

ellipticity

p z
 h

al
f m

ax
 (a

. u
.)
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axis by the approximate expression of px = v⊥ + εF0/ω +
pC

x , where εF0/ω is the electron momentum obtained from
the laser field when the instantaneous field is along the major
axis and pC

x is the Coulomb-corrected momentum along the
minor axis [32], respectively. Since the final momentum px

is approximately linearly dependent on the initial transverse
momentum v⊥, one only need measure the momentum width at
half maximum to characterize the initial transverse momentum
distribution of the tunneling electron wave packet with the
Gaussian distribution.

In Fig. 5(c), we show the measured and simulated final
momentum pz along the major axis at half maximum with
respect to the laser ellipticity. The simulation quantitatively
agrees with the experiment. It is well known that the electron
released at different ionization times will be streaked to
specific final momentum pz along the major axis. Therefore,
the measured momentum distribution along the major axis
has recorded the temporal information of the tunneling wave
packet. The final momentum pz along the major axis is related
with the ionization time t0, which is given by Eq. (8); i.e.,
pz = vp/

√
1 + ε2 tan2ωt0 − v⊥ε tan ωt0/

√
1 + ε2 tan2ωt0 +

F0 sin ωt0/ω. Because most electrons tunnel near the field
maximum of the laser pulse, ωt0 is a small value (ωt0 = 0 is
assumed to be the field maximum). Expanding pz and vp in
a Taylor series up to the first order with respect to t0 and v⊥
[vp/

√
1 + ε2 tan2ωt0 = (1 −ε2)F0 sin ωt0 cos ωt0

aω
(cosh ωti − 1) ≈

(1 − ε2)F0t0(cosh ωτ0 − 1), −v⊥ε tan ωt0/
√

1 + ε2tan2ωt0 ≈
0, and F0

ω
sin(ωt0) ≈ F0t0], we can obtain vp = k0F0t0 and

pz = (1 + k0)F0t0, where k0 = (1 − ε2)(cosh ωτ0 − 1)
is related to the effect of the initial longitudinal
momentum (τ0 is the tunneling time in the PPT theory).
Considering the Coulomb-corrected effect, one obtains
pz = (1 + k0)F0t0 + pC

z , where pC
z is the Coulomb-corrected

momentum along the major axis [32]. In this relation, we have
included the effect of the initial longitudinal momentum.

With the linear relation between pz and t0, one can relate
the final momentum along the major axis to the temporal
distribution of the tunneling wave packet. As shown in
Fig. 4(c), the reconstructed width of the tunneling wave
packet (black squares) agrees well with the prediction of
the nonadiabatic model (solid curve). The temporal width
(FWHM) of the electron tunneling current increases from
∼250 as for ε = 0 to ∼600 as for ε = 0.8. When the ellipticity
is larger than 0.8, the temporal width of the subcycle tunneling
wave packet increases rapidly.

V. CONCLUSIONS

In summary, we have measured high-resolution ellipticity-
resolved momentum distributions in strong elliptically polar-
ized laser fields. Developing a subcycle nonadiabatic tunneling
theory, we have verified the importance of nonadiabatic
effects for strong-field tunneling ionization. We show that
the initial momenta at the tunnel exit are intertwined at each
electron emission time with respect to the laser field. Both
the subcycle tunneling coordinates at the tunnel exit and the
Coulomb potential are crucial in the nonadiabatic picture.
We show that the momentum-time structure of the tunneling
wave packet can be approximatively retrieved from the final

momentum along the major and minor axes of the laser field
if considering the Coulomb interaction as a perturbation. This
study has significant implications for any tunneling-triggered
phenomena, such as laser-induced diffraction, photoelectron
holography, and molecular orbital imaging using strong laser
fields.
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APPENDIX: CALIBRATION OF THE EFFECTIVE
LASER INTENSITY

We calibrate the laser intensity by solving the three-
dimensional time-dependent Schrödinger equation (TDSE),
which is independent of specific model. We numerically solve
the TDSE for the argon atom within single active electron
(SAE) approximation in elliptically laser fields (ε = 0.6)
by using a grid-based split-step method for a number of
laser intensities. The electron final momentum is obtained by
projecting the wave function onto the Coulomb continuum
scattering eigenstates after the time-dependent propagation.

Since the laser intensity is fixed when rotating the field
ellipse, we can calibrate the laser intensity at a certain
ellipticity. As known, the momentum distributions of px in
the laser polarization plane show a double-peak structure in
elliptically polarized fields. We show the calculated peak of
px with respect to the laser intensity at the ellipticity of 0.6
using the TDSE calculation in Fig. 6, as an example. The
peak of px momentum distribution [see Fig. 5(a)] increases
with increasing the laser intensity. At the ellipticity of 0.6, the
measured peak of px momentum distributions is 0.53 a.u.
Along this, the effective laser intensity in our experiment
can be calibrated as (1.21 ± 0.1) × 1014 W/cm and the peak
intensity can be calibrated.
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FIG. 6. The calculated peak of px with respect to the laser
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