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Abstract Non-stationarity is a common feature in geophysical flows, though it still remains
an open question on how the non-stationarity of flow affects its statistical structure. Using the
telegraph approximation (TA) method, we quantified how non-stationarity in the measured
atmospheric turbulent vertical velocity time series affects its clustering properties—one of
the two main components of intermittency in turbulence. We compare different TA results
between stationary and non-stationary atmospheric turbulent vertical velocity records, and
find that the non-stationary data possess different cluster and intermittency exponents from
stationary data. The inter-pulse period of the non-stationary records takes a near power-law
distribution while the inter-pulse period of the stationary records exhibits a stretched expo-
nential distribution. These results suggest that non-stationarity of the underlying processes
can affect the statistical structure of turbulence, especially the clustering properties.

Keywords Clustering property · Intermittency · Inter-pulse period · Non-stationarity ·
Telegraph approximation

1 Introduction

From a statistical point of view, a time series representing a stochastic process is considered
stationary when its probabilistic structure is independent of the time origin (Bendat and
Piersol 2000). It is well known that most time-series analysis, linear or non-linear, requires
the data under investigation to be stationary. The presence of non-stationarity may yield
spurious interpretation of the underlying dynamics, such as the false detection of a large
correlation dimension or low entropies (Yu and Lu 1998).

Many of the data in natural complex geophysical systems are non-stationary when viewed
as a whole (Bendat and Piersol 2000). Cullen and Steffen collected data for 25 days during
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220 Q. Li, Z. Fu

two summers to describe processes responsible for the non-stationarity of turbulent sensible
heat fluxes at Summit, Greenland. A stationarity test shows that about 40% of the data are
classified as non-stationary (Cullen et al. 2007). Mahrt et al. (2012) examined the relationship
of turbulence to the non-stationary wind shear and thermal stratification, and found that the
turbulence is simultaneously generated by different non-stationary mechanisms.

The non-stationarity of measurement sequences usually takes an intermittent behaviour.
Intermittency implies that small-scale quantities, such as energy dissipation, are distributed
unevenly in space and perhaps also in time (Sreenivasan and Bershadskii 2006). There are
two main aspects of intermittency: one related to the amplitude of small-scale fluctuations
and the other to the local frequency of oscillations. To explore a narrower scope, we use the
telegraph approximation (TA for short, see Bershadskii et al. 2004) to eliminate amplitude
effects, and study only the tendency of small-scale fluctuations to cluster. Bershadskii et al.
(2004) exploited the TA method for the study of temperature time traces obtained in turbulent
thermal convection at high Rayleigh number, and concluded that amplitude intermittency
might mitigate clusterization effects. Sreenivasan and Bershadskii (2006) found a unique
relation between the spectral scaling of the signal and its TA, and also showed there are
two classes of signals: the white noise type and the Markovian–Lorentzian type, which was
verified in our work related to these two kinds of time series. Cava and Katul (2009) studied the
intermittent structure of turbulence within the canopy sub-layer, and explored the clustering
properties of canopy sub-layer turbulence and their independence on atmospheric stability,
and found amplitude variations play only a minor role in scalar intermittency.

However, little emphasis has been placed on the effects of non-stationarity (Li et al. 2001;
Wang et al. 2005; Sreenivasan and Bershadskii 2006; Cava and Katul 2009), especially on
the clustering characteristics in boundary-layer turbulence, which is the subject of our study.
Different features are found for stationary and non-stationary time series investigated herein.

We outline the paper as follows: firstly we generate the telegraph approximation of the
stationary and non-stationary records as mentioned below to separate the clustering tendency
from amplitude effects. Secondly, we show that the spectral scaling of TA gives important
information about the spectral scaling of the full signal. Thirdly, the cluster exponent and
intermittency exponent are calculated to show the effects of non-stationarity on the scaling
statistics. Then different inter-pulse period distributions are obtained for the two types of
time series, with the white noise type and the Markovian–Lorentzian type for reference.

2 Data and Methods

2.1 Data

The data used herein were obtained from a field experiment performed by the State Key
Laboratory of Atmospheric Boundary-Layer Physics and Atmospheric Chemistry (LAPC),
from 9 to 22 June, 1998. The underlying surface comprises paddy fields and the observa-
tion height is 4 m. The instrument used in the experiment is a SAT-211/3k 3-D ultrasonic
anemometer, whose sampling frequency is 10 Hz and where each 40,000 points of sampling
are taken as one record. More details of the statistical characteristics of the experimental data
have been derived elsewhere (Chen and Hu 2003; Wang et al. 2005; Li et al. 2013). We select
some representative series from the datasets after the diagnosis of non-stationarity by means
of the space–time index (STI) method. The STI is a graphical method, and can effectively
detect dynamical non-stationarity in a time series. Further descriptions of the STI method
are presented in Yu and Lu (1998, 1999) and are not repeated here. We have investigated
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Fig. 1 The normalized segments of a white noise, c stationary vertical velocity time series, e non-stationary
vertical velocity time series and the TA results for white noise (b), stationary series (d) and non-stationary
series (f). Since the TA only takes values of 1 or zero, no amplitude variations are considered

24 vertical velocity time series, 12 of which are the most non-stationary among the dataset,
while the other 12 are the most stationary. We show the ensemble-averaged results of 12
samples for each classification group.

2.2 Methods

2.2.1 Telegraph Approximation

In the classical methods of time-series analysis (Kantz and Schreiber 2004), it is difficult to
separate the clustering effect from the traditional intermittency effects arising from amplitude
variability. To separate these two effects, we ignore the variation of the amplitude and replace
the fluctuation time series of the type shown in Fig. 1a, c, e by their telegraph approximation
(TA), shown in Fig. 1b, d, f. This approximation is generated from the measured velocity by
setting the fluctuation magnitude to 1 or zero depending on whether or not the magnitude
exceeds the mean value (marked as zero and shown by the dashed line in Fig. 1a, c, e). A
reverse definition, below the mean value and zero above the mean value, does not alter the
results. Formally, for the normalized vertical velocity fluctuation w′(t) (with zero mean), the
T A(t) is constructed as

T A (t) = 1

2

(
w′ (t)
|w′ (t)| + 1

)
, (1)

where w′(t) = w(t) − w, and the overbar indicates the time average.
By definition, TA can admit either 1 or 0. The telegraph approximation can be generated by

setting different “thresholds” from the mean, where it turns out that most properties examined
here are reasonably independent of the threshold (Bershadskii et al. 2004).
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222 Q. Li, Z. Fu

2.2.2 Energy Spectrum Analysis

First of all, it may be useful to summarize how the classical statistics for the TA compare with
those of the boundary-layer turbulence signal (Bershadskii et al. 2004). We will calculate
the spectral density S( f ) of the TA and the full signal, and then the comparisons are made
separately for stationary and non-stationary cases between the original record and its TA.

2.2.3 Cluster Exponent and Intermittency Exponent

The clustering information can be extracted from the TA. Let us count the number of ‘zero’-
crossing points of the TA (the same as the ‘zero’-crossing points of the original signal) in a
time interval t and consider their average density nt . We denote the fluctuation of the running
density as

δnt = nt − 〈nt 〉 (2)

and where brackets mean the average over long times (Sreenivasan and Bershadskii 2006).
We are interested in the variation of the standard deviation of the running density fluctuations

〈δn2
t 〉1/2

with t . For reference, we show the result for the white noise signal in Fig. 4, which
presumably has no clustering. The straight line denotes the scaling relation

〈δn2
t 〉1/2 ∼ t−α, (3)

with α = 0.5 for white noise. This result for white noise can be derived analytically (Lead-
better and Cryer 1965; Barnett and Kedem 1991). We wish to explore the cluster exponent α

for the stationary and non-stationary time series, and whether these two kinds of time series
possess the same clustering properties can be quantitatively shown according to α.

This intermittency measure was first proposed by Obukhov (1962) and subsequently used
by Kuznetsov et al. (1992), and Sreenivasan and Antonia (1997) among others. Recently
Sreenivasan and Bershadskii (2006), Cava and Katul (2009), Poggi and Katul (2009), Lee
(2011), and Cava et al. (2012) have used this quantity described below to study turbulent
flow. Because the variance (or kinetic energy) dissipation rate is proportional to the squared
spatial gradients, which can be converted to temporal gradients via Taylor’s frozen turbulence
hypothesis, the quantities

χ (t) =
∣∣∣∣dw′ (t)

dt

∣∣∣∣
2

, (4)

and,

χτ = 1

τ

t+τ∫
t

χ(t)dt (5)

can be simultaneously used to determine the so-called intermittency exponent μq , from the
scaling of the moments

(χτ (t))q

((χτ (t)))q ∼ τ−μq . (6)

In this paper, μ2 computed from w′ and TA(w′) is referred to as μ′
w and μT A, respectively

for notational simplicity. For white noise, we obtain μ2 = 0 above a certain scale. For
TA(w′) the dissipation rate is a composite of pulses (i.e. δ functions) located at the edges
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The Effects of Non-stationarity on the Clustering Properties 223

of the boxes of the telegraph signal (Bershadskii et al. 2004), a non-zero value of μT A

indicating a clusterized distribution of pulses. On the other hand, μw′ contains information
on both amplitude variability and clustering of the signal. Therefore μT A > μw′ indicates that
amplitude variations mitigate intermittency; μT A < μw′ indicates that amplitude variations
amplify intermittency; μT A ∼ μw′ indicates that much of the observed intermittency may
be due to clusterization and not amplitude variations (Cava and Katul 2009). Whether the
stationary and non-stationary time series show similar relations is explored below.

2.2.4 Inter-pulse Period Distribution

We term the duration between two successive pulses in TA results as the inter-pulse period
r . Whether the non-stationarity affects the inter-pulse period distributions or whether the
inter-pulse period distribution shows similar features for the white noise, stationary time
series and non-stationary time series, is explored. Considering that the inter-pulse periods
ignore the amplitude influence and focus just on the frequency changes, it will be of benefit
to investigate the information over frequency of multi-scale structures. This distribution does
not have any information about the ordering of events in space (or time) unlike the cluster
exponent mentioned above (Sreenivasan and Bershadskii 2006).

3 Results

3.1 The Probability Density Function and Energy Spectrum Analysis

We normalize the original data by their standard deviation σ . Figure 2 shows the probability
density function (PDF) of white noise, stationary vertical velocity time series and their non-
stationary counterparts. Compared with white noise, the PDFs of the stationary and non-
stationary traces are both characterized by fat tails and a peak around the mean value. Such
PDFs are called intermittent and differ considerably from the Gaussian distribution that
is commonly considered to be suitable for continuous random processes (Boettcher et al.
2003). Note that the probability of measured large vertical velocity (w = 4σ) located in the
tails of the PDFs as shown in Fig. 2, is more than 10 times higher than that of the Gaussian
distribution, however no marked differences can be found for the stationary and non-stationary
time series. So the PDF of measured series cannot be used to distinguish the non-stationary
measurement from the stationary one, and it of course cannot be used to quantify the effect
of non-stationarity on their statistics.

Figure 3 shows the results of energy spectrum analysis for the original vertical velocity
time series and their TA. The main difference is that the TA has a larger spectral content
above a certain frequency. This is not difficult to understand from a visual inspection of
Fig. 1. Of particular interest is the power-law behaviour of the spectral densities of the TA,

E ( f ) = f −β . (7)

The TA series show the same exponent β = 4/3 for both the stationary time series and
the non-stationary time series, different from the Kolmogorov exponent β = 5/3 in the
inertial range (Frisch and Orszag 1990). The fit obtained for the time series is indicative
of a slower spectral energy decay (there is more memory) in the telegraph signal. Still the
spectral analysis cannot be used to quantify the difference between the stationary time series
and the non-stationary time series. A reasonable shift of the TA threshold does not change
the spectral exponent β (Bershadskii et al. 2004).
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224 Q. Li, Z. Fu

Fig. 2 The PDFs of white noise,
stationary vertical velocity time
series, and non-stationary vertical
velocity time series. The original
data are normalized by the
standard deviation σ

Fig. 3 The comparative results
of energy spectrum analysis for
the vertical velocity series and
their TA. The TA series show the
exponent β = 4/3 for both the
stationary time series and the
non-stationary time series,
different from the Kolmogorov
exponent β = 5/3 in the inertial
range

Our results are consistent with those found at the inertial scales by Sreenivasan and Ber-
shadskii (2006) who observed a unique relationship between the spectral exponent, n, of the
full signal and that of its TA, m. The relation is m = (n + 1)/2 based on numerical results.
However, Cava and Katul (2009) studied the stratification effects and found, for the deeper
layers of the canopy, both TA and the original spectra deviated from their f −4/3 and f −5/3

scaling, with the spectra of w decaying faster than −5/3 and the spectra of TA(w) decaying
slower than −4/3.

From the results shown above, the PDF and energy spectrum analysis cannot differentiate
the effects of the non-stationarity of the underlying processes on their statistics, so we need
other quantities to quantify the difference resulting from the non-stationarity of the underlying
processes.

3.2 Cluster Exponent and Intermittency Exponent

The first difference can be found in the clustering exponents, and we calculate the clustering
exponent results for the white noise, stationary and non-stationary boundary-layer vertical
velocity traces, see Fig. 4, where the different results are shifted vertically for clarity. Different
scaling behaviours are discovered. The non-stationary series show a clustering exponent as
0.24, while the stationary series has a value 0.39 that is much closer to that of white noise,
0.5. According to Sreenivasan and Bershadskii (2006), the cluster exponent α for small
scales decreases with increasing Reynolds number, which implies an increasing tendency to
cluster. It can readily be seen from visual inspection that the non-stationary time series has
larger clustering effect than the stationary series, see Fig 1. In the wind-tunnel experiment for
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The Effects of Non-stationarity on the Clustering Properties 225

Fig. 4 The clustering exponents
for the white noise, stationary and
non-stationary vertical velocity
time series. The results are
shifted vertically for clarity

Fig. 5 The comparison
intermittency exponent results for
the white noise, the stationary
and non-stationary vertical
velocity time series, as well as
their TA series

different Reynolds numbers, Sreenivasan and Bershadskii (2006) focused on the transition
from dissipative and inertial ranges to the integral scale, and found two values of the cluster
exponent. Our results from the cluster exponents for stationary time series are consistent
with those of Sreenivasan and Bershadskii (2006). The effects of non-stationarity were not
explored in their wind-tunnel experiment (Sreenivasan and Bershadskii 2006), and the scale
regimes we delineate here are more likely to be affected by any non-stationarity that occurs
in the real atmosphere. Cava and Katul (2009) pointed out that clustering was much more
connected to space than to time in the canopy sub-layer and that atmospheric stability had
minor effects only on clustering above the canopy. The similar conclusion can be found in our
results, where the atmospheric stability had minor effects on clustering for both stationary
and non-stationary cases (figures not shown).

Secondly the difference statistics between the stationary and the non-stationary cases can
be found in the intermittency exponents, see Fig. 5, where we show the results of intermittency
exponents for the white noise, the stationary and non-stationary boundary-layer vertical
velocity traces. In the log–log plots, the intermittency exponent μw′ is represented by the
slope of the curves. For white noise, μ deviated from the theoretical value of zero at small
scales and is mainly due to the statistical error. Considered the statistical errors, μw′ is not
a constant for the stationary and non-stationary time series at different time scales. We can
see clearly from Fig. 5 that, as time scales increase, the intermittency exponent of the non-
stationary time series decreases slower than the stationary time series, especially at large
scales. That is to say, the non-stationary time series is more intermittent than the stationary
series at large scales. When we compare the results of the TA series and their original
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226 Q. Li, Z. Fu

Fig. 6 The probability density
functions of the inter-pulse
periods r for the white noise, the
stationary and non-stationary
vertical velocity time series. The
results are shifted vertically for
clarity. The formulae of the fitting
lines are listed on the bottom left
corner: white noise, stationary
time series, and non-stationary
traces from bottom to top

traces at small scales for both stationary and non-stationary traces, we obtain μT A > μw′ ,
which indicates that amplitude variations mitigate intermittency, according to Cava and Katul
(2009). At large scales the intermittency exponents tend to be the same value respectively for
the two types of series, as the effects of amplitude decrease. The intermittency exponents of
the TA series collapse to zero more quickly than those of the original data. At large scales,
all the intermittency exponents tend to be zero, since there is little memory at large scales
and the time series act like white noise.

3.3 Inter-Pulse Period Distribution

Thirdly the difference statistics between the stationary and the non-stationary cases can be
found in the inter-pulse period distributions. The probability density function of the inter-
pulse periods r for the vertical velocity is shown in Fig. 6. In order to make a comparison, the
results of white noise, stationary and non-stationary time series are shown in one frame, and
are shifted vertically for clarity. The log–log scale has been used to emphasize the power-law
structure for the non-stationary series and the stretched exponential distribution of the white
noise and stationary series (Eichner et al. 2007). The fitting of the data can be seen clearly
in Fig. 6. As mentioned above, since there is no amplitude variation involved, the marked
difference must be related to clustering entirely (Bershadskii et al. 2004).

In Fig. 6, we can clearly see that the PDFs of the inter-pulse period for the non-stationary
vertical velocity time series are different from those of the stationary series. Sreenivasan and
Bershadskii (2006), who focused on the transition from the inertial to viscous dissipation
ranges, a major departure here, have suggested that there are two classes of signals, the
white-noise type and the Markovian–Lorentzian type, which have two different behaviours
for the PDFs of the inter-pulse distance of the TA signals. The Markovian–Lorentzian type
signal exhibits power-law PDF behaviour for the inter-pulse period and has a spectrum
E( f ) = 2σ

1+( f/ f0)2 . Unlike Sreenivasan and Bershadskii (2006), we focus on the effects of

non-stationarity on the statistics of the atmospheric turbulence. Here, our results suggest that
non-stationarity can affect the distribution of the inter-pulse periods for vertical velocity time
series. The stationary vertical velocity time series is closer to the white-noise type whose
inter-pulse periods possess the stretched exponential distribution, while the non-stationary
series corresponds to the Markovian–Lorentzian type that has the near power-law structure,
as shown in Fig. 6. Cava and Katul (2009) investigated the distribution of the inter-pulse
period for longitudinal velocity, vertical velocity, temperature and for all atmospheric stability
conditions at all levels within the canopy. They found a ‘double regime’ characterized by a
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Table 1 The comparative results of cluster exponents and inter-pulse period PDFs for vertical velocity w,
longitudinal velocity u and temperature T

Variables Cluster exponent: α PDF of inter-pulse period r : p(r)

Stationary Non-stationary Stationary Non-stationary

w 0.39 0.24 e−2.15∗r0.49
r−2.0

u 0.29 0.10 r−1.69 r−4.0

T 0.34 0.18 r−1.75 r−2.0

power law for shorter inter-pulse periods and a log-normal distribution for the large inter-
pulse periods, and the regime is more evident in the velocity components and in unstable
conditions. They have suggested the power-law description is optimum for small inter-pulse
periods; for large inter-pulse periods, a quasi-exponential cut-off preventing the extrapolation
of the power law beyond the integral time scale emerges (Cava et al. 2012). Compared with
their works, our analysis shows that the near-power PDF of inter-pulse periods is found
in the non-stationary vertical velocity series, and the log-normal distribution indicates the
stationary vertical velocity time series in Fig. 6.

4 Discussion and Conclusion

For longitudinal velocity u and temperature T , stationary and non-stationary time series
are selected for investigation, and the comparative results are shown in Table 1. Since non-
stationarity occurs more severely and frequently in u and T than in vertical velocity w, and
the stationary time series selected in the u and T datasets are not as close to being stationary
as in w, the effects of non-stationarity are not as evident as in the vertical velocity time
series.

It seems that non-stationarity affects statistics connected to small-scale features, appearing
more in the intermittency exponents and inter-pulse PDFs, and there is some interaction
between large scales and small scales. There are more large-scale structures in the non-
stationary than in the stationary records, which may result from the stable stratification,
gravity waves or shear (Mahrt 2011). We select representative non-stationary time series in
stable atmospheric conditions to show that the large-scale structures affect directly small-
scale features in Fig. 7. Using the ensemble empirical mode decomposition (EEMD) method
(detailed descriptions of the EEMD method are presented in Huang et al. (1998) and are
not repeated here), we extract large-scale structures from the original non-stationary time
series as shown in Fig. 7a, and its TA segments shown in Fig. 7b and derive small-scale
fluctuations (with large-scale structures removed) as shown in Fig. 7c, shows segments of
the TA results of the small-scale fluctuations. The intermittency exponents and distributions
of the inter-pulse periods are obtained for the small-scale fluctuations, compared with the
original non-stationary time series in Fig. 7e, f. Comparing Fig. 7b with Fig. 7c, we can see
that the large-scale structures in the non-stationary time series affect the TA results. For the
small-scale fluctuations, the intermittency exponent becomes smaller and the PDF of the inter-
pulse periods changes from a near power law to a lognormal distribution, especially at large
scales, see Fig. 7e, f. Given that non-stationarity can affect statistical properties connected
to small-scale intermittency. Mahrt (2011) has pointed out that turbulence in the very stable
regime might be generated primarily by wave-like motions and small sub-meso motions
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Extracting large-scale fluctuations from the original non-stationary vertical velocity time series (a), we
obtain small-scale fluctuations (c); b, d are segments of the TA results of (a) and (c). The intermittency expo-
nents for the original time series and their small-scale fluctuations are shown in (e); f shows the distributions
of the inter-pulse periods

on time scales of minutes or tens of minutes (Conangla et al. 2008) such that equilibrium
between the turbulence and non-turbulent flows is not established. These un-established
equilibrium motions cause the interaction between very large scales and small scales, and
lead to non-stationarity in the scale regimes analyzed here.

The effects of non-stationarity on the statistics of boundary-layer turbulence, especially
on the clustering, have been explored by using the vertical velocity time series obtained in
the boundary layer. The telegraphic approximation was used to remove any amplitude vari-
ability in turbulent excursions, thereby permitting us to readily identify clustering effects
known to be one of the two key aspects responsible for the intermittency. For some sto-
chastic processes known to possess long-memory (e.g. fractal Brown motion), there are
explicit linkages between the spectral exponents and zero-crossing properties (Cava and
Katul 2009). Hence, PDFs, spectra, clustering-exponent, intermittency-exponent and inter-
pulse period distributions are computed for the stationary and non-stationary time series, and
clear differences have been shown.

As for the PDFs and the spectral analysis of the stationary and non-stationary vertical
velocity time series, they both show intermittency characteristics in PDFs and the shifting
of spectral exponent from −5/3 to −4/3, which indicates little difference. That is to say,
traditional statistical methods cannot effectively show the non-stationarity influences on
turbulence statistics, so we make use of TA to explore a narrower scope, and study the effects
of non-stationarity on the clustering properties in turbulence.
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The Effects of Non-stationarity on the Clustering Properties 229

As to the clustering and intermittency exponents, the non-stationary time series show
significant differences from the stationary series, the latter is more like white noise. The
results seem to provide indicators for distinguishing the non-stationary time series from
stationary. When comparing intermittency for the original traces and their TA series, we
found that amplitude variations mitigate intermittency effect.

With regards to the inter-pulse period distribution of the vertical velocity traces, the sta-
tionary time series with stretched exponential distribution is more close to the white-noise
type, while the non-stationary series corresponds to the Markovian–Lorentzian type with a
near power-law inter-pulse period distribution.

The findings of different TA features, such as clustering and intermittency exponents for
non-stationary and stationary records, can be explained by the different distribution of multi-
scale structures, just as the inter-pulse period distribution, see Fig. 6. This marked difference
also can be viewed directly from the TA series in Fig. 1; the clustering in the non-stationary
records is more obvious, since more large-scale structures can be found in the non-stationary
records, which may have resulted from the stable stratification, gravity waves or shear. So
there are more large-scale structures in the non-stationary records and they cannot be found
in the stationary record, see Fig. 6. Large-scale structures do affect statistics connected to
small-scale intermittency, and there is some interaction between very large scales and small
scales, see Fig. 7.

In fact, here we have only considered one aspect of intermittency and did not consider
the amplitude variation, which can also take on a different behavior when non-stationarity is
involved.
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