
Detrended Partial-Cross-Correlation
Analysis: A New Method for Analyzing
Correlations in Complex System
Naiming Yuan1,2,3, Zuntao Fu3, Huan Zhang2, Lin Piao3, Elena Xoplaki2 & Juerg Luterbacher2

1Chinese Academy of Meteorological Science, Beijing, 100081, China, 2Department of Geography, Climatology, Climate
Dynamics and Climate Change, Justus Liebig University Giessen, Senckenbergstrasse 1, 35390 Giessen, Germany, 3Lab for
Climate and Ocean-Atmosphere Studies, Dept. of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing,
100871, China.

In this paper, a new method, detrended partial-cross-correlation analysis (DPCCA), is proposed. Based on
detrended cross-correlation analysis (DCCA), this method is improved by including partial-correlation
technique, which can be applied to quantify the relations of two non-stationary signals (with influences of
other signals removed) on different time scales. We illustrate the advantages of this method by performing
two numerical tests. Test I shows the advantages of DPCCA in handling non-stationary signals, while Test II
reveals the ‘‘intrinsic’’ relations between two considered time series with potential influences of other
unconsidered signals removed. To further show the utility of DPCCA in natural complex systems, we
provide new evidence on the winter-time Pacific Decadal Oscillation (PDO) and the winter-time Nino3 Sea
Surface Temperature Anomaly (Nino3-SSTA) affecting the Summer Rainfall over the middle-lower reaches
of the Yangtze River (SRYR). By applying DPCCA, better significant correlations between SRYR and
Nino3-SSTA on time scales of 6 , 8 years are found over the period 1951 , 2012, while significant
correlations between SRYR and PDO on time scales of 35 years arise. With these physically explainable
results, we have confidence that DPCCA is an useful method in addressing complex systems.

C
omplex systems, such as in climatology, ecology, economy or finance, usually contain a large number of
interactions1–4. By analyzing the cross-correlations between signals observed from the complexity, one aim
is to better diagnose and understand the whole system. Duo to its simplicity, traditional cross-correlation

analysis (TCA) has become the most widely used method in statistics. Especially in statistical climatology, TCA is
used in various fields, including dynamical diagnosing and climate forecasting5–7. However, due to the effects of
many nonlinear processes and external forcings, it should be noted that signals obtained in nature are usually
characterized by multi-scale structures and non-stationarities8,9. Therefore, traditional cross-correlation analysis
is not always appropriate and can provide erroneous results.

For example, suppose we are interested to diagnose the relations between the Summer (June, July and August)
Rainfall over the middle-lower reaches of the Yangtze River (SRYR) and the previous winter-time (December,
January and February) Nino3 Sea Surface Temperature Anomaly (Nino3-SSTA). Both records range from 1951
to 2012. SRYR is calculated according to the precipitation station data provided by the Chinese National Climate
Center (http://ncc.cma.gov.cn), see Figure 1, while Nino3-SSTA is downloaded from the National Oceanic &
Atmospheric Administration (NOAA, http://www.esrl.noaa.gov/psd/data/climateindices/). It is a well known
fact that SRYR are teleconnected with the previous winter-time East Pacific SSTA10,11, thus significant correlations
are expected. However, by simply applying TCA to the two records, the calculated correlation coefficient is only
0519, which is not statistically significant according to the student’s t-test. To explain this low correlation
coefficient, one reason could be that the connection between SRYR and Nino3-SSTA is nonstationary over time.
Thus, it may be an unreasonable choice to analysis their relation over the whole length (1951–2012) since the
climate regime is considered changed around the end of 1970s12. However, it may be also a ‘‘time scale’’ problem.
Since Nino3-SSTA is an El Niño indicator with a typical period of 2 , 7 years, its connections with SRYR may be
only significant on these time scale. On other time scales, significant correlations may disappear, which further
result in a low cross-correlation coefficient calculated over the whole length. Thus, the correlations between two
sub-systems can be different on different time scales.
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In traditional statistics, one can apply filter methods (including
low-pass filter, high-pass filter, and band-pass filter) to discuss cor-
relations of two considered time series on different time scales13–15.
However, the low (high) pass frequency, or the band-width are usu-
ally chosen subjectively, which make these simple filter methods not
appropriate in performing cross-correlation research over different
time scales. Another method, cross-spectral analysis (CSA)16,17, may
also be useful in discussing connections of two time series on differ-
ent time scales, but it requires the analyzed data to be stationary with
no external trends, which of course are rare in nature. Recently, a new
method based on detrended covariance, detrended cross-correlation
analysis (DCCA), has been proposed and widely used18. DCCA is a
modification of the standard covariance analysis, but can be used in
the research of non-stationary time series19. DCCA is also a general-
ization of detrended fluctuation analysis (DFA)20,21, but can be used
to investigate the power-law cross-correlations between two simul-
taneously recorded time series. By further calculating the DCCA
cross-correlation coefficient rDCCA according to the procedure pro-
posed by22,

rDCCA~
F2

DCCA

FDFA x1
ið ÞFDFA x2

ið Þ
, ð1Þ

where FDCCA is the fluctuation function obtained from DCCA18, FDFA

is the fluctuation function obtained from DFA20, and x1
i

� �
, x2

i

� �
are

the two considered time series, one can quantify the level of cross-
correlations on different time scales. Therefore, during the past few
years, signals from various fields such as economics23, seismic stud-
ies24, traffic flows25, as well as geophysical systems26, have been ana-
lyzed by using DCCA and its multifractal version MFDCCA27. In this
study, we will mainly focus on the DCCA cross-correlation coef-
ficient rDCCA derived from DCCA.

In Figure 2 (top panel), we analyze the relations between SRYR
and lead Nino3-SSTA by calculating DCCA cross-correlation
coefficient rDCCA. Apparently, SRYR is correlated with Nino3-
SSTA on time scale of 5 , 7 years with cross-correlation coef-
ficient larger than 0.3. While on other time scales, the cross-cor-
relations drop to a very low level (around 0.1). This result is in

line with our discussion above, and indicates that studying corre-
lations on different time scales is very important for better under-
standing the whole complex system.

However, it should be further noted, that signals observed from a
complex system are normally linked via interwoven heterogeneous
ties. Quantifing cross-correlations between only two signals may be
not sufficient and can provide erroneous results. Especially in the
case, when the two signals are both correlated with other signals
simultaneously. Such as the relations among SRYR, Nino3-SSTA,
and the Pacific Decadal Oscillation (PDO). PDO is a pattern of warm
or cold anomalous surface waters in north Pacific (north of 20uN),
with inter-decadal time scale of about 30 years28. It is a well known
fact that both the winter-time Nino3-SSTA and the winter-time PDO
index can be considered as important precursor factors of the fol-
lowing summer rainfall over Yangtze River29,30. However, since PDO
and El Niño are also coupled with each other31,32, simple analysis
based on either PDO index or Nino3-SSTA may provide biased
information. As shown in Figure 2 (bottom panel), we calculated
DCCA cross-correlation coefficient rDCCA to study the relations
between SRYR and PDO index. The PDO index is downloaded from
the National Oceanic & Atmospheric Administration (NOAA,
http://www.esrl.noaa.gov/psd/data/climateindices/), with only win-
ter-time data selected. It is obvious that the results from PDO and
that from Nino3-SSTA have similar pattern, especially on small time
scale of 4 , 8 years (El Niño typical scale) and large time scale of 30 ,
45 years (PDO typical scale), which indicates strong coupling
between PDO and Nino3-SSTA. When making diagnostic analysis
or prediction, one usually prefers to take as many related factors as
possible into account to improve the accuracy. Here we argue that,
first we need to state to what extent and on which time scales each
related factor is independently affecting the system of interest, then
further consider how these factors are connected to each other. One
way to address this is by applying detrended partial-cross-correlation
analysis (DPCCA). DPCCA is based on DCCA, thus can provide
information on different time scales. Compared to DCCA cross-
correlation coefficient rDCCA, rDPCCA calculated from DPCCA is
further upgraded by combining partial-correlation technique, there-
fore it is expected to be useful in quantifing correlations of multi-
signals (not only two signals) in a complex system.

In this report, we will first illustrate the advantages of DPCCA by
conducting two numerical tests. Test I shows the advantages of
DPCCA in handling non-stationary signals, while Test II illustrate
the advantage of DPCCA in revealing ‘‘intrinsic’’ relations between
two time series of interest, with potential influences of other uncon-
sidered signals removed. Furthermore, the utility of DPCCA is con-
firmed by revisiting the climatic example mentioned above. Results
and discussions are shown in the next sections. In the last part of this
report, we will show explicitly how the DPCCA is designed.

Results
Advantages of DPCCA. Since DPCCA is based on the DCCA
method but improved by combining the partial cross-correlation
analysis (PCCA), it is expected to have the advantages of both
methods. Therefore, we will perform two tests to verify the utility
of DPCCA as indicated below.

Test I: According to18, DCCA is designed to investigate cross-
correlations between two time series with nonstationarity. When
nonstationarity such as local trends or periodic background exist,
without detrending, there will be crossovers in the fluctuation func-
tion FDCCA as a function of time scale33,34, and the DCCA cross-
correlation coefficient rDCCA calculated from Eq.(1) will be spur-
iously high35. Fortunately, by choosing an appropriate detrending
order, DCCA is able to remove the effects of nonstationarity, and
further provide us reliable information on the cross-correlation36.
Similarly, DPCCA should also have this advantage. Suppose we have
three independent and identically distributed (i.i.d) Gaussian vari-

Figure 1 | Geographic locations of the stations around the Yangtze River.
17 stations over the middle-lower reaches of the Yangtze River are chosen

for the calculation (average over the 17 stations) of SRYR. Their locations

are shown as the solid circles. We generate the figure by using Surfer 8.0

(Golden Software, http://www.goldensoftware.com/products/surfer).
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ables: xA
i

� �
, xB

i

� �
and xC

i

� �
(with length of 10,000). They are not

related to each other. However, if we generate another two time
series: xA’

i

� �
and xB’

i

� �
, which are combinations of time series

xA
i

� �
with xC

i

� �
(as xA’

i

� �
~ xA

i

� �
z xC

i

� �
), and xB

i

� �
with xC

i

� �
(as xB’

i

� �
~ xB

i

� �
z xC

i

� �
), respectively, the two new generated time

series will be correlated, and are both related to xC
i

� �
. By applying the

partial cross-correlation analysis to the three time series xA’
i

� �
, xB’

i

� �
and xC

i

� �
, one can remove the influence of xC

i

� �
on xA

i

� �
and xB

i

� �
,

and further discover the ‘‘intrinsic’’ correlations between xA
i

� �
and

xB
i

� �
(which should be zero). However, if the three variables are all

nonstationary with nonlinear trends, traditional PCCA may fail in
detecting the ‘‘intrinsic’’ correlation information. As shown in
Figure 3a, 3b, xA’

i

� �
and xB’

i

� �
are shown with quadratic trends.

The cross-correlation coefficient between xA’
i

� �
and xB’

i

� �
is 0.71

(Figure 3c, the blue line). After removing the influence of xC
i

� �
,

the PCCA coefficient between the two variables drops to 0.59 (the
red line), which is still significantly higher than zero. If the influence
of quadratic trends is removed by DCCA, the coefficient rDCCA

further decreases to 0.51 (the yellow line), but still not the expected
result. In this case, however, if we apply DPCCA, ‘‘intrinsic’’ relation
between xA

i

� �
and xB

i

� �
is finally obtained (the black curve in

Figure 3c). In fact, not only for the case when quadratic trends exist,
for cases with cubic trends, or even sinusoidal trends, DPCCA still
shows reliable and accurate results, as shown in Figure 3d. We show
the cases with ‘‘No Trend’’, ‘‘Linear Trend’’, ‘‘Quadratic Trend’’,
‘‘Cubic Trend’’, as well as ‘‘Sinusoidal Trend’’. By applying
DPCCA with appropriate detrend order (see the discussions in36,
and also in the ‘‘Methods’’ section. One can remove the non-station-
ary effects by substracting local trends with appropriate polynomial
order. Normally, DPCCAn means the polynomial order of n),
expected results still arise (Black line). While other methods failed,
such as PCCA (the red line) and DCCA cross-correlation coefficient
rDCCA (the yellow line). Therefore, from this test we confirm that
DPCCA has the advantages of DCCA.

Test II: Another advantage of DPCCA should originated from the
partial cross-correlation analysis. Compared with the DCCA cross-
correlation coefficient rDCCA, DPCCA can be used to investigate the
correlations of multi-signals in a complex system, and find the

‘‘intrinsic’’ relations between two considered signals. Suppose we
have two independent and identically distributed (i.i.d) Gaussian
variables: xA

i

� �
and xB

i

� �
(with length of 10,000). By adding sinus-

oidal signals xS1
i

� �
and xS2

i

� �
(as shown in Figure 4a–b), two new

time series xA’
i

� �
and xB’

i

� �
can be generated, as xA’

i

� �
~ xA

i

� �
z

xS1
i

� �
z xS2

i

� �
, and xB’

i

� �
~ xB

i

� �
z xS2

i

� �
. The two sinusoidal signals

have different frequencies, as shown in Figure 4, xS1
i

� �0
s cycle is 1000

(days), while xS2
i

� �0
s cycle is 100 (days). Therefore, in the newly

generated time series, xS1
i

� �
can be considered as a background field,

and the 100 (days) periodic signal (corresponding to xS2
i

� �
) can be

detected by DCCA cross-correlation coefficient rDCCA, as shown in
Figure 4e (the red line). However, if another sinusoidal signal xS3

i

� �
(as shown in Figure 4c, which has the same frequency with xS2

i

� �
, but

with different phases), is also added to xA’
i

� �
, by simply calculating

DCCA cross-correlation coefficient rDCCA, one may underestimate
the 100 (days) periodic signal due to the ‘‘offset’’ effect between xS2

i

� �
and xS3

i

� �
(Figure 4d and Figure 4e, the open circles). Therefore, in

this case, rDPCCA should be a more appropriate choice for our ana-
lysis and diagnose. See Figure 4f, by applying DPCCA to the three
time series xA’

i

� �
, xB’

i

� �
, and xS3

i

� �
, we can remove the influence of

xS3
i

� �
on xA’

i

� �
successfully, and reveal the 100 (days) periodic signal

accurately. Therefore, from this test we confirm that DPCCA inherits
the advantages of the partial-correlation technique.

Application of DPCCA to natural complex system. Considering
natural signals are normally recorded from complex systems, they
are usually characterized by non-stationary, and are always
correlated with other multi-signals. Therefore, the DPCCA method
proposed in this report could be widely used in various fields. In the
following, we will further illustrate the utility of DPCCA by revisiting
the climatic example we have mentioned in the introduction.

We study how the winter-time Pacific Decadal Oscillation (PDO)
and winter-time Nino3 Sea Surface Temperature Anomaly (Nino3-
SSTA) affect the Summer Rainfall over the middle-lower reaches of
the Yangtze River (SRYR) over the past 60 years. It has been well
recognized that the summer rainfall over China is influenced by two
main modes of Pacific SST variation: PDO and El Niño (with Nino3-

Figure 2 | DCCA cross-correlation coefficient rDCCA between SRYR and Nino3-SSTA (a), as well as SRYR and PDO index (b). The grey region covers

the time scale of 5 , 8 years (El Niño typical scale) and the time scale of 33 , 42 years (PDO typical scale). The two curves have similar pattern.

www.nature.com/scientificreports
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SSTA as an indicator37). Their winter signals are both considered as
important precursor factors of the summer rainfall over China29,30.
However, since PDO and El Niño are also coupled with each
other31,32 (Figure 2), simple predictions based on either PDO or
Nino3-SSTA are not entirely reliable. Therefore, we need to reveal
the ‘‘intrinsic’’ relations between SRYR and PDO, as well as the
‘‘intrinsic’’ relations between SRYR and Nino3-SSTA. Figure 5 shows
the results, where significant differences between the output of
DPCCA and DCCA are presented. For the relations between SRYR
and Nino3-SSTA, after removing the influence of PDO, much higher
(positive) cross-correlation coefficients rDPCCA over all the time
scales are found. Especially on time scales of 5 , 8 years (the gray
area), more significant cross-correlations between SRYR and Nino3-
SSTA are found (exceeding the 95% confidence level), which corre-
sponds to the typical period of El Niño. As for the relations between
SRYR and PDO, after removing the influence of Nino3-SSTA, much
lower (negative) cross-correlation coefficients rDPCCA over all time
scales are obtained. If we calculate DCCA cross-correlation coef-
ficient rDCCA only, positive correlations between SRYR and PDO
on time scales of 6 , 8 years are found, however not significant.
After removing the effect of Nino3-SSTA, the positive correlations
disappear. Interestingly, on time scales of about 35 years (the grey
area), significant (negative) correlations between SRYR and PDO
arise (exceeding the 95% confidence level), which corresponds to
the typical period of PDO. However, masked by the El Niño, this

signal cannot be revealed from rDCCA. From these results it becomes
obvious that El Niño has important impacts on SRYR during its
typical period (5 , 8 years), while at the multidecadal scale, the
SRYR may be modulated by the PDO. This finding is in line with
previous studies. In fact, it has been well accepted that during the
period of El Niño, a persistent anomalous anticyclone over the
Western North Pacific (WNP) can bring a large amount of water
vapor to East Asia, which leads to an increase of precipitation over
the Yangtze River38–41. However, modulated by the locations and
strengths of WNP monsoon trough and the WNP subtropical high
(WNPSH)41,42, which maybe related to the variations of PDO, the
effects of El Niño on East Asia can also vary on multidecadal scale.
Such as the time before the late 1970s, positive (negative) winter-time
Nino3-SSTA usually corresponds to less (more) rainfall over the
Yangtze River. Due to a westward expansion of the WNPSH after
late 1970s, summer precipitation increased over the Yangtze
River43,44. Therefore, for better understanding the Summer Rainfall
over the middle-lower reaches of the Yangtze River, different
mechanisms on different time scales should be considered carefully.
From this example, cross-correlation coefficient rDPCCA obtained
from DPCCA shows better performance than rDCCA from DCCA.

Discussion
In this report, we proposed a new method, Detrended Partial-Cross-
Correlation Analysis (DPCCA), which can be used to diagnose

Figure 3 | Time series and related results in Test I. (a, b) show the two time series xA’
i

� �
and xB’

i

� �
in test I, but with quadratic trends. The results of

traditional cross-correlation analysis (TCA, blue), partial cross-correlation analysis (PCCA, red), detrended cross-correlation analysis (DCCA cross-

correlation coefficient rDCCA, yellow), as well as the detrended partial-cross-correlation analysis (DPCCA, black) are shown in (c). In (d), more cases with

higher-order trends are shown. For each ‘‘Trend Type’’, the detrend order of DPCCA (DCCA) are different, as DPCCA1 (DCCA1), DPCCA2 (DCCA2),

DPCCA3 (DCCA3), DPCCA4 (DCCA4), and DPCCA16 (DCCA16), respectively. The coefficient of each ‘‘Trend Type’’ is actually the mean correlation

coefficient averaged over all the time scales in (c).
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‘‘intrinsic’’ relations of two nonstationary signals (with influences of
other signals removed) on different time scales. This method is based
on the Detrended Cross-Correlation Analysis (DCCA), but
improved by including the Partial-Cross-Correlation Analysis
(PCCA), which therefore has the advantages of both DCCA and
PCCA. To illustrate the advantages, we made two simple tests in
our study. Test I proved DPCCA indeed can provide robust results
even when nonlinear trends are mixed in the data we are analyzing,
and further show relations between the two considered data on dif-
ferent time scales. While Test II illustrated the ability of DPCCA in
investigating correlations when multi-signals are linked via inter-
woven ties, as shown in Figure 4. In general, DPCCA has better
performance in dealing with correlations in complex system.
However, when applying it, there are two points that need to be
considered.

i) Significance testing. With DPCCA, one can obtain cross-corre-
lations on different time scales. However, to determine whether
the calculated correlations are statistically significant, one can
not simply apply the student’s t-test due to the changing degree
of freedom. Normally, Monte-Carlo tests have to be applied to
decide whether the obtained cross-correlations are significant on
a given time scale45 (Figure 5, the blue line).

ii) Background assumptions. When applying DPCCA, one has to
pay attention to the background assumptions of partial cross-
correlation analysis. That is, the considered multi-signals should
have linear relationships with each other. This is the main defi-
ciency of PCCA. However, by using DCCA, we believe this

deficiency can be reduced to some extent, since only the relation-
ships on different time scales are discussed, but not on the whole
length. Nevertheless, we would like to stress that more advanced
analytical methods are needed, especially the methods based on
nonlinear frameworks.

We applied DPCCA to a climatic example, that deals with the
winter-time Pacific Decadal Oscillation (PDO) and the winter-time
Nino3 Sea Surface Temperature Anomaly (Nino3-SSTA) affecting
the Summer Rainfall around Yangtze River (SRYR) over past dec-
ades. Since PDO has longer variation period (<30 years), it can be
considered as a variable background. With PDO controlled, the rela-
tions between Nino3-SSTA and SRYR seems to be more apparent on
the time scales of 5 , 8 years. Similarly, with Nino3-SSTA controlled,
significant relations between PDO and SRYR emerges on time scales
of about 35 years. Although, due to possible influences of nonlinear
effects, our results may still be problematic, considering traditional
Cross-Correlation Analysis is still the main analytical method in
various fields, our study still improves our ability in analyzing
cross-correlations among multi-variables on different time scales.
From the two numerical tests and the climatic example, we can
summarize the advantages of DPCCA. i) DPCCA can be used to
reveal the ‘‘intrinsic’’ relations between two considered variables,
by removing the possible influences of other unconsidered signals,
ii) DPCCA is appropriate in the research of non-stationary variables,
and iii) DPCCA can show the correlation levels on different time
scales. Based on these advantages, we are convinced that this method
will have extensive application prospects.

Figure 4 | Time series and related results in Test II. (a–c) show fractions of the three sinusoidal signals in test II: xS1
i

� �
, xS2

i

� �
, and xS3

i

� �
. xS1

i

� �
acts as a

background field, with low-varying frequency and larger amplitude. xS2
i

� �
, and xS3

i

� �
have different phases (see the gray part), and their combination is

shown in (d). The red curve in (e) is the DCCA cross-correlation coefficient rDCCA between xA’
i

� �
~ xA

i

� �
z xS1

i

� �
z xS2

i

� �
and xB’

i

� �
~ xB

i

� �
z xS2

i

� �
(denoted as rDCCA results II), and the blue dashed line shows the time scale of 100 (days). If the signal xS2

i

� �
in xA’

i

� �
is offset by xS3

i

� �
, rDCCA fails in

providing accurate results, as shown in (e), the black open-circle curve (denoted as rDCCA results I). But DPCCA succeeds, as shown in (f), the black solid-

circle curve.
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Methods
In this section, we will show the details on how the method, DPCCA, is designed.

Suppose we have m time series x1
i

� �
, x2

i

� �
, x3

i

� �
, � � � , xm

i

� �
, where

i~1,2,3, � � � ,N . Each time series can be considered as a random walk, and we can
define the so called profile as:

Pj
k:

Xk

i~1

xj
i, ð2Þ

where j~1,2,3, � � � ,m, k~1,2,3, � � � ,N . Similar to the procedures in DCCA, one first
divide the entire profile into N 2 s overlapping boxes. Each box i contains s 1 1
values, starts at i and ends at i 1 s. In each box i, we can determine the ‘‘local trend’’fPj

k,i (i # k # i 1 s) by using a polynomial fit, and further define the ‘‘detrended walk’’
as the difference between the original profile and the local trend, as:

Yj
i{1ð Þ sz1ð Þzk{iz1~Pj

k{
fPj

k,i, ð3Þ

In this way, we can get one detrended residual series Yj
l , l~1,2,3, � � � , N{sð Þ sz1ð Þ,

for each time series xj
i

n o
. By calculating the covariance between any two residuals,

F2
j1 ,j2

sð Þ:
P N{sð Þ sz1ð Þ

l~1 Yj1

l Y j2

l

N{sð Þ s{1ð Þ , ð4Þ

where j1,j2~1,2,3, � � � ,m, we can obtain a covariance matrix,

F 2 sð Þ~

F2
1,1 sð Þ F2

1,2 sð Þ . . . F2
1,m sð Þ

F2
2,1 sð Þ F2

2,2 sð Þ . . . F2
2,m sð Þ

..

. ..
. ..

.

F2
m,1 sð Þ F2

m,2 sð Þ . . . F2
m,m sð Þ

0
BBBBB@

1
CCCCCA: ð5Þ

Obviously, according to22, the cross-correlation levels between any two time series,

xj1
i

n o
and xj2

i

n o
, can be estimated as,

rj1 ,j2
sð Þ:

F2
j1 ,j2

sð Þ
Fj1 ,j1 sð Þ:Fj2 ,j2 sð Þ , ð6Þ

and a coefficients matrix can further be obtained as,

r sð Þ~

r1,1 sð Þ r1,2 sð Þ . . . r1,m sð Þ
r2,1 sð Þ r2,2 sð Þ . . . r2,m sð Þ

..

. ..
. ..

.

rm,1 sð Þ rm,2 sð Þ . . . rm,m sð Þ

0
BBBBB@

1
CCCCCA: ð7Þ

Where rj1 ,j2
sð Þ ranges from 21 to 11, and represents the level of cross-correlation on

time scales of s. However, it should be noted that it only shows the relations between

time series xj1
i

n o
and xj2

i

n o
. This may provide spurious correlation information if the

two time series are both correlated with other signals. Therefore, to exclude the

possible influence of other time series, we need to combine the partial-correlation
technique with the calculations above.

To apply the partial-correlation technique, we first need to calculate the inverse
matrix of r(s),

C sð Þ~r{1 sð Þ~

C1,1 sð Þ C1,2 sð Þ . . . C1,m sð Þ
C2,1 sð Þ C2,2 sð Þ . . . C2,m sð Þ

..

. ..
. ..

.

Cm,1 sð Þ Cm,2 sð Þ . . . Cm,m sð Þ

0
BBBB@

1
CCCCA, ð8Þ

for any two time series xj1
i

n o
and xj2

i

n o
, the partial-cross-correlation level can thus be

determined as,

rDPCCA j1,j2; sð Þ~ {Cj1 ,j2 sð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cj1 ,j1 sð Þ:Cj2 ,j2 sð Þ

p : ð9Þ

where the coefficients rDPCCA(j1, j2; s) can be used to characterize the ‘‘intrinsic’’
relations between the two time series on time scales of s. It is worth to note that we use
the word ‘‘intrinsic’’ here, is to indicate a condition when the influences of other time
series have been removed, or assume a situation that other time series remain
unchanged. By changing s, similar to the DCCA cross-correlation coefficient rDCCA,
we can further estimate the partial cross-correlation levels on different time scales.
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