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[1] Long-term memory (LTM) in climate variability is studied by means of fractional
integral techniques. We establish a new model, Fractional Integral Statistical Model
(FISM), with which one can reproduce LTM of any given time series of climatic
variability successfully. By using FISM, we further propose a new variable, Memory
Kernel, based on which a clear picture of how the historical states maintain their impacts
on the states in far future is drawn quantitatively. We find any climatic variability time
series with LTM can be decomposed into two components: the weather-scale (or more
accurately, smaller-scale) excitation and the cumulative memory component. By
analyzing these two components, we reach an interpretation of climate memory in the end
of the paper, that is, smaller time scale excitation pushes the present climate regime to
begin to change, while slower response subsystems, such as the ocean, usually
“remember” the forcing first, and then exhibit the influence slowly on a larger time scale.
Since LTM is ubiquitous in climate, our findings in this paper may suggest a new
perspective on the research of climate predictability.
Citation: Yuan, N., Z. Fu, and S. Liu (2013), Long-term memory in climate variability: A new look based on fractional integral
techniques, J. Geophys. Res. Atmos., 118, 12,962–12,969, doi:10.1002/2013JD020776.

1. Introduction
[2] Ever since the middle of last century when the well

known “Hurst Phenomenon” was revealed [Hurst, 1951],
it has been widely recognized that the climate variabil-
ity exhibits scale invariance, or more precisely, long-term
memory (LTM) [Koscielny-Bunde et al., 1998; Malamud
and Turcotte, 1999; Syroka and Toumi, 2001]. As the name
implies, long-term memory (or persistence) normally means
the present states of a system may have long-term influences
on the states in far future. One can simply use the auto-
correlation function C(s) to describe this scaling behavior.
If the autocorrelation function C(s) of a given time series
decays as a power law, C(s) � s–� , 0 < � < 1, the typ-
ical correlation time according to sx = 1

C(0)

R
1

0 C(s)ds is not
integrable, and we can further confirm this time series as
long-term correlated [Koscielny-Bunde et al., 1998]. By
using a more advanced method named as detrended fluctu-
ation analysis (DFA) [Peng et al., 1994; Kantelhardt et al.,
2001], recent researches on extensive examples ranging
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from temperatures [Eichner et al., 2003; Monetti et al., 2003;
Király et al., 2006], relative humidities [Chen et al., 2007],
and river runoff [Kantelhardt et al., 2006; Koscielny-Bunde
et al., 2006] to wind fields [Govindan and Kantz, 2004; Feng
et al., 2009], atmospheric general circulations [Vyushin and
Kushner, 2009; Vyushin et al., 2009], total ozone anomalies
[Varotsos and Kirk-Davidoff, 2006; Vyushin et al., 2007],
etc., indicate that LTM is ubiquitous in climate. There-
fore, understanding climate memory has become one of the
principal goals of climatology.

[3] During the past few years, as [Fraedrich et al., 2009]
summarized, researches were mainly focused on (i) the
detection of LTM in different climatic variables [Király
and Jánosi, 2005; Yuan et al., 2010], (ii) its influence on
the internal stochastic trends and clustering of extremes
[Bunde et al., 2005; Rybski et al., 2006; Lennartz and Bunde,
2009; Franzke, 2011], and (iii) its reproducibility by cli-
mate models [Bunde et al., 2001; Govindan et al., 2002;
Fraedrich and Blender, 2003; Vyushin et al., 2004; Rybski
et al., 2008]. From these previous works, people have grad-
ually learned (i) how to diagnose the existence of LTM, (ii)
how to apply LTM to the understanding of climate vari-
ability, and (iii) how to improve climate models with the
reproducibility of LTM as the test criterion. However, based
on these researches, our understanding on climate mem-
ory is still not enough. Simple questions such as why there
is LTM in climate variability, or how the present states
maintain their impacts on the states in far future, are not
easy to be answered. Since compared with fully developed
dynamical climate model, statistical model may show us a
much simpler but clearer physical picture, it is therefore
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Figure 1. Time series we use for analysis in this study. (a) The temperature anomalies in Stockholm over
the past century. (b) The random data shuffled from the temperature anomalies. (c) The new generated
time series, which is obtained after a q-order (q = 0.24) integration from the shuffled data.

essential to establish a statistical model which can repro-
duce LTM appropriately and further be suitable for a better
understanding of climate memory.

[4] In this study, based on fractional integral tech-
niques [Mandelbrot and Van Ness, 1968], we establish a
new statistical model, Fractional Integral Statistical Model
(FISM). Compared with the well-known autoregressive
model [Caballero et al., 2002; Vyushin et al., 2012], FISM
can make a better simulation of LTM due to the frac-
tional integral procedures (refer to section 3) and further
be appropriate in the interpretation of climate memory. In
this paper, we propose a new variable from FISM, memory
kernel (MK), with which a clear picture of how the histori-
cal information affects the states in future is drawn (refer to
section 4). In order to make a vivid interpretation of LTM,
we further find that any given time series of climatic variabil-
ity can be ultimately decomposed into two components. One
is the cumulative memory component (CMC), and the other
is the random excitations by weather-scale disturbances
(or weather-scale excitations (WSE)). CMC is determined
from the historical information. The stronger LTM is, the
larger CMC will be, while WSE contains intrinsic dynamical
characteristics. Different WSEs indicate that the considered
time series may be governed by different dynamical mech-
anisms. By using a recently introduced method, detrended
cross-correlation analysis (DCCA) [Podobnik and Stanley,
2008; Podobnik et al., 2009], a brief discussion on WSE will
be made at the end of section 4.

[5] The rest of this paper is organized as follows. In
section 2, we will make a brief introduction of the data and
the method (DFA, DCCA) we use for analysis. How to estab-
lish the Fractional Integral Statistical Model (FISM) will
also be discussed in this section, along with a test of whether
the model can reproduce LTM in any arbitrary time series
of climatic variability. Based on FISM, a detailed study on

climate memory is made in section 3, where we show how
the present states maintain their impacts on the states in far
future quantitatively, and further make a new interpretation
of LTM by decomposing a given time series into two com-
ponents (CMC+WSE). In section 4, we make a discussion
and conclude this paper.

2. Data and Methodology
2.1. Data

[6] In order to demonstrate the usability of the proposed
FISM, we have made extensive examinations on tempera-
ture records from different weather stations. Since the out-
puts are quite similar with each other, in this paper we only
take the analysis of the daily temperature records observed
in Stockholm as an example for illustration. The records
are obtained from “Royal Netherlands Meteorological Insti-
tute Climate Explore” (http://climexp.knmi.nl/) and ranged
from 1901 to 2000. Before our analysis, we first standard-
ize the data by (a) averaging the daily data over 2 weeks to
remove the short-term correlations due to general weather
regimes, and (b) removing the seasonal trend through sub-
tracting the annual cycle [Koscielny-Bunde et al., 1998], as
�i = Ti – hTii, where Ti is the biweekly temperatures and �i
is the temperature anomalies that we use for analysis, see
Figure 1a.

2.2. Methodology
2.2.1. DFA

[7] DFA has been widely used recently in the diagnos-
ing of LTM. In this study, we employed the second-order,
DFA-2, for our analysis [Kantelhardt et al., 2001]. In DFA-
2, one considers the cumulated sum (profile) Yi =

Pi
j=1 xj

of the record of interest {xj}. One divides the profile into
nonoverlapping windows of size s. In each window �, the
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Figure 2. DFA-2 and power spectral density results of the three time series in Figure 1. (a and b) The
results for temperature anomalies in Stockholm, one can find remarkable LTM property, with the DFA
exponent ˛ = 0.74 and power spectral density exponent ˇ = 0.48. (c and d) The results for the shuffled
data, one can see the LTM is destroyed and the data are characterized as white noise. (e and f) The results
for the new integrated data, one can find the LTM is reproduced. The dashed lines in Figures 2a, 2c, and
2e have slope of 0.5.

best quadratic fit of the profile and the standard deviation of
the profile around this fit are determined. Then we average
the result over all windows � to obtain the mean fluctua-
tion function F(s). One is interested in the dependence of
F(s) on s. For the case of LTM, F(s) increases by a power
law, F(s) � s˛ , with the exponent ˛ > 0.5. While when
˛ = 0.5, the considered record shows no correlations, which
can be determined as white noise. By estimating ˛, one
therefore can tell whether the record is characterized by LTM
[Kantelhardt et al., 2001]. Furthermore, it is worth to note
that F(s) has close relations with the power spectral density
S( f ). When F(s) increases by a power law, S( f ) decays with
f also by a power law, S( f ) � f –ˇ , and the exponent ˇ has
relations with ˛ as ˛ = (1 + ˇ)/2 [Talkner and Weber, 2000],
as shown in Figures 2a and 2b.
2.2.2. DCCA

[8] DCCA is a generalization of DFA, but based on
covariance. This method is designed to investigate long-term
cross correlations between two different simultaneously
recorded time series. The procedures are roughly the same as
DFA, except when calculating the fluctuation functions. In
DCCA, one calculates the covariance between two consid-
ered time series in each window �, and the mean fluctuation
function FDCCA(s) is ultimately obtained by averaging the
covariance over all windows. If FDCCA(s) increases with s by
a power law, the two considered time series are believed to
be long-term cross-correlated. Whereas, if FDCCA(s) remains
zero at different time scales s, the two time series are not
closely related. For more details of this method, please refer
to Podobnik and Stanley [2008].
2.2.3. FISM

[9] To the end of this section, we will show how to
establish the Fractional Integral Statistical Model (FISM).

In 1976, ever since the concept of stochastic climate model
was first introduced by Hasselmann [1976], one begins to
believe that the slow change of climate can be explained
as the integral response to continuous random excitation by
short period “weather-scale” disturbances (weather-noise),
as shown below,

dx
dt

= "(t), (1)

where " represents the “weather-scale” excitations, and x
stands for “climate-scale” (slow) variability. In this classi-
cal paper, the climate-weather system was summarized in
terms of the Brownian motion analogy. However, it has been
noticed that models based on Brownian motion sometimes
cannot provide satisfactory simulations of many natural time
series, especially when modeling time series with self simi-
larity properties or LTM. Therefore, we need to employ the
fractional integral techniques, as discussed in Mandelbrot
and Van Ness [1968].

[10] In our study, we generalize the relations between
climate-scale variability and weather-scale excitations by
means of fractional integral. As shown in equation (2),

d qx
dt q = "(t), (2)

where q is the integral order and can be a fraction. By using
the Riemann-Lioville fractional integral formula, equation
(2) can be written in a more explicit way, as shown below,

x(t) =
d – q"

dt – q =
1
�(q)

Z t

0

"(u)
(t – u)1– q du, (3)

where t stands for the present time point, u stands for a
historical time point, t – u represents the distance between
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the historical time point u and the present time t, and
�(q) denotes the Gamma function. One can simulate the
climate-scale variability from weather-scale excitations "(u)
by adjusting the integral-order q. When q = 1, equation (3)
can be degenerated into equation (1).

[11] It is easy to prove that the integral-order q has one to
one close relation with the DFA exponent ˛, or the power
spectral density exponent ˇ, as shown in equations (4) and
(5). Since " represents the weather-scale excitations, we can
consider it as fast changing (white) noise. Therefore, its
power spectral density follows equation (4),

8̂
<
:̂
"(t) =

1
2�

Z +1

–1
O"( f )eiftd f

S"( f ) = |O"( f )|2 � f –ˇ" = f 0,
(4)

where S"( f ) denotes the power spectral density of "(t), f is
the frequency, and ˇ" stands for the power spectral density
exponent, which (according to the above conditions) should
equal zero. After q-order integration, the power spectral den-
sity of x(t), which represents the climate-scale variability,
can be derived into equation (5),

8̂
<
:̂

x(t) =
d – q"

dt – q =
1

2�

Z +1

–1
O"( f )(if )– qeiftd f

Sx( f ) = |O"( f )(if )– q|2 � f – (ˇ"+2q) = f –2q,
(5)

where we can find the power spectral density Sx( f ) is related
with the frequency f as Sx( f ) � f – (ˇ"+2q). The exponent ˇ"
in equation (4) is changed into ˇx = ˇ" + 2q in equation (5).
Since ˇ" = 0, ˇx and q are thus related as ˇx = 2q. Recall the
relations between ˇ and the DFA exponent ˛ (as introduced
in section 2.2.1), we further have relations among q, ˇ, and
˛, as below,

2q = ˇ = 2˛ – 1. (6)

For a given time series, the three exponents ˛, ˇ, and q
can be determined uniquely, and perform as indicators of
LTM. Normally, people prefer to apply DFA to calculate the
exponent ˛, because this method is less influenced by the
statistical uncertainty due to the multi-windows detrending
and averaging procedure [Talkner and Weber, 2000]. While
for the integral-order q, one may use it to generate surrogate
data with given LTM (DFA exponent ˛, or power spectral
density exponent ˇ), by setting an appropriate q-value in
equation (3). In other words, we can use this Fractional Inte-
gral Statistical Model (FISM) to simulate the LTM, as shown
in Figures 1 and 2.

[12] In Figure 1, we take the mean temperature in Stock-
holm as an example. Figure 1a shows the biweekly tem-
perature anomalies in Stockholm over the past century. One
can find it is long-term correlated, as shown in Figure 2a:
the DFA exponents fitted from the log-log coordinates is
˛ = 0.74, larger than 0.5. Meanwhile, the power spectral
density analysis suggests the same findings with ˇ = 0.48, as
shown in Figure 2b. If we shuffle the temperature anomalies
randomly, as shown in Figure 1b, the LTM will be destroyed
and the shuffled data are characterized as white noise, with
˛ = 0.5 and ˇ = 0, as shown in Figures 2c and 2d. Accord-
ing to equations (3) and (6), by applying a q-order (q =
0.24) integration to this shuffled data, one could theoretically
rebuild the LTM, which is also obtained experimentally,

as shown in Figures 1c, 2e, and 2f. Therefore, FISM suc-
ceeds in simulating LTM, and the three exponents do have
close relations as equation (6). However, it is worth to note
that, by setting an appropriate q-value, FISM only succeeds
in rebuilding time series with given LTM, but cannot repro-
duce the temporal variations in details. This is because the
white noise we use (such as the shuffled data shown in
Figure 1b) is arbitrary. To simulate the given time series in
details, one needs to apply FISM to specific white noise. We
will make a brief discussion on this issue later, before that,
we would like to make a novel interpretation of LTM by
using FISM first, as shown in the next section.

[13] It is worth to note that, in this study, we actually have
also made extensive examinations on records from other
weather stations. Since the results are quite similar, we thus
will not show all the detailed results in this paper.

3. A New Look on LTM
[14] Since Long-term memory is ubiquitous in climate,

understanding the so-called climate memory has become
one of the principal goals of climatology. According to
the discussion above, it is well known that LTM normally
means the historical states of a system can have long-term
influences on the present states, and one can use the auto-
correlation function C(s), the power spectral density S( f ),
or more conveniently the DFA results F(s) to determine
whether a considered time series is characterized by LTM
or not. However, besides the diagnosis of LTM, how to
describe this long-lasting influence quantitatively, or more
accurately, how to interpret the so-called LTM, is still not
well concerned. Since it has been proved that the statisti-
cal model, FISM, does reproduce the LTM (or the “Hurst
Phenomenon”) appropriately and flexibly. By using FISM,
in this section, we aim to make a novel interpretation of
LTM, including providing a physical picture, from which
one can see clearly how the historical information affects the
present states.

[15] We first need to reexamine equation (3) carefully and
simplify it into a convolution form, as shown below.

x(t) =
1
�(q)

Z t

0

"(u)
(t – u)1– q du = K˝‰. (7)

In this equation, similar to equation (3), time t can be consid-
ered as the present time, while time u stands for the historical
time point. (t – u) therefore represents the distance between
the historical time point u and the present time t. In this way,
K � {k(t – u)}, k(t – u) = 1

�(q)(t – u)1– q represents the integrat-
ing factor of every single step, and ‰ � {"(u)} represents
the weather-scale excitation at each historical time point.
Theoretically, the integrating factor k(t – u) in fact describes
to what extent the historical weather-scale excitations "(u)
may affect the present state x(t). Therefore, we can further
name the integrating factor k(t – u) as Memory Kernal (MK
for short), which is a new concept in our study. By calcu-
lating the convolution between K and ‰, or more vividly,
by taking the MK into account, the long-lasting influence of
the weather-scale excitations can thus be well modeled and
ultimately the slow change of climate can be estimated, as
shown in equation (7).

[16] Obviously, compared with the weather-scale excita-
tions "(u), MK plays a more important role since it controls
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Figure 3. Memory Kernel (MK) with different integral-
order q. The red line represents the case q = 0. We can find
MK= 0 at all the distances, which means there is no mem-
ory in the system. The blue line represents the case q = 1.
We can see MK= 0 at all distances, which means there the
system is Brownian motion analogy. The black dash-dotted
line represents the case q = 0.2. We can find MK decreases
from 1 to 0 gradually. Even when the distance is far enough,
as shown in the inserted diagram, MK never reaches 0. This
case shows exactly the so-called LTM behavior.

how the historical information "(u) affects the present states.
Therefore, we will pay more attention to this new concept.
From the definition, it is clear that MK is only determined by
the integral-order q. With different q, the MK may behave
differently. As shown in Figure 3, we provide the MK curves
of three cases: q = 0 (red), q = 0.2 (black), and q = 1 (blue).
For the case q = 0, k(t – u) = 0 at all the distances (t – u).
This means there is no memory in the system, and the time
series x(t) behaves as a white noise (corresponding to the
case when the DFA exponent ˛ = 0.5 and ˇ = 0), just like
the fast changing weather-scale excitations ". For the case
q = 1, k(t – u) = 1 at all the distances (t – u). This means the
system is Brownian motion analogy (corresponding to
the case when the DFA exponent ˛ = 1.5 and ˇ = 2), and the
FISM is degenerated into equation (1). While for the case
q = 0.2, MK decreases from 1 to 0 gradually. It is worth to
note that MK never reaches 0, even when the distance (t – u)
is far enough, as shown in the inserted diagram. Therefore,
this case shows exactly the so-called LTM behavior (corre-
sponding to the case when the DFA exponent ˛ = 0.7 and
ˇ = 0.4). Therefore, Figure 3 is a clear picture from which
one can see how the historical information "(u) affects the
present states x(t).

[17] From the above discussion, besides the physical pic-
ture of MK, one may further realize that a present state x(t)
should consist of two components. As shown below,

x(t) = M(t) + "(t), (8)

where "(t) represents the short period weather-scale excita-
tions (WSE) occurred at the present time, while M(t) stands
for the cumulative memory component (CMC) cumulated
from the historical information: "(0), "(ı), � � � , "(t – ı) (ı
is the sampling intervals of the observed time series). By
using FISM, in this study, we can successfully extract the

cumulative memory component (CMC) of a given time
series {x}, as shown below,

M(t) =
1
�(q)

Z t–ı

u=0

"(u)
(t – u)1– q du, (9)

where M(t) is determined only by the historical information
"(u) and the memory kernel (MK). Obviously, the stronger
LTM is, the larger CMC should be.

[18] For detailed interpretation, in this section, we take
two artificial time series as examples. Figures 4a and 4c
show two different white noise series: “White Noise I” and
“White Noise II”. By making q-order integration to both
white noise series—q = 0.2 for White Noise I, while q =
0.4 for White Noise II—one could generate two new time
series characterized by LTM, as shown in Figures 4b and 4d.
According to equation (6), the DFA exponent ˛ of these two
new generated time series theoretically should be 0.7 and
0.9, and we indeed confirmed these ˛ values experimentally
by applying DFA (results are not shown here).

[19] From the above discussion, it is clear that the new
generated time series can be decomposed into two com-
ponents. One is the white noise which we make q-order
integration, corresponding to the second term, "(t), of
equation (8). The other one is the cumulative component
when making the integration, corresponding to the first
term, M(t), of equation (8). For M(t), as the red curves
in Figures 4b and 4d show, it can be determined from
equation (9) and represents the cumulative memory compo-
nent (CMC) quantitatively. The stronger LTM is, the more
apparent CMC will be in the whole fluctuation (Figure 4d).
While for "(t), one should note that they are not only ran-
dom records. In fact, "(t) represents the random excitations
of weather-scale disturbances. Temporal variation of "(t)
contains intrinsic dynamical characteristics, and different
"(t) may lead the climate regime to different directions.

Figure 4. Examples on the understanding of the two com-
ponents, WSE and CMC. (a and c) The two different white
noise series: “White Noise I” and “White Noise II”. (b and d)
The two new integrated time series from Figures 4a (q = 0.2)
and 4c (q = 0.4), respectively. The red curves are determined
from equation (9), which represent the cumulative mem-
ory component (CMC). Obviously, the stronger LTM is, the
more apparent CMC will be in the whole fluctuations.
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Figure 5. Open circles represent the DCCA results of the
two time series in Figures 4b and 4d. Since the two time
series are integrated from different types of white noise, the
DCCA fluctuation function is around zero (see the right-
hand side axis), which indicates that the two time series are
not related. Solid circles represent the DCCA results of two
time series, which are both integrated from “White Noise I”.
In this case, one can see that the two time series are indeed
long-term cross-correlated.

Therefore, time series with different WSEs can be consid-
ered to be governed by different dynamical mechanisms. In
the following, we will apply a recently introduced method,
detrended cross-correlation analysis (DCCA), to demon-
strate the importance of "(t).

[20] We first apply DCCA to the two long-term corre-
lated time series in Figures 4b and 4d. Since these two
time series are generated from two different white noise

series (Figures 4a and 4c), according to the above analysis,
the generated time series should be governed by different
mechanisms, or in other words, there should be no cross cor-
relations between them. As shown in Figure 5, we indeed
find the two time series are not related, for the fluctuation
function FDCCA(s) are around zero at different time scales
(open circles). However, if we use the same white noise
to generate long-term correlated time series, the obtained
time series should be long-term cross-correlated. For better
demonstration, in this study we also generate another time
series (not shown here) from “White Noise I”, with the inte-
gral order q = 0.4. The DCCA results of the two time series
(integrated from “White Noise I”) are shown as the solid cir-
cles in Figure 5, where we find the two time series are indeed
long-term cross-correlated. Or in other words, the two time
series are governed by the same mechanisms (the same ").

[21] Thus, for these two components, "(t) and M(t), we
have reasons to believe that, it is "(t) that triggers the
change, while M(t) that shows the way of changing, or
response. In climatology, we then can make a novel inter-
pretation of the climate memory (LTM) as the following: the
weather-scale (or more accurately, the smaller-scale) excita-
tions (WSE, "(t)) push the present climate regime to begin
to change, while slower response subsystems, such as the
ocean, usually “remember” the forcing first, and then exhibit
the influence slowly on a larger scale.

4. Discussion and Conclusion
[22] In this paper, we mainly focus on the understanding

of long-term memory in climate variability. By means of
fractional integral techniques, we establish a new statistical
model, FISM, which can be used to reproduce the LTM of

Figure 6. DCCA results of the two time series in Figures 1a and 1c. Although we can reproduce the
LTM successfully, as shown in Figure 2, due to the difference of WSE, the two time series are still
not related.
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any given time series of climatic variability. From FISM, we
further proposed a new concept, Memory Kernel (MK), with
which one can describe quantitatively how the historical
information affects the states in far future. By decomposing
a given time series into two components: the weather-scale
excitation (WSE) and the cumulative memory component
(CMC), a novel interpretation of climate memory is made at
the end of the paper.

[23] As for the cumulative memory component (CMC),
it is determined only by the historical information and the
memory strength. The stronger LTM is, the more appar-
ent CMC will be in the whole fluctuations. While for the
weather-scale excitations (WSE), it is worth to note that they
are actually not only random records but also contain intrin-
sic dynamical characteristics. Different WSEs may trigger
transitions of climatic regimes in different directions, there-
fore time series integrated from different WSEs may have
no relations with each other. Such as the time series dis-
played in Figure 1, although the new integrated time series
(Figure 1c) can reproduce the LTM of the original tempera-
ture anomalies (Figure 1a), since the time series is integrated
from a randomly shuffled data (Figure 1b), its temporal
variations will not be related with that of the original tem-
perature anomalies (Figure 1a). As the DCCA result shows
(Figure 6), the values of FDCCA(s) are roughly around zero
at different time scales, which means the two time series are
governed by different mechanisms or different WSEs.

[24] Therefore, a new problem arises. Although we can
rebuild time series with long-term memory by FISM and
further extract the cumulative memory component (CMC),
if the WSE is different from that of the given time series,
our simulation from FISM cannot reproduce the temporal
variations of the given data (as Figure 1). In contrast, if
we can extract the WSE hidden in the given data, by using
this specific WSE, we cannot only reproduce the LTM but
also simulate the given data in details. In this way, we may
improve our predicted skills of climate variability from a
new point of view [Zhu et al., 2010], by using the simple
statistical model, FISM. Therefore, how to extract the WSE
should be an important issue that needs to be discussed in a
future research.

[25] However, even so, our work in this paper still shows a
new way of understanding the climate memory. From recent
works, we have known that LTM is ubiquitous in climate,
and further realized that the strength of LTM may vary with
time and space [Fraedrich and Blender, 2003; Yuan and
Fu, 2013]. Thus, questions like how to understand the exis-
tence of LTM, can we use the concept of LTM to improve
the climate predictability, have become the important issues
needing to be addressed. We believe that the simple statisti-
cal model (FISM) proposed in this paper can be a useful tool
in dealing with these issues, even though there are works still
need to be done (as discussed in the previous paragraph).

[26] In the end, to better demonstrate the approach pro-
posed in this paper, we would like to summarize several
steps, following which one may analyze the long-term mem-
ory property of any given climatic system or time series, and
further extract the cumulative memory component (CMC)
more conveniently. Suppose we have a climatic time series,
one needs to

[27] 1. Determine the strength of LTM by DFA and obtain
the exponent ˛ and q.

[28] 2. Calculate the memory kernel (MK) by using
equation (7), where MK is defined as k(t – u) = 1

�(q)(t – u)1– q .
[29] 3. Extract the weather-scale excitations (WSE) "(t).
[30] 4. Calculate the cumulative memory component

(CMC) by using equation (9).
[31] Obviously, the stronger LTM is, the more apparent

CMC will be in the whole fluctuations, and the better pre-
dictability we may get. Of course, the key point of the
above steps is to extract the WSE hidden in the considered
data. It is crucial and determines whether we can simu-
late the temporal variations of the given data in details. To
address this problem, a general idea is that we may obtain
the WSE by deriving equation (7) reversely. For more details
on how to extract WSE, a thorough discussion will be shown
in a following paper, along with a further research on the
climate predictability.
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