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Abstract
Determinism and randomness are two inherent aspects of all physical processes. Time se-

ries from chaotic systems share several features identical with those generated from sto-

chastic processes, which makes them almost undistinguishable. In this paper, a new

method based on Benford's law is designed in order to distinguish noise from chaos by only

information from the first digit of considered series. By applying this method to discrete data,

we confirm that chaotic data indeed can be distinguished from noise data, quantitatively

and clearly.

Introduction
Time series from chaotic systems (CSs) share with those from stochastic processes (SPs) some
properties make them almost undistinguishable. Though behind the veil of apparent random-
ness, many series from CSs are highly ordered [1–3], the distinction between chaotic and sto-
chastic processes is still a long-standing challenge [4–18]. Moreover, experimental chaotic
records are unavoidably contaminated with noise, which makes the distinction task even
more complicated.

The discrimination between chaotic and stochastic processes has drawn much attention,
since irregular and apparently unpredictable behaviors are often observed in natural measure-
ments. Many studies have been done aim to uncover the cause of unpredictability governing
these systems, and much effort has been further devoted in understanding this topic [4–18].
First of all, exponential power-spectra have been identified in many idealized nonlinear sys-
tems, and are taken to be characteristics of low-dimensional chaos to differentiate chaos from
stochastic processes, whose power-spectra show power-law behavior [4–7]. Nonlinear forecast-
ing [8,9] has also been applied to make tentative distinctions between dynamical chaos and
measurement errors, since the accuracy of nonlinear forecast diminishes with increasing pre-
diction time intervals for chaotic series, but for stochastic series, it does not. Recently, network
and symbolic dynamics related methods [10–18] are used to handle this issue, where structural
information among consecutive points in physical or phase space are used to characterize and
distinguish stochastic from chaotic processes.
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Although above mentioned methods have been successfully applied to distinguish stochastic
from chaotic processes, the authors of each method have only explored the related magnitude
or permutation information of the analyzed processes, such as power-spectrum method or net-
work based methods. We note that digital information has never been used so far to character-
ize and further distinguish stochastic from chaotic processes. Actually, digital information is of
great importance to characterize specific process. For example, the first digits in many datasets
are not uniformly distributed as expected, but heavily skewed toward the smaller digits. This
phenomenon was first found by Simon Newcomb in 1881 [19]. Nobody showed interests in
this discovery, until 1938 when Frank Albert Benford [20] investigated some 20 tables of 20229
numbers and drawn the conclusion that the first digit probability distribution in many data
sets is

PBðdÞ ¼ log10ð1þ 1=dÞ ð1Þ

where d = 1,2,. . .,9 is the first digit. It was named as Benford's Law (BL) later by the scientific
community. Many scientists in different fields have tried to explain the underlying reasons for
BL [20–26], but a successful explanation remains elusive [27,28]. However. although there is
no accepted interpretation, BL is nearly taken as an universal law. In recent years, most BL
related studies are limited in validating whether particular datasets follow this law [29,30], de-
tecting frauds in election and accounting [31,32], as well as testing physical system transition
[33,34]. Especially, Tolle and his coauthors [35] examined three low-dimensional chaotic mod-
els of dynamical systems, and found examples of either compliance with or deviance from Ben-
ford's law, which depends upon the models and the parameters.

Can Benford's law be explored to characterize and distinguish stochastic from chaotic pro-
cesses? The answer from the Toll's results is no. However, the observed dynamics may be
strongly affected by the resolution scales used to document the behaviors of considered pro-
cesses [36]. In order to characterize complex multi-scaled series, it is of fundamental impor-
tance to incorporate the multiple scale in devising measures [36]. Costa et al [37]. and Zunino
et al. [13] have introduced multi-scale entropy (MSE) and multi-scale permutation entropy
(MPE) to successfully distinguish different states of analyzed processes or dynamical systems,
respectively. These results show the importance of multi-scale in characterizing the analyzed
processes or systems. Here for the first time we introduce the multi-scale to Benford's law anal-
ysis, and the results show that it does help us in distinguishing chaos from noise.

Materials and Methods

Generating SPs
We generate three kinds of well-known stochastic processes by Fourier transform technique:
(1) Noise with f -k power spectra, (2) Fractional Gaussian noise (FGN) and (3) Fractional
Brownian motion (FBM). All three SPs are a particular class of colored noise which represent
stochastic (infinite-dimensional) systems with different power-law spectra [13,14].

Noise with f -k power spectra

1. Generate a set {ui,i = 1,2,. . .,N} of independent Gaussian variables of zero mean and vari-
ance one, and compute the discrete Fourier transform of the sequence fû1kg.

2. Correlations are incorporated in the sequence by multiplying the new set by the desired
spectral density f -k, yielding fû2kg;
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3. Now,fû2kg is symmetrized so as to obtain a real function and then the pertinent inverse Fou-
rier transform {xi} is obtained, after discarding the small imaginary components produced by
our numerical approximations.

Fractional Gaussian noise (FGN) and Fractional Brownian motion (FBM)
FBM is the only family of processes which is (a) Gaussian, (b) self-similar, and (c) endowed
with stationary increments [14,38,39]. The normalized family of these Gaussian processes,
{BH(t),t>0}, is endowed with these properties: (i) BH(0) = 0 with probability 1, (ii) E[BH(t)] = 0
(zero mean), and (iii) covariance given by

E½BHðtÞBHðsÞ� ¼ ðt2H þ s2H � jt � sj2HÞ=2
for t,s∈R. Here E[] refers to the average computed with a Gaussian PDF. The power exponent
0<H<1 is commonly known as the Hurst parameter (exponent). These processes exhibit
‘‘memory” for any Hurst parameter except for H = 1/2, as one realizes from Eq (11). The case
H = 1/2 corresponds to classical Brownian motion and successive motion increments are as
likely to have the same sign as the opposite (there is no correlation among them). Thus, Hurst’s
parameter defines two distinct regions in the interval (0,1). When H>1/2, consecutive incre-
ments tend to have the same sign so that these processes are persistent. For H<1/2, on the
other hand, consecutive increments are more likely to have opposite signs, and we say that they
are anti-persistent. Let us introduce the quantity Fractional Gaussian noise (FGN) as the FBM
increments, 2WH(t) = BH(t+1)-B(t)H, so as to express our Gaussian noise in the fashion

rðkÞ ¼ E½WHðtÞWHðt þ kÞ� ¼ ½ðkþ 1Þ2H � 2k2H � jk� 1j2H�=2; k > 0

Note that for H = 1/2 all correlations at nonzero lags vanish and {W1/2(t),t>0} thus it repre-
sents white noise. The FBM and FGN processes are continuous but non-differentiable process-
es (in the classical sense). It is possible to define a generalized power spectrum of the form: F/|
f|-β, with β = 2H+1,1<β<3 for FBM and β = 2H-1,-1<β<3 for FGN. For evaluating the FBM
and FGN time series, here we use a modified Fourier filtering technique [39,40], which is both
exact and fast.

Generating CS
In order to compare results given in our proposed method with those from other methods, all
the CSs chosen in this paper are those used to distinguish noise from chaos in the literature
[13–17, 41].

Noninvertible chaotic maps
(1) Gauss map: xnþ1 ¼ 1=xn Mod 1ð Þ. (2) Linear congruential generator: xn+1 = axn+b (Mod

1c),where a = 7141,b = 54773,c = 259200. (3) Schuster map: xnþ1 ¼ xn þ xzn ðMod 1Þ in the
fully chaotic region, where z = 3/2.

Dissipative chaotic maps

(4) Dissipative standard map:
xnþ1 ¼ xn þ ynþ1 ðMod 2pÞ
ynþ1 ¼ bxn þ k sinðxnÞ ðMod 2pÞ

(
,where b = 0.1,k = 8.8.

(5) Kaplan Yorke map:
xnþ1 ¼ 2xn ðMod 1Þ
ynþ1 ¼ ayn þ cosð4pxnÞ

(
, in the fully chaotic region, where α = 0.2.
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(6) Sinai map:
xnþ1 ¼ xn þ yn þ d sinð2pynÞ ðMod 1Þ
ynþ1 ¼ xnþ1 þ 2yn ðMod 1Þ

(
, where δ = 0.1.

(7) Tinkerbell map:
xnþ1 ¼ x2n � y2n þ axn þ byn

ynþ1 ¼ 2xnyn þ cxn þ dyn

(
, where a = 0.9,b = -0.6013,c = 2.0,d = 0.50

(8) Chirikov standard map:
xnþ1 ¼ xn þ k sinðynÞ ðMod 2pÞ
ynþ1 ¼ xnþ1 þ yn ðMod 2pÞ

(
with k = 0.2.

(9)Lorenz three-dimensional chaotic system:

_x ¼ ay � ax

_y ¼ bx � y � xz

_z ¼ xy � cz

8><
>: in the fully chaotic region

with a = 10,b = 25,c = 8/3.
Here we also analyze more other deterministic time series generated by chaotic maps (see

more details in S1 File), Details for these maps can be found in the references [14–16,41]. Even
though the presented list of chaotic maps is not exhaustive, it could be taken as representative
of common chaotic systems [41]. For all the CS cases, 10 time series with 105 data points each
were analyzed, and each series starting at a different initial conditions.

Results and Discussions

The first digit distribution at different scales for CSs and SPs
After generating the chaotic and stochastic time series xi, i = 1,2,3. . .N (where N is the length of
analyzed series) by using simple schemes described above (see Materials and Methods), We de-
fine Ps(d),d = 1,2,. . .,9 as the frequency of the first non-zero digit in the consecutive coarse-
grained time series:

ysj ¼ 1=s
Xjs

ðj�1Þsþ1
xi; 1 � j � ½N=s� ð2Þ

which is determined by the scale factor s = 1,2,3. . .,20 [37].
The frequency with which different first digits occur is shown to be differently sensitive to

scales for the different kinds of processes. Fig 1 plots the first digit distributions at two predom-
inant scales from three kinds of chaotic processes and one kind of stochastic process, with the
theoretical Benford's Law (Eq (1)) shown for comparison. Time series derived from each pro-
cess has identical length of 105 points. The two typical scales are chosen according to the con-
formance degree between the first digit distribution of each process and the Benford's law. One
is the best compliance with and the other is the greatest deviance from Benford's law. We find
that time series derived from chaotic and stochastic processes have different characteristics.
For stochastic process, differences from the theoretical Benford's law are much smaller at both
the compliance scale and deviance scale (see Fig 1 for FGN with β = 0.4), and the fundamental
feature is still heavily skewed toward the smaller digits. Moreover, all the stochastic processes
take this similar behavior (see Figure A in S1 File). However, differences for all three kinds of
chaotic processes (see Fig 1 for the noninvertible chaotic maps: Linear congruential generator,
the dissipative chaotic maps: Tinkerbell map-y and the conservative chaotic maps: Chirikov
standard map-x) are significant. At the deviance scale, the frequency distributions of the first
significant digits are not the expected frequency distribution from Benford's law, whereas some
digits are missing and only specific digit(s) exist, which indicates a drastic breakdown of Ben-
ford's law. Actually, the drastic breakdown of Benford's law can be found in all the chaotic sys-
tems we have analyzed (Figures B–D in S1 File).
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Euclidean distance for CSs and SPs
From the frequency distribution of the first digits at different scales, we just find the qualitative
distinction between the chaotic and stochastic processes. The difference between the frequency
distributions of the first significant digits of the considered processes and the expected frequen-
cy distribution from Benford's law can be quantified by a parameter. Here we choose this pa-
rameter as Euclidean distance, and it is defined as

EDðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX9

d¼1
½PsðdÞ � PBðdÞ�2

q
ð3Þ

According to this definition and the Benford's law, the maximum value of ED is 1.036 for the
case when time series has only one specific digit 9 appears, but other eight digits are forbidden;
the minimum value of ED is 0 for time series fully following the Benford's law distribution.

Quantitatively, the values of ED(s) do not change much, from 0.070 to 0.103, for stochastic
process, see Fig 1a, but there are substantive changes for the chaotic processes. As shown in Fig
1b–1d, ED value changes from 0.148 to 0.255 for Schuster map, from 0.075 to 0.426 for Tinker-
bell map-y, from 0.123 to 0.580 for Chirikov standard map-x. Therefore, the changing values
of ED(s) with scale factors seem to be a sensitive measure of the underlying dynamics. In Fig 2,
details on how the ED(s) changes with scale factors are shown. First of all, we can see that at
some scales, we can't distinguish CSs from SPs since many of CSs have the same lower ED val-
ues as SPs. This is consistent with the conclusion there are CS examples, which are both com-
pliance with and deviance from Benford's law, depending upon the chaotic models and the
parameters [35]. Secondly, with increasing scale factor, the ED remains almost unchanged for
all stochastic process (see Figure E in S1 File), but varies significantly for all deterministic cha-
otic systems (see Figures E–H in S1 File). The differences are not difficult to understand since

Fig 1. Fourtypical examples of the first digit distribution for time series at different scales. The
stochastic process: FGN β = 0.4,the noninvertible chaotic maps: Linear congruential generator, the
dissipative chaotic maps: Tinkerbell map-y and the conservative chaotic maps: Chirikov standard map-x.

doi:10.1371/journal.pone.0129161.g001
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the CSs are multi-scaled and have a finite dimensional attractor in phase space, while the SPs
do not [41]. Thirdly, different chaotic systems have their own largest ED values at the different
specific deviance scale, because they are distinctively multi-scaled and have different dimen-
sions [41].

Distinguishing index ΔED between CSs and SPs
Since the ED is nearly invariant for SPs but changes greatly for CSs, in order to clearly display
the quantitative differences between CSs and SPs, we define ΔED as the ED variation range
within given scale ranges:

DEDðLÞ ¼ maxfEDðsÞ; s 2 ½1; L�g �minfEDðsÞ; s 2 ½1; L�g ð4Þ
where max{ED(s),s�[1,L]} and min{ED(s),s�[1,L]} are the maximum and minimum value of
ED(s) within the scale range [1,L], respectively. Fig 3 shows that ΔED is almost invariant close
to zero for SPs with the varying scale range L, but for CSs it departs with increasing L from a
nonzero threshold, which is determined as the maximum of ΔED calculated from 1000 SPs at
each given range scale, (Figures I–K in S1 File). We can see that the distinction between CSs
and SPs increases significantly as the scale range L increases. When the scale range larger than
4, all the values of ΔED from CSs are above the threshold and all those from the SPs are below
the threshold. Fig 3 also shows us the ΔED gap between CSs and SPs broadens as the scale
range increases, which help us make distinction easier. What’s more, the results show us that
ΔED can also help us distinguish different CSs at large scale range.

Conclusions
Motivated by BL, here we exploit the first digit distribution to distinguish different chaotic pro-
cesses from stochastic processes. The Euclidean distance is adopted to quantify the differences
between the first digit distributions from different processes and the theoretical BL. In order to
find the difference between the chaotic and stochastic processes, it is of fundamental impor-
tance to explicitly incorporate the concept of multiple scales to characterize complex multi-
scaled signals. Here with scale factor increasing, we find the changing ED(s) for CSs and nearly

Fig 2. The changing values of ED(s) with scale factors for different SPs and CSs. It can be taken as a
sensitive measure of the underlying dynamics.

doi:10.1371/journal.pone.0129161.g002
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invariant ED(s) for SPs are basically predominated qualitative difference between the chaotic
processes and the stochastic ones. Actually, this kind of difference between the chaotic process-
es and the stochastic ones is insensitive to the chosen measures used to quantify the differences
between the first digit distributions from different processes and the theoretical BL, and the
conclusion is robust to different chosen measures [42,43], see details in Figure L in S1 File.

From the above qualitative difference between the chaotic processes and the stochastic ones,
we further define a quantitative index, ΔED(L) to quantify the difference between the chaotic
processes and the stochastic ones. Compared with other strategies [4–17] given to distinguish
the chaotic processes from the stochastic ones, there are some advantages deserve to mention.

First of all, our strategy only makes use of the first digit information of considered series,
which doesn’t require high precision recording as required in other amplitude or phase
based methods.

Secondly, it is an objective index, and there are no subjective choices in this measure calcula-
tion. Selecting the first digit is a way to coarse grain the time series and also a way to develop a
symbolic dynamic system. The crucial difference between the current approach and the sym-
bolic method propose in reference [13] is that we symbolize the time series by the first digits
but the reported multi-scale permutation entropy approach [13] symbolize the time series
through comparing the neighbor values in specifically dimensional ordinal pattern. Although a
successful explanation of BL has remained elusive [22–26], some basic properties are clear for
Benford's law. It has been proven that BL represents the only probability distribution which is
both scale and base invariant [27,28]. The scale invariance of BL means that if first digits of the
variable x follow (1), then so will the first digits of the rescaled variable λx for any nonzero
value of λ. The base invariance means that BL is independent of the base d we used. In the bina-
ry base (d = 2), octal base (d = 8), or other base systems, the data, as well as in the decimal sys-
tem (d = 10), all follow the general first digit law:

Pk ¼ logdð1þ 1=kÞ; k ¼ 1; 2; � � � ; d � 1 ð5Þ

So, the choice of d = 10 doesn’t affect the objectiveness of our method.

Fig 3. The results ofΔED(L) for different SPs and CSs. It is almost unchanged near zero for SPs, but
changing a lot for CSs. The distinction between CSs and SPs is significant when the scale range is larger
than 4. A threshold of 0.039 (dash line) chosen as the maximum of ΔED(L) from 1000 SPs is shown in
the figure.

doi:10.1371/journal.pone.0129161.g003
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Thirdly, Since the Benford's law is not derived from stationary processes, so the Benford's
distribution analysis doesn’t require the stationary condition of considered series. This will
make the method introduced in this paper more applicable than other methods reported in the
literature, where the basic assumption is the stationary condition of the considered processes.

Fourthly, the quantifier proposed in this paper is quantitative, whereas most of other meth-
ods reported in the literature are qualitative. Here we give the strict threshold to distinguish the
chaotic processes from the stochastic ones, but other methods don’t give their own threshold.

Fifthly, since we only make use of the first digit information of the analyzed series, the algo-
rithm of our method is simple and rapidly calculated.

Sixthly, this method works for series of short data length, and a minimum data length of
4000 is enough to distinguish most of chaotic processes from stochastic ones clearly (Figure M
in S1 File), whereas other methods require the length of time series is much longer.

The last one is that our method works better than other qualitative methods, for example,
there are always some chaotic maps, which are located nearby the noise “frontier” in some
qualitative qualifiers [13–16], and this makes the distinction between these chaotic maps and
stochastic processes not so clearly and fully. These chaotic maps are the dissipative standard
map, Sinai map, Arnold’s cat map, Gauss map, logistic map and linear congruential generator.
However, we can see all these considered chaotic maps can be quantitatively distinguished fully
and clearly from the stochastic processes just at the scale range L = 4 and only with data length
of 4000, see details in Fig 3.

In order to check the robustness of the above results, we also investigated other processes
like an Ornstein-Uhlenbeck process [44–47] combining a ‘deterministic’ term and a stochastic
term, all ΔED calculated from Ornstein-Uhlenbeck process locates below the threshold which
is consistent with the results of stochastic processes, regardless the chosen values of parameters
in the Ornstein-Uhlenbeck process (Figure N in S1 File). Even for some high-dimensional cha-
otic systems, if not all, the conclusions given above are still robust. For example, the high-di-
mensional chaotic Mackey-Glass system [48–50], ΔED can be applied to distinguish it from
the stochastic processes easily (Figure O in S1 File).

At last, it should be noted that recorded series are always contaminated with observational
noise. The proposed quantifiers should be robust to these unavoidable noises. We consider se-
ries of the following form {Si,i = 1,2,. . .,N}

Si ¼ xi þ Aεi; i ¼ 1; 2; � � � ;N ð6Þ

where {xi,i = 1,2,. . .,N} and {εi,i = 1,2,. . .,N} are from chaotic processes and white noise, respec-
tively. Here A can be taken as the amplitude ratio between the additive noise and the chaotic
processes. We consider series with data points 105 and amplitude ratio in the range 0�A�1.

Just as expected, the qualifier ΔED(L) is robust to the contaminated observational noise
when the amplitude ratio A is smaller, see Fig 4. This is because only the first digit information
of data has been taken into account in this qualifier, when the amplitude ratio A is small, the
contaminated observational noise can just affect the latter digits from the chaotic processes but
not the leading digits. As the amplitude ratio A increases, more noise information can enter
into the first digit statistics from the chaotic processes, the distinction between contaminated
chaotic process and the noise will become difficult and even impossible, see the case for A = 1.
These conclusions are also robust to the noise of different colors when the amplitude ratio A is
smaller (Figure P in S1 File), as the amplitude ratio A increases, the distinction between con-
taminated chaotic process and the noise will become difficult and even impossible with given
finite range, such as L = 6 for the case for A = 0.9. However, if larger range L is chosen, of
course the data length will be extended, we still can distinguish chaos from noise even the
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sequence from chaotic systems contaminated colored noise. More complicated cases will be
met when internal noise is considered, since the internal noise can alter the dynamical behav-
iors when the internal noise dominates the considered system. So the qualifier ΔED is only ro-
bust to the contaminated internal noise when the amplitude ratio A is smaller than certain
threshold (Figure Q in S1 File).

Due to the above mentioned advantages of our quantifier over others, it may have potential
applications to study a wide variety of complex systems, such as complex physiologic dynamics
[37] and so on.

Supporting Information
S1 File. Results for more chaotic and stochastic processes. The first digit distribution at dif-
ferent scales for four stochastic time series (Figure A), for four noninversative chaotic maps
(Figure B), for four dissipative chaotic maps (Figure C) and for four conservative chaotic
maps (Figure D). The changing ED(s) with scale factor s for three kinds of stochastic processes
(Figure E), for five noninversative chaotic maps (Figure F), for nine dissipative chaotic maps
(Figure G) and for four conservative chaotic maps (Figure H). The results of ED(L) for five
noninversative chaotic maps (Figure I), for nine dissipative chaotic maps (Figure J) and for
four conservative chaotic maps (Figure K) comparing with those from stochastic processes.
The comparative results for different quantifiers (Figure L). The ΔED(L = 10) versus different
data lengths for chosen CSs and SPs (Figure M). The ΔED results for Ornstein-Uhlenbeck pro-
cess (Figure N), for Mackey-Glass system (Figure O), for Lorenz system with colored noise
FGN (β = 0.6) (Figure P) and for Lorenz system with stochastic forcing (Figure Q).
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