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Solitary Wave and Wave Front as Viewed From Curvature∗
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Abstract The solitary wave and wave front are two important behaviors of nonlinear evolution equations. Geometri-
cally, solitary wave and wave front are all plane curve. In this paper, they can be represented in terms of curvature c(s),
which varies with arc length s. For solitary wave when s −→ ±∞, then its curvature c(s) approaches zero, and when
s = 0, the curvature c(s) reaches its maximum. For wave front, when s −→ ±∞, then its curvature c(s) approaches zero,
and when s = 0, the curvature c(s) is still zero, but c′(s) 6= 0. That is, s = 0 is a turning point. When c(s) is given,
the variance at some point (x, y) in stream line with arc length s satisfies a 2-order linear variable-coefficient ordinary
differential equation. From this equation, it can be determined qualitatively whether the given curvature is a solitary
wave or wave front.
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1 Introduction
Solitary wave and wave front are two important behav-

iors of nonlinear evolution equations,[1−8] whose analytical
solutions have been obtained from many methods.[9−14]

However, it is still very difficult to find some analytical
representations for solitary wave and wave front. Qualita-
tively, it has been shown that the solitary wave and wave
front exist in conservative or dissipative partial differen-
tial equations, where the solitary wave corresponds to the
homoclinic orbit for ordinary differential equations, and
wave front to the heteroclinic orbit.[8] Because the equi-
librium states to connect homoclinic (or heteroclinic) or-
bit include not only saddle point, focus point, node point,
saddle-focus point, but also limit cycle, thus the curve of
homoclinic (or heteroclinic) orbit is very complicated. In
this paper, starting from the geometry,[15,16] the connec-
tion of solitary wave (or wave front) with curvature c(s)
of plane curve is established and then is applied to under-
stand the essence of solitary wave and wave front.

2 Curvature and Curvature Characteristics
of Solitary Wave and Wave Front
Mathematically, the curvature c of a curve in a plane

is defined as derivative of tangent direction with respect
to arc length s

c ≡ dα

ds
, (1)

where α is the angle between the tangent of the curve and
x axis, and s is the arc length. Generally, if the curve is
counter-clockwise rotation, then α increases with s, and
c > 0. If curve is clockwise rotation, then α decreases with
s, and c < 0.

The reciprocal of curvature c is called curvature radius.
The variation of curvature implies the variance of crooked
degree for a curve. When the curve is very straight, the
curvature radius is very large and the curvature is small.
The smaller the curvature radius, the larger the curvature,
and the larger the crooked degree of the curve.

The curve shape of solitary wave and wave front is
shown as Fig. 1.

Fig. 1 The typical curve shape. (a) solitary wave; (b)
wave front.
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Physically, when we consider the travelling wave solu-
tion of nonlinear evolution, the abscissa of Fig. 1 denotes
wave variable ξ = x− ct, where c is wave speed. When we
consider homoclinic (or heteroclinic) orbit, the abscissa of
Fig. 1 denotes time t. Hence for solitary wave when ξ or
t approaches ±∞, the value of solitary wave approaches
the same value, in Fig. 1(a) u→ 0, but for wave front, it
approaches different values, in Fig. 1(b) u→ 1 and u→ 0.

Now from the view of curvature, if the starting point
s = 0 of arc length is taken, then the arc length on the
right-hand side of s = 0 is positive, while the value on the
left side is negative. Thus for solitary wave, we have

c(s)→ 0, as s→ ±∞ ;

c(s)→ maximum, as s→ 0 . (2)

For wave front, we have

c(s)→ 0, as s→ ±∞ ;

c(s) = 0, c′(s) 6= 0, as s→ 0 . (3)

For example, there are the following two curvatures

c(s) = e−s2/2 , (4)

and
c(s) = −s e−s2/2 . (5)

For curvature (4), obviously, when s→ ±∞, c(s)→ 0
and c(0) = 1 is a maximum. It is consistent with cur-
vature condition (2) of solitary wave. For curvature (5),
when s→ ±∞, c(s)→ 0 and c′(s) = −1 6= 0, it is consis-
tent with curvature condition (3).

3 Differential Equation of dx/ds and dy/ds

Though the above two curvatures (4) and (5) are very
simple, they are consistent with curvature condition (2)
or (3) of solitary wave or wave front. But, are they soli-
tary wave or wave front from physics? So, we will use the
variance of point (x, y) in curve with arc length s,

p =
dx

ds
= cosα, q =

dy

ds
= sinα . (6)

The first and second derivative of Eq. (6) with respect to
arc length s yields

dp

ds
=

d2x

ds2
= sinα

dα

ds
= −c(s)q ,

dq

ds
=

d2y

ds2
= cosα

dα

ds
= c(s)p , (7)

d2p

ds2
= −c′(s)q − c(s)

dq

ds
=

c′(s)
c(s)

dp

ds
− c2(s)p ,

d2q

ds2
= c′(s)p− c(s)

dp

ds
=

c′(s)
c(s)

dq

ds
− c2(s)q . (8)

Equation (8) shows that p(s) and q(s) satisfy the fol-
lowing 2-order ordinary differential equation with variable

coefficients,

d2z

ds2
+ a(s)

dz

ds
+ b(s)z = 0 , (9)

where

a(s) = −c′(s)
c(s)

, b(s) = c2(s) . (10)

The physical meaning of equation Eq. (9) is that the
three terms on the left side denote acceleration, damp-
ing force, and restoring force,[4,5,17,18] respectively. a(s)
and b(s) in equation (10) denote damping coefficient and
restoring force coefficient.

In the following, we can analyze qualitatively the equa-
tion (9) and determine whether curvatures (4) and (5) are
solitary wave or wave front from physical view.

4 Qualitative Analysis of Solitary Wave and
Wave Front
Substituting curvature (4) into Eqs. (9) and (10) yields

z′′ + sz′ + ( e−s2/2)2z = 0 . (11)

Let
z = e−s2/2u , (12)

then equation (11) reduces to

u′′ +
(1

2
− s2

4
+ e−s2

)
u = 0 . (13)

Setting u′ = v, then equation (13) reduces to

u′ = v, v′ =
(1

2
− s2

4
+ e−s2

)
u . (14)

Equation (14) shows that when s → ±∞, the steady
solution u = 0, v = 0 of Eq. (14) is controlled by the
negative restoring force. Hence, the steady solution is a
saddle point, as shown in Fig. 2(a).

Therefore, the homoclinic orbit, which starts from un-
stable manifold of saddle point and comes back to stable
manifold of saddle point, is formed. This is a solitary
wave.

Similarly, substituting curvature (5) into Eqs. (9) and
(10) yields

z′′ −
(1

s
− s

)
z′ + (−s e−s2/2)2z = 0 . (15)

Equation (15) shows that when s → −∞, the steady
solution of Eq. (15) is controlled by negative damping force
and positive restoring force, but damping force is larger,
hence the steady solution is an unstable node. When
s → +∞, the steady solution of Eq. (15) is controlled by
positive damping force and positive restoring force. Be-
cause the damping force is larger, hence the steady solu-
tion is a stable node as shown in Fig. 2(b). So, starting
from unstable node of s→ −∞ and coming back to stable
node of s→ +∞ form a heteroclinic orbit. This is a wave
front.
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Fig. 2 Schematic steady solution of s→ ±∞. (a) homoclinic orbit; (b) heteroclinic orbit.

5 Conclusion
The solitary wave and wave front are two important behaviors of nonlinear evolution equations. Geometrically,

solitary wave and wave front are all plane curve. In this paper, they have been represented in terms of curvature
c(s), which varies with arc length s. If the arc length is calculated from its starting point and forwards, then the arc
length is positive; if it is calculated from its starting point and backwards, then the arc length is negative. Hence, for
solitary wave when s −→ ±∞, then its curvature c(s) approaches zero, and when s = 0, the curvature c(s) reaches its
maximum. For wave front, when s −→ ±∞, then its curvature c(s) approaches zero, and when s = 0, the curvature
c(s) is still zero, but c′(s) 6= 0. This is, s = 0 is a turning point. When c(s) is given, the variance at some point (x, y)
in stream line with arc length s satisfies 2-order linear variable-coefficient ordinary differential equation. From this
equation, it can be determined qualitatively whether the given curvature is a solitary wave or wave front.
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