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• The forecast initialized with EnKF improved the meteorological simulations.
• EnKF produced more reasonable simulations for nitrate and ammonium aerosols.
• Discrepancies between EnKF and the measurements indicate rooms for improvement in the data assimilation and/or modeling systems.
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The purpose of this study is to investigate the impact of using an ensemble Kalman filter (EnKF) on air quality
simulations in the California–Mexico border region on two days (May 30 and June 04, 2010) during Cal–Mex
2010. The uncertainties in ozone (O3) and aerosol simulations in the border area due to themeteorological initial
uncertainties were examined through ensemble simulations. The ensemble spread of surface O3 averaged over
the coastal region was less than 10 ppb. The spreads in the nitrate and ammonium aerosols are substantial on
both days,mostly caused by the large uncertainties in the surface temperature and humidity simulations. In gen-
eral, the forecast initialized with the EnKF analysis (EnKF) improved the simulation of meteorological fields to
some degree in the border region compared to the reference forecast initialized with NCEP analysis data
(FCST) and the simulation with observation nudging (FDDA), which in turn leading to reasonable air quality
simulations. The simulated surface O3 distributions by EnKF were consistently better than FCST and FDDA on
both days. EnKF usually produced more reasonable simulations of nitrate and ammonium aerosols compared
to the observations, but still have difficulties in improving the simulations of organic and sulfate aerosols. How-
ever, discrepancies between the EnKF simulations and the measurements were still considerably large, particu-
larly for sulfate and organic aerosols, indicating that there are still ample rooms for improvement in the present
data assimilation and/or the modeling systems.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The meteorological condition is one of the key components in
photochemical air quality models and its simulation is critical for
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understanding the formation, transformation, diffusion, transport, and
removal of the atmospheric pollutants.

Previous studies on the photochemical sensitivity to meteorological
uncertainties generally include Monte Carlo simulations and adjoint
sensitivity studies (e. g., Bergin et al., 1999; Dabberdt and Miller,
2000; Hanna et al., 2001; Beekmann and Derognat, 2003; Menut,
2003). Recently, using both meteorological and photochemical ensem-
ble forecast, Zhang et al. (2007a) demonstrated that the predicted
ozone (O3) in Houston and the surrounding areas exhibit large uncer-
tainties due to meteorological initial condition uncertainties. Bei et al.
(2010) explored the O3 predictability due to meteorological
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uncertainties in the Mexico City Basin using ensemble forecasts. They
have shown that the least predictability in O3 simulations is attributable
to the increasing uncertainties in meteorological fields during the peak
O3 period, and the effects of wind speeds and planetary boundary layer
(PBL) height on the O3 simulations are more straightforward. The un-
certainties in O3 simulations also vary with different PBL schemes and
meteorological episodes. Bei et al. (2012a) further investigated
the uncertainties in modeling the secondary organic aerosol (SOA)
in Mexico City due to meteorological initial uncertainties using the
Weather Research and Forecasting model coupled with Chemistry
(WRF-CHEM) through ensemble simulations, and showed that uncer-
tainties in meteorological initial conditions substantially influence SOA
simulations. These works have demonstrated the importance of accu-
rate representation of meteorological conditions in the air pollution
modeling studies.

Producing accurate air quality prediction suitable for decision
makers and the public through improving meteorological forecasts is
also a major challenge. Dabberdt et al. (2004) have listed the meteoro-
logical research needs for improved air quality forecasting, one ofwhich
is to yield an optimal representation of the state of the atmosphere
using data assimilation tools. Various data assimilation approaches
have been developed, such as nudging method, three-dimensional
variational method (3DVAR), four-dimensional variational method
(4DVAR), and ensemble Kalman filter (EnKF). Thesemethods are prom-
ising and have been extensively used inmeteorology and oceanography
(Navon, 1998; Kalnay, 2003). The EnKF (Evensen, 1994), which esti-
mates the background error covariance with a short-term ensemble
forecast, has demonstrated promising performance in the meteorologi-
cal community (e.g., Snyder and Zhang, 2003; Zhang et al., 2006; Meng
and Zhang, 2007, 2011; Zhang et al., 2011a,b). Studies have also shown
that EnKF compares favorably with variational methods (Meng and
Zhang, 2008a,b; Weng et al., 2011; Zhang et al., 2011a; Meng and
Zhang, 2011; Weng and Zhang, 2012).

The above-mentioned data assimilationmethods have also been ap-
plied to chemical transportmodels (CTMs) to improve the chemical ini-
tial conditions and emission inventories and eventually to produce
better air quality simulations or forecasts (e.g., Stuart et al., 2007; Tang
et al., 2011; Curier et al., 2012). Most of the previous works regarding
improvement of the representation of meteorological fields in air
quality studies have primarily focused on observational nudging,
which is one of the four-dimensional data assimilation (FDDA) schemes
(e.g., Stauffer et al., 1990, 1991; Stauffer and Seaman, 1994; Fast, 1995;
Seaman, 2000). Bei et al. (2008) used the 3DVAR data assimilation sys-
tem to improve the O3 simulations in the Mexico City basin during the
Mexico City Metropolitan Area 2003 field campaign (Molina et al.,
2007). They found that the simulated wind circulation, temperature,
and humidity fields in the basin with the 3DVAR data assimilation are
more consistent with the observations than those without any data as-
similation. In addition, Bei et al. (2012a) highlighted that the meteoro-
logical ensemble is an efficient method to reduce the meteorological
uncertainties in simulations of CTMs, but computationally expensive.
The EnKF has been widely used in meteorological simulations and fore-
casts, but few studies have been performed using the EnKF in air quality
modeling studies.

The Cal–Mex 2010 field campaign is a US–Mexico collaborative
research project to investigate cross-border transport of emissions in
the California–Mexico border region and its impact on regional air qual-
ity and climate. A comprehensive data set has been obtained during the
campaign fromMay 15 to June 30, 2010, including highly time-resolved
meteorological variables, ambient gas phase species and aerosols. Bei
et al. (2013) presented an overview of the meteorological conditions
and plume transport patterns during the campaign through the
measurements analyses and modeling study. They identified four
representative plume transport patterns, namely “plume-southeast”,
“plume-southwest”, “plume-east” and “plume-north”. They also point-
ed out that the WRF model often underestimates the surface
temperature and PBL height during nighttime compared with observa-
tions at central supersite Parque Morelos (PQM, Tijuana Municipal Sys-
tem Theme Park in the center of Tijuana). In addition, certain
discrepancies also existed between the observed and simulated surface
winddirections. These discrepanciesmaybe induced byuncertainties in
themodel initial conditions as well as the forecast model itself, particu-
larly the PBL parameterization schemes as are commonly found in past
air quality modeling studies (e.g., Zhang et al., 2007b; Nielsen-Gammon
et al., 2010; Hu et al., 2010a,b).

In the present study, we investigate the impact of assimilating
both the routine and additional meteorological observations on the air
quality simulations in the California–Mexico border region during Cal–
Mex 2010 by using EnKF in the meteorological modeling. In Section 2,
we describe the observations and methodologies, and the synoptic
overview for the selected two days is given in Section 3. The results
are presented in Section 4. Conclusions and discussions are included
in Section 5.

2. Observations and methodology

2.1. Observations and models

Both routine and additional meteorological observations during the
Cal–Mex 2010 campaign were used in this study. The routine observa-
tions included sounding observations andwind profilers. The additional
meteorological observations during the campaign included the addi-
tional sounding at PQM and additional wind profiler from CalNex
2010 conducted in California (Ryerson et al., 2013) (see Fig. 1a).

The Advanced Research WRF (ARW) v3.2 (Skamarock et al., 2008)
adopted two one-way nested grids with horizontal resolutions of 12,
2-km and 35 sigma levels in the vertical direction (Fig. 1b). The grid
cells used for the twodomainswere 181×151 and151×103, respective-
ly. Two experiments were initialized at 0000 UTC onMay 30 and June 04,
2010, respectively, and integrated for 30 h. The National Centers for Envi-
ronmental Prediction (NCEP) final operational global gridded analysis
(FNL) was used to produce the initial and boundary conditions for the
WRFmodel. The physical process parameterization schemes used in sim-
ulations included the Grell–Devenyi ensemble scheme for cumulus
scheme (Grell and Devenyi, 2002), the WRF Single Moment (WSM)
three-class microphysics (Hong et al., 2004), and Mellor–Yamada–Janjic
(MYJ) TKE scheme (Janjic, 2002) for the PBL processes.

A specific version of the WRF-CHEM model (Grell et al., 2005) was
used in the present study, which was developed by Li et al. (2010,
2011b,c, 2012) at the Molina Center for Energy and the Environment,
with a new flexible gas phase chemical module and the CMAQ (version
4.6) aerosol module developed by US EPA (Binkowski and Roselle,
2003). The inorganic aerosols were predicted in the WRF-CHEM
model using ISORROPIA (“equilibrium” in Greek, here referred to as an
improved thermodynamic equilibrium aerosol model) Version 1.7
(http://nenes.eas.gatech.edu/ISORROPIA/). The SOA formation was
simulated using a non-traditional SOA model including the volatility
basis-set modeling method in which primary organic components are
assumed to be semi-volatile and photochemically reactive and are
distributed in logarithmically spaced volatility bins (Li et al., 2011a).
Detailed description of the WRF-CHEM model can be found in Li et al.
(2010, 2011b,c, 2012). The emission inventory used in this study was
developed at the Molina Center (Li et al., 2014). The chemical initial
and boundary conditions for the WRF-CHEM model simulations were
interpolated from the 6-h output of a global chemical transport model
for O3 and related chemical tracers (MOZART). Considering that we
mainly concentrated on the effects caused by changes in the meteoro-
logical fields, the initial and boundary conditions for chemical fields
and the emission inventory were the same for all model experiments.

Both meteorological and photochemical simulations were conducted
on May 30 and June 04, 2010 according to data availability. Additionally,
these two cases represented different plume transport pattern (Bei et al.,

http://nenes.eas.gatech.edu/ISORROPIA/


Fig. 1. (a) WRF and (b) WRF-CHEM simulation domains. In (a), blue dots represent additional wind profiler sites and the red dot is the additional sounding at Parque Morelos
(PQM, Tijuana Municipal System Theme Park in the center of Tijuana, Mexico); In (b), green dots are the O3 monitoring sites and the red dot is the supersite PQM with highly time-
resolved meteorological variables, ambient gas phase species, and aerosols.
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2013). The physical process parameterization schemes used in theWRF-
CHEM simulations were the same as those used in the WRF model.

2.2. Ensemble initial and boundary conditions

The ensemble initializationmethodwas similar to the one employed
in our previous study on O3 predictability due to meteorological
uncertainty (Bei et al., 2010). Detailed information about the method
can be found in Bei et al. (2010). The average initial ensemble spread
was 0.4–1.2m s−1 for horizontalwinds (u, v), 0.5–1.8 K for temperature
(T), 0–0.5 hPa for pressure (p), and 0.5–1.8 g kg−1 for the water vapor
mixing ratio (q). We used 30 members, which was both affordable
and reasonable based on previous studies (e.g., Meng and Zhang,
2007; Zhang et al., 2009a).
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2.3. The EnKF

The EnKF is a sequential data assimilationmethod, first proposed for
geophysical applications by Evensen (1994). The regional scale EnKF
used in the present study was developed in Zhang et al. (2006) and
Meng and Zhang (2008a,b). It evolved from the first limited-area EnKF
study of Snyder and Zhang (2003) but employs the covariance relaxa-
tion of Zhang et al. (2004) to inflate the background error covariance.

Further information on the EnKF configurations used in this study
can be found in Meng and Zhang (2008a,b), an overview of the EnKF
technique can be found in Snyder and Zhang (2003), and an extensive
review of limited-area ensemble based data assimilation can be found
in Meng and Zhang (2011).

2.4. Experimental design

Four experiments were conducted for the selected two cases in this
study, including the reference deterministic forecast experiment initial-
ized with NCEP-FNL data (hereafter referred to as FCST), a simulation
using observational nudging (hereafter referred to as FDDA), in which
the observational nudging was used during the 12 h before the model
initial time, an ensemble simulation (for the convenience, hereafter
we refer to the ensemble mean as EnsM), and an ensemble simulation
with EnKF data assimilation (hereafter referred to as EnKF), in which
EnKF was applied during the 12 h before the model initial time with a
6-h interval. The routine sounding observations and wind profilers,
the additional sounding at PQM, and the additional wind profiler during
CalNex 2010 were assimilated in domain 1 (Fig. 1a). The rest of the
input set-ups for the three simulations were the same. The results
from domain1 were interpolated to the 2-km domain to produce the
initial and boundary condition for the WRF-CHEM model. It should be
noted that the ensemble mean of EnKF in domain1 was used to drive
the 2-kmWRF-CHEM run.
Fig. 2. 850 hPa geopotential heights and winds (a–b), sea level pressure and surface winds (c–
Mexico border region is indicated by the red box.
2.5. Statistical methods for comparisons

In order to evaluate the performance of the different methods in
simulating meteorological parameters and aerosols against measure-
ments, the mean bias (MB), R squared (R2), and the root mean square
error (RMSE) were utilized in the study.

MB ¼ 1
N

XN
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where Pi andOi are the prediction and observation, respectively.N is the
total number of the predictions used for comparisons, and P and O
denote the average of the prediction and observation, respectively.

3. Synoptic overview for the two selected days

The two days (May 30 and June 04, 2010) selected in this study
represent two meteorological episode types in the California–Mexico
border region, corresponding to two plume transport patterns
“plume-southwest” and “plume-east”, respectively (Bei et al., 2013).
Fig. 2 shows the synoptic conditions on 0500 PDT May 30 and June 04
on 850 hPa. In general, the plume transport directions were consistent
with the prevailing surface wind directions as analyzed in Bei et al.
(2013). On May 30, the border region was located at the north of a
d) from NCEP-FNL reanalysis data at 05 PDT on May 30 and June 04, 2010. The California–

image of Fig.�2
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low on 850 hPa and the northwest of the low pressure area at the sur-
face, causing the prevailing northeasterly wind at the low levels, same
as those on 850 hPa. On June 04, the border region was located at the
southeast of a trough on 850 hPa and the southwest of a surface low,
leading to different prevailing winds on 850 hPa and at the surface.
The plume transport pattern on June 04 is “plume-east”, mainly decided
by the surface wind.

4. Model results

4.1. Uncertainties in air quality simulations due to themeteorological initial
errors

Our previous studies have examined the O3 and SOA predictabilities
due to meteorological uncertainties in Houston and Mexico City using
ensemble forecasts (Zhang et al., 2007a; Bei et al., 2010, 2013). The
meteorological initial uncertainties influence substantially O3 and SOA
predictions, particularly with regard to the simulation at one or several
Fig. 3. Temporal evolutions of the ensemblemean and the spread of themeteorological fields at
(c) and (h) surface wind direction, (d) and (i) surface temperature, (e) and (j) surface relative
mean.
supersites. However, the relationship between the meteorological
uncertainties and air quality simulations is flow-dependent and compli-
cated. Using similar method, we have investigated the uncertainties in
O3 and aerosol simulations in the border region due to the meteorolog-
ical initial uncertainties.

Fig. 3 shows the temporal evolutions of the ensemble mean and the
spread of the surfacemeteorological fields (relative humidity, tempera-
ture, wind direction and speed, PBL height) and the observations (black
dots) at PQMonMay 30 and June 04, 2010. On both days, the PBL height
(Fig. 3a and f) and temperature (Fig. 3d and i) exhibited large ensemble
spreads in the afternoon compared to those in the morning, while
thewind speed (Fig. 3b and g) and direction (Fig. 3c and h), and relative
humidity (Fig. 3d and h) have large uncertainties in the morning. The
ensemble mean generally reproduced the diurnal variation of observa-
tions, but therewere still discrepancies between the ensemble forecasts
and observations. The ensemble predictions failed to yield the abrupt
changes of the PBL height in the morning and late afternoon, which
was likely caused by the transition of sea breeze, and also considerably
PQMonMay 30 and June 04, 2010. (a) and (f) PBL height, (b) and (g) surface wind speed,
humidity. Black dots: observations; Green lines: ensemble members; Black line: ensemble

image of Fig.�3


Fig. 4. Same as Fig. 3, but for aerosols at PQM. (a) and (f) organic aerosol, (b) and (g) nitrate aerosol, (c) and (h) ammonium aerosol, (d) and (i) sulfate aerosol, and (e) and (j) SOA.
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underestimated the observation during nighttime. The ensemble mean
could not reproduce the observed wind direction changes in the morn-
ing and late afternoon during the transition of sea breeze, and the en-
semble spread is very large in the morning. On May 30, most of the
ensemble members substantially underestimated the observed surface
winds between 0800 and 1000 PDT, causing the delay of the occurrence
of the sea breeze and an overestimation of the surface temperature after
Fig. 5. Same as Fig. 3, but only for O3 average
1000 PDT. On June 04, better predictions of thewind speed in themorn-
ing also improved the ensemble predictions of the surface temperature.
However, the ensemblemeanunderestimated the observed relative hu-
midity, especially during the nighttime on both days.

Fig. 4 presents the temporal evolutions of the ensemble mean
and the spread of the organic and inorganic aerosol concentrations
and the observations at PQM on the two days. The nitrate (Fig. 4b and
d over the sites along the coastal region.

image of Fig.�4
image of Fig.�5


Fig. 6. Simulated 850 hPa geopotential heights and winds at 11 PDT by (a) and (e) FCST, (b) and (f) FDDA, (c) and (g) EnKF, and (d) and (h) FNL on May 30 and June 04, 2010.
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g) and ammonium (Fig. 4c and i) aerosols had the largest spread in the
morning onboth days,whichwas possibly due to the large uncertainties
in surface temperature and humidity simulations (Fig. 3d,e,i, and
j) because their formations are sensitive to temperature and humidity.
The uncertainties of predicted surface winds in the morning also possi-
bly constitute an important factor for the spreads of nitrate and ammo-
nium aerosols through transporting their precursors. The organic
aerosol predictions showed large spread between 0900 and 1200 PDT
on both days, which was caused by the uncertainties of the SOA forma-
tion (Fig. 4e and j), the same as the results of Bei et al. (2012a). On the
two days, the ensemblemean did not produce the observed high organ-
ic aerosol concentrations in the early morning hours when the primary
organic aerosols are dominant, so the uncertainties of the emission in-
ventorymight contribute significantly to the underestimation of organic
aerosols. Because the SOA observations at PQM are not available, only
the simulated temporal evolutions of the ensemble mean and the
spread of the SOA concentrations are shown in Fig. 4e and j. On May
30, the simulated SOA concentration reaches its peak between 0900
and 1200 PDT, with the ensemble mean of around 5–6 μg m−3 and
the ensemble spread of up to 1.7 μg m−3. On June 04, the simulated
peak SOA concentration occurs between 1000 and 1400 PDT, with the
ensemble mean of around 4–5 μg m−3 and the ensemble spread of up
to 2.6 μg m−3. In addition, the ensemble forecasts were not able to cap-
ture the observed high peaks of sulfate aerosols that were influenced by
multiple sources, including the inefficient formation through the gas
phase reaction of SO2 with OH, the oxidation of SO2 in cloud droplets
aswell as direct emissions frompower plants and industries. The sulfate
Fig. 7. Temporal evolutions of simulated and observed (a) and (e) PBL height, (b) and (f) surface
on May 30 and June 04, 2010. Black dots: observations; black line: ensemble mean; blue line:
aerosol peak at PQM was primarily determined by the transport of the
emissions from Rosarito power plant (a point source) in the coastal re-
gion in Tijuana. Therefore the bias of predicted wind fields in themorn-
ing might be the main reason for the underestimation of sulfate aerosol
peaks. In general, the ensemble mean performed reasonably well in
predicting the nitrate and ammonium aerosols, but the underestimation
or overestimation still existed.

In general, the ensemble mean of the surface O3 concentrations
averaged over the coastal region was in good agreement with the
observations (Fig. 5). The ensemble spread of peak O3 concentrations
(hereafter we refer to the O3 peak time as 1200–1500 PDT) on June 04
was greater than that on May 30, which was likely caused by the large
wind field uncertainties in themorning on June 04 (Fig. 3f). The ensem-
ble spread of surface O3 concentrations was less than 10 ppb, and also
less than that of aerosols at PQM, which was due to the average of the
spread of surface O3 concentrations over many sites.

4.2. Influence of using EnKF on meteorological simulations

Fig. 6 shows the large-scale synoptic conditions at 1100PDT simulat-
ed by FCST, FDDA, and EnKF on the selected two days. The simulated
large-scale synoptic patterns have beenmodified due to the implemen-
tation of data assimilation. For example, at 1100 PDT on May 30, both
the location and intensity of the simulated 850 hPa geo-potential height
low center by EnKF (Fig. 6c) were in better agreement with the NCEP-
FNL analysis (Fig. 6d) compared to those by FCST and FDDA (Fig. 6a
and b), which in turn caused the simulated wind circulation over the
wind speed, (c) and (g) surface temperature, (d) and (h) surface relative humidity at PQM
FDDA; red line: EnKF; brown line: FCST.

image of Fig.�7


Table 1
Statistical comparison of simulated and measured hourly averaged meteorological parameters and aerosol concentrations at PQM site on May 30 and June 04, 2010.

Species Method May 30 June 04

MB R2 RMSE MB R2 RMSE

PBL height (m) EnsM −170 0.66 220 −87 0.04 250
FCST −190 0.65 230 −140 0.01 270
FDDA −160 0.60 210 −78 0.04 220
EnKF −130 0.67 210 −130 0.04 260

Surface temperature (k) EnsM 1.3 0.91 2.1 0.25 0.87 1.6
FCST 1.2 0.91 2.2 0.21 0.85 1.8
FDDA −1.5 0.83 2.3 −1.56 0.78 2.6
EnKF 1.7 0.89 2.6 0.67 0.87 2.0

Wind speed (m s−1) EnsM −0.30 0.77 0.62 −0.35 0.65 0.75
FCST −0.27 0.73 0.69 −0.49 0.60 0.96
FDDA −0.05 0.70 0.54 −0.32 0.59 0.76
EnKF −0.32 0.77 0.63 −0.47 0.65 0.90

Relative humidity (%) EnsM −21 0.91 22 −10 0.82 13
FCST −21 0.91 22 −12 0.69 16
FDDA 1.1 0.71 11 4.3 0.67 12
EnKF −21 0.91 23 −10.7 0.81 13

Organics (μg m−3) EnsM −3.8 0.10 6.9 −2.5 0.11 3.4
FCST −4.3 0.11 6.9 −1.2 0.10 3.0
FDDA −5.2 0.12 8.0 −3.0 0.21 3.7
EnKF −4.0 0.09 7.0 −2.7 0.46 3.3

Nitrate (μg m−3) EnsM −0.36 0.56 1.9 −1.6 0.54 3.3
FCST −0.02 0.57 2.0 −0.34 0.70 2.4
FDDA 1.0 0.72 2.5 −1.7 0.58 3.2
EnKF −0.08 0.73 1.5 −1.0 0.83 2.3

Ammonium (μg m−3) EnsM 0.04 0.50 0.50 −0.97 0.39 1.4
FCST 0.14 0.51 0.61 −0.61 0.54 1.1
FDDA 0.44 0.66 0.93 −1.0 0.39 1.5
EnKF 0.13 0.68 0.49 −0.81 0.72 1.1

Sulfate (μg m−3) EnsM 0.07 0.28 0.26 −0.54 0.10 0.85
FCST 0.06 0.18 0.25 −0.53 0.28 0.83
FDDA 0.03 0.12 0.27 −0.55 0.09 0.88
EnKF 0.09 0.10 0.28 −0.60 0.37 0.86
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border region (inner box indicated by red color in Fig. 6) in EnKF to be
more consistent with the NCEP-FNL analysis fields. On June 04, the sim-
ulated 850 hPa wind fields inside the border region by EnKF (Fig. 6g)
also generally performed better than those by other two experiments
(Fig. 6e–f).

The PBL height is an important parameter in air quality simulations.
Fig. 7a and e illustrates the comparisons of the modeled hourly PBL
heights with the observation at PQM on the selected two days. FCST
generally underestimated the PBL heights, with the MB of −90 m and
−140monMay 30 and June 04, respectively (Table 1). EnKF performed
best in modeling the PBL height onMay 30, with theMB of−130m, R2

of 0.67, and RMSE of 210 m. On June 04, all the simulation methods
failed to reproduce the variation of the PBL height with R2 less than
0.1, due to frequent abrupt changes of the observations. For the predic-
tions of the wind speed, surface temperature, and relative humidity,
FDDA performed differently compared to FCST, EnKF, and EnsM. FDDA
yielded poor diurnal variations of the wind speed with the R2 of 0.70
and 0.59 on May 30 and June 04, respectively, less than those from the
other three methods. In addition, FDDA underestimated the surface
temperature with MB of less than −1.5 °C and overestimated the
Fig. 8. Same as Fig. 7, but for O3 averaged o
relative humidity with theMB of greater than 1% on the two days, con-
trary to the results from the other three methods, indicating the strong
predicted see breeze. In terms of R2, EnKF yielded the best simulations of
the surfacewind speed, temperature, and relative humidity. Overall, the
simulated meteorological parameters by EnKF are similar to those by
EnsM, and showed better performance compared to FCST and FDDA
(Fig. 7b–d, f–h).

4.3. Influence of using EnKF on surface O3 simulations

The O3 simulations driven by the three different meteorological
fields (FCST, FDDA, and EnKF) along with EnsM were evaluated and
compared with the measurements at the surface monitoring stations
along the coastal area. Fig. 8 shows the diurnal cycle of observed and
simulated surface O3 concentrations averaged over the monitoring
sites along the coastal region. On both days, FDDA substantially
underestimated the surface O3 concentrations during the peak
time, which was consistent with the strong simulated sea breeze
that transported the plume inland more efficiently. On May 30 during
the O3 peak time, FCST slightly overestimated the surface O3
ver the sites along the coastal region.

image of Fig.�8


Fig. 9. Pattern comparison of simulated vs. observed near-surface O3 at 1400 PDT on May 30. Colored squares: O3 observations; color contour: O3 simulations; black arrows: simulated
surface winds.
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concentrations, while EnKF and EnsM slightly underestimated the sur-
face O3 concentrations. On June 04, FCST considerably overestimated
the surface O3 concentrations in the afternoon, and the simulations
by EnKF and EnSM were more consistent with the observations
compared to FCST and FDDA during the peak time. Generally, the
performance of EnKF was similar to EnsM, which is suggested to be
an efficient method for reducing the meteorological uncertainties in
simulations of CTMs.
Fig. 10. Same as Fig. 9, bu
Furthermore, the outflow plumes were also altered due to changes
in meteorological fields caused by the data assimilation. Figs. 9 and 10
provide the horizontal distributions of O3 along with the simulated
wind fields at 1400 PDT onMay 30 and June 04. Themodifiedmeteoro-
logical fields not only changed the horizontal distribution patterns of O3

but also the magnitude of the maximum concentration. On May 30
(Fig. 9), FDDA produced the lowest surface O3 concentrations along
the coastal region, and underestimated the surface O3 concentrations
t for June 04, 2010.
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in and around the urban region of Tijuana, due to the simulated strong
westerly winds by FDDA. FCST predicted the highest surface O3 concen-
trations and overestimated the surface O3 concentrations along the
coastal region of San Diego, likely caused by the simulated weak sea
breeze. Generally, the simulated surface O3 concentration distributions
by EnKF were in a good agreement with the observations, which can
be explained by the simulated weaker convergence at the east of the
coast and the stronger southerly wind along the coast by EnKF in com-
parison with FCST and FDDA. On June 04 (Fig. 10), FCST significantly
overestimated the surface O3 concentrations in and around the urban
region of Tijuana, and predicted the largest areawith the surface O3 con-
centrations exceeding 60 ppb. The plume movement in FDDA was fast
compared to the other threemethods, particularly in the Tijuana region,
causing the underestimation of the surface O3 concentration in and
around the urban region of Tijuana. The patterns of surface O3 concen-
trations in EnKF were similar to those in EnsM on the both days, gener-
ally agreed well with the observed O3 distributions.

4.4. Influence of using EnKF on aerosol simulations

Fig. 11 shows the temporal evolution of the simulated aerosol mass
(including organic and inorganic mass) from FCST, FDDA, EnKF, and
EnsM and the observation at the PQM site. On May 30 (Fig. 11a–d),
none of the four methods produced good simulations of organic aero-
sols, with the MB raging from −5.2 to −3.8 μg m−3, R2 ranging from
0.09 to 0.12, and RMSE ranging from 6.9 to 8.0 μg m−3, due to the sub-
stantial underestimation in the morning (Table 1). On June 04, only
Fig. 11. Same as Fig. 7, but for aerosols at PQM. (a) and (e) organic aerosol, (b) and (f
EnKF yielded reasonable diurnal variations with the R2 of 0.46, much
more than the R2 of the other three methods. The simulated nitrate
and ammonium aerosols by EnKF were consistently better than all the
other experiments on the both days, with the largest R2 and smallest
RMSE. The considerable improvements on nitrate and ammonium aero-
sol simulations by EnKF may be benefitted from the overall improve-
ments of meteorological fields. For the simulations of sulfate aerosols,
none of the methods performed well due to the failure to reproduce
themorning peaks, whichmight be influenced by the large point source
(Rosarito power plant) along the coastal region of Tijuana. In addition,
the differences in predictabilities of May 30 and June 04 were likely
caused by the different flow regimes since we have used the same
model and set up for all selected days (e.g., Nuss and Miller, 2001;
Zhang et al., 2007b).

Although the overall performance of EnKF in simulating aerosols
was generally better than those of FCST and FDDA, the discrepancies be-
tween EnKF simulations and the measurements were still considerably
large, indicating that, in case of reasonable emission inventory, there are
still ample rooms for improvement either in the observation network,
the data assimilation system, and/or in the forecast model. The EnKF
has been proposed for observation system design (e.g., Bei et al.,
2012b), and for simultaneous state and parameter estimation that can
help in reducing the initial condition uncertainties as well as improving
the forecastmodel itself (e.g., Aksoy et al. 2006;Huet al., 2010a,b).More
recent studies have also showed that further improvement in data as-
similation accuracy may be achieved through hybrid and/or coupling
the EnKF with either 3DVAR or 4DVAR (e.g., Zhang et al., 2009b, 2013;
) nitrate aerosol, (c) and (g) ammonium aerosol, and (d) and (h) sulfate aerosol.
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Zhang and Zhang, 2012). Future studies will investigate the potential of
these advanced techniques in further improving the air quality model-
ing as in the current study.

5. Conclusions

In the present study, we have investigated the impact of using EnKF
on the air quality simulations in the California–Mexico border region
during Cal–Mex 2010 comparing with the reference forecast initialized
with NCEP analysis data and the simulation with observation nudging.
All the experiments were performed on two days (May 30 and June
04, 2010).

We first examined the uncertainties in O3 and aerosol simulations in
the Cal–Mex border region due to the meteorological initial uncer-
tainties through ensemble simulations. The ensemble spread of O3 aver-
aged over the coast area was less than 10 ppb, similar to our previous
results from Houston and Mexico City (Zhang et al., 2007a; Bei et al.,
2010). The nitrate and ammonium aerosol were found to have large un-
certainties during the morning on both days, which was attributed
mostly to the large uncertainties in surface temperature and humidity
simulations because of the high sensitivity to temperature and humidity
during their formation. The organic aerosol simulations also showed
large spreads between 0900 and 1200 PDTwhen the SOA became dom-
inant. The discrepancies between the ensemble mean and observations
still existed, particularly for organic and sulfate aerosols in themorning.

Both routine and additional meteorological observations during the
campaign have been assimilated into the meteorological model on the
two selected days. The simulated large-scale synoptic patterns over
the border region have been modified due to the implementation of
the EnKF before the model initial time. The simulated wind circulation,
temperature, and humidity fields in the border area by EnKF have been
improved to some degree in comparison with FCST and FDDA against
the observations. The simulated surface O3 distributions on both days
by EnKF were consistently better than FCST and FDDA compared to
the measurement.

The simulated nitrate and ammonium aerosols by EnKF were in bet-
ter agreement with the observations at PQM on both days. However,
EnKF, FCST, FDDA, and EnsM could not produce good simulations of
organic and sulfate aerosols in the morning, indicating that there are
still substantial rooms for improvement in the current data assimilation
system in case of the reasonable emission inventory, which could be
observation, model, or data assimilation method itself.

Since this work focuses only on two days, comparisons between
the simulations with and without data assimilations during a long
period are also necessary. In addition, the observations used in
this study were confined to soundings and wind profilers. Other
available meteorological observations are also expected to be incorpo-
rated into the EnKF to further improve the air quality forecasts or
simulations.
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