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Abstract 1 

A direct piece-by-piece data assimilation targeting strategy through observing 2 

system simulation experiments was used to examine the quality of the target area for 3 

forecast metrics with different nonlinearity in a mesoscale convective 4 

vortex–associated rainfall event from both a deterministic and probabilistic 5 

perspective. 6 

The target area was determined based on the impact of assimilating synthetic 7 

wind-profiler observations, piece-by-piece, on the forecast error of strongly nonlinear 8 

rainfall and weakly nonlinear total energy around the initial vortex center. The quality 9 

of the target area in terms of its effectiveness and variability was examined for 10 

members of a reasonable ensemble. Apparently different target areas were found for 11 

different members, even for those with very small differences for both forecast 12 

metrics, with a larger variability observed for rainfall than for total energy. This result 13 

indicated that target areas estimated in deterministic scenarios are likely unreliable.  14 

Probabilistic target areas were created by averaging data-impact index values 15 

over the ensemble. Significant differences were also observed in the ensemble-based 16 

target areas for rainfall and total energy. For total energy, assimilating data in an 17 

inaccurate target area could decrease the forecast error at a similar magnitude as that 18 

in the target area. For rainfall, however, much less error reduction was obtained, the 19 

magnitude of which was almost comparable to the no-data-assimilation experiment. 20 

Overall, the results of this study suggest that designing a particular observation plan 21 

based on an estimated target area could be unnecessary for total energy and useless 22 

for rainfall, given the difficulty involved in accurately determining a target area in an 23 

operational setting.   24 

25 
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1. Introduction 1 

Targeted observation, or adaptive observation, is a process that estimates areas 2 

where assimilated additional observations would substantially reduce forecast error. 3 

Targeted observation has been an active research topic since it was first proposed 4 

(Snyder 1996). Targeting strategies can be roughly grouped into two categories, 5 

including adjoint sensitivity or singular vector (e.g., Buizza and Palmer 1995; 6 

Langland and Rohaly 1996; Pu et al. 1997; Palmer et al. 1998; Gelaro et al. 2002; 7 

Coutinho et al. 2004; Wu et al. 2007b), and ensemble-based methods (e.g., Bishop 8 

and Toth 1999; Anderson 2001; Bishop 2001; Majumdar et al. 2002a,b; Hamill and 9 

Snyder 2002; Ancell and Hakim 2007; Liu and Kalnay 2008). In addition to all the 10 

above linear-based methods, Mu et al. (2003) proposed a conditional nonlinear 11 

optimum perturbation (CNOP) method. 12 

Shortly after the theory of targeted observation was proposed, a series of field 13 

campaigns were launched for mid-latitude weather, such as the Fronts and Atlantic 14 

Strom-Track Experiments (FASTEX; Joly et al. 1999) in 1997, North Pacific 15 

Experiment (NORPEX) (Langland et al. 1999) in 1998, Winter Strom Reconnaissance 16 

Program (WSR) (Szunyogh et al. 2000) since 1999, and North Atlantic THORPEX 17 

Regional Campaign (NA-TReC; Mansfield et al. 2005) in 2003. In addition, tropical 18 

cyclone targeting field programs were launched, such as the Dropwindsonde 19 

Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR; Wu et al. 20 

2005) since 2003, THORPEX Pacific Asian Regional Campaign (T-PARC; Aberson 21 

2011) in 2008, and North Atlantic Hurricane Surveillance program (Aberson 2003) 22 
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since 1998. On average, the short-range forecast error has been reduced by 10% over 1 

regional verification areas, with some cases showing reductions of up to 50%. 2 

Forecast skill has been improved in about 70% of cases when additional data have 3 

been assimilated into identified target areas (Langland 2005). These numbers certainly 4 

show the positive contribution to reducing forecast error made by targeted 5 

observations. However, the improvements in forecast skill demonstrated in field 6 

experiments have been much lower than expected and more and more verification 7 

studies are showing insignificant or neutral impact of targeted observations (e.g., 8 

Aberson 2002; Wu et al. 2007a; Chou et al. 2011; Hamill et al. 2013). Consequently, 9 

it is important to revisit the limitations and issues involved in targeted observation. 10 

To make a targeted observation successful, three conditions have to be satisfied 11 

(Langland 2005): 1) the target area must be accurate; 2) the target area must be 12 

adequately sampled; and 3) the assimilation of targeted observations must be able to 13 

reduce the forecast error of the chosen metric. The accuracy of the target area, target 14 

area sampling, quality of the background field, observation type and 15 

representativeness, assimilation technique, and the numerical model can all influence 16 

the impact of targeted observation (Aberson 2002, 2003, 2008; Reynolds and 17 

Rosmond 2003; Langland 2005). Among these factors, the quality of the target area is 18 

one of the most important, and should be assessed by its effectiveness and variability. 19 

A target area can be regarded as ‘effective’ if the error of the concerned forecast 20 

metric is decreased by a significantly larger magnitude through assimilating additional 21 

observations in the target area rather than anywhere else. In addition, from a 22 
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probabilistic point of view, the variability of the target area obtained in equally 1 

possible situations needs to be low.  2 

The quality of the target area is closely related to the skill of targeting strategies. 3 

A major issue in current targeting approaches that may compromise the quality of the 4 

target area is that all current targeting strategies except CNOP involve significant 5 

linear assumptions. 6 

7 

However, an atmospheric model is a nonlinear system. Different degrees of linear 8 

assumption involved in targeting strategies may change the structure, magnitude, or 9 

location of target areas, thus increasing its variability. For examples, Mu et al. (2009) 10 

found substantial differences when they compared the target areas produced by CNOP 11 

and first singular vectors (FSVs) for typhoon cases. A large variability in target area 12 

was observed among different linear-based targeting strategies (e.g., Wu et al. 2009; 13 

Ancell and Hakim 2007). Even for a single linear-based targeted observation strategy, 14 

the location and magnitude of the target area could be very sensitive to the model 15 

resolution (Ancell and Mass 2006), model physics, and basic-state trajectory (Ancell 16 

and Mass 2008).  17 

The variability of the target area would become even larger for a forecast metric 18 

with stronger nonlinearity relative to a weakly nonlinear forecast metric that has been 19 

used for almost all current targeting strategies. Synoptic-scale metrics may remain 20 

quasi-linear longer than at smaller scales (Reynolds and Rosmond 2003). Majumdar 21 

et al. (2002b) found that the total energy singular vector and ensemble transform 22 
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Kalman filter approaches produce substantial differences in the target area for smaller 1 

scale target features. Xie et al. (2013), with accumulated rainfall as the forecast metric 2 

for typhoon Morakot (2009), clearly demonstrated the limitation of using 3 

ensemble-based sensitivity analysis in locating the target area, due to the strong 4 

nonlinearity in the governing dynamics of the typhoon. Consequently, the quality of 5 

the target area for forecast metrics with different nonlinearity needs to be examined 6 

using a strategy that fully accounts for the features of nonlinear error growth. 7 

Another issue of all current strategies is that they estimate the analysis and 8 

forecast variance instead of the forecast error (Mu 2013). However, identifying an 9 

area that can decrease the forecast error variance the most does not necessarily result 10 

in the largest error reduction of the forecast metric concerned. It could be more 11 

intuitive and direct if the target area can be detected based on the ultimate goal of 12 

targeted observation, i.e., minimum forecast error, instead of minimum forecast 13 

variance. 14 

In the present reported study, we used an error-based targeting strategy that did 15 

not possess a linear-error growth assumption to assess the quality of the target area for 16 

forecast metrics with different nonlinearity from both a deterministic and probabilistic 17 

perspective for a heavy rain event associated with a mesoscale convective vortex 18 

(MCV) in South China in June 2008. The targeting strategy used was the one most 19 

commonly used for assessing targeted observation; namely, data assimilation. We 20 

used “brute force” assimilation of different observations, piece-by-piece, through an 21 

observing system simulation experiment (OSSE) to quantify their fully nonlinear 22 
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impact on the forecast metric and identify the target area where high data-impact 1 

index values were located.  2 

This piece-by-piece data assimilation targeting method (PBPDA) has several 3 

benefits: 1) it does not require any linear assumption; 2) it is error- rather than 4 

variance-based; 3) any type and resolution of targeted data can be examined through 5 

the OSSE method; and 4) the targeting strategy is totally consistent with the data 6 

assimilation procedure, i.e., the detection of the target area is totally consistent with 7 

its evaluation, which has been regarded important in targeted observation (Berliner et 8 

al. 1999; Langland 2005). Although the method might be difficult to use operationally 9 

due to its reliance on future observational data, our expectation was that it would be a 10 

good approach to examine the theoretical concept of targeted observation. We used an 11 

ensemble to examine the quality of the target areas for the forecast metrics with 12 

different nonlinearity among different members in the deterministic approach, and the 13 

quality of the ensemble-based target area from the statistical perspective.  14 

The remainder of the paper is structured as follows. A synoptic overview of the 15 

MCV case is given in section 2. Section 3 introduces the PBPDA targeting strategy, 16 

the OSSE procedures, and the forecast metric calculation. The results of the control 17 

experiment, i.e., without data assimilation, are reported in section 4. Section 5 18 

discusses the quality of the target area determined through PBPDA for strongly 19 

nonlinear rainfall and weakly nonlinear total energy (TE). And finally, a summary and 20 

discussion are presented in section 6. 21 

 22 
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2. Case overview 1 

The weather event we studied was a torrential rain event in Guangxi Province, 2 

China (Fig. 1), on 12 June 2008, which was associated with an MCV that originated 3 

from Sichuan Province in Southwest China. This kind of MCV is usually referred to 4 

as a ‘southwest vortex’ (Tao and Ding 1981), which is a mesoscale cyclonic vortex 5 

(with a horizontal radius of 300–500 km) that forms in the lower troposphere over 6 

Southwest China. The formation of a southwest vortex is defined by the appearance of 7 

a mesoscale cyclonic circulation and a closed isobar at 700 hPa (Lu and Chen 1993). 8 

Southwest vortices are usually caused by the interaction between the terrain of the 9 

Tibetan Plateau and the atmospheric circulation. They usually dissipate where they 10 

form, seldom moving away from their origin (Duan 2006). That said, some southwest 11 

vortices do move out to the east, and usually cause extensive and severe heavy rain 12 

along their tracks (Tao and Ding 1981; Lu and Chen 1993; Chen et al. 2003; Fu et al. 13 

2010). Eastward-moving MCVs have emerged as key weather systems that cause 14 

torrential rain in summer over East China. 15 

The southwest vortex in this study formed in south Sichuan Province at 0000 16 

UTC 11 June 2008 (Fig. 1). It first moved to the southeast and then turned to the 17 

northeast. During its lifetime, the vortex center (the cross in Fig. 2) remained in front 18 

of or near to the base of a 500-hPa geopotential trough followed by a 500-hPa 19 

temperature trough (Fig. 2), which is a favorable environment for the development of 20 

upward motion. With the eastward movement of a short wave at 500 hPa from the 21 

Tibetan Plateau (Figs. 2a, b), a low pressure system with closed contours of 22 
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geopotential height first appeared at 700 hPa over southern Sichuan Province at 1800 1 

UTC 10 June (Fig. 3b). The streamline field showed a convergence center near the 2 

low pressure center with increased relative vertical vorticity, but no apparent cyclonic 3 

circulation at this moment at 700 hPa. The cyclonic circulation became apparent at 4 

0000 UTC 11 June together with a closed isobar at 700 hPa (Fig. 3c), which featured 5 

the formation of the vortex. The vortex then intensified, expanded, matured at 1800 6 

UTC 12 June over northern Guangxi Province (Figs. 3d, e), and dissipated over 7 

Jiangxi Province after 0000 UTC 13 June.  8 

The MCV lasted for 2 days and caused severe damage to Guangxi Province. 9 

Almost half of Guangxi Province was covered by a 24-h rainfall event of >100 mm 10 

[shading in Fig. 1; the observed rainfall data were provided by the China 11 

Meteorological Administration (CMA)]. The 24-h accumulated rainfall during 0000 12 

UTC 12 June – 00Z 13 June 2008 (hereafter referred to as RAIN24) reached as much 13 

as 250 mm in northern Guangxi (Fig. 1). Around 1.6 million people in 35 counties of 14 

Guangxi Province were affected by this torrential rain event (Fu et al. 2010). 15 

 16 

3. Methodology 17 

a. The PBPDA method for targeted observation 18 

A schematic representation of the PBPDA targeting strategy is depicted in Fig. 4. 19 

The final analysis (FNL) of the Global Forecast System (GFS) of the NCEP at 0000 20 

UTC 11 June was perturbed to generate an initial ensemble. The whole ensemble was 21 

then integrated for 48 h. The member that best approximated the observed MCV flow 22 
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and RAIN24 was used as the “truth” to generate synthetic observations by adding in 1 

typical observation error. Then, in a given area around the initial MCV of the truth, 2 

synthetic observations were grouped into small data units. By individually 3 

assimilating each data unit into the initial field of the other ensemble members using 4 

3DVar (Barker et al. 2004) followed by a 48-h simulation, the impact of assimilating 5 

each data unit on the forecast error of certain forecast metrics relative to the control 6 

(no data assimilation) experiment could be determined. 3DVar was used due to its 7 

high efficiency, ease of implementation, and generally good performance (Hsiao et al. 8 

2012; Gao et al. 2013). The distribution of the data-impact index could then clearly 9 

show the possible target area. To make the analysis of the results easier, we divided 10 

the range of positive data-impact index values into four levels and set all negative 11 

values as zero. The target area of each member was then defined by the relatively 12 

localized and compact area with high data-impact index values. 13 

The model used in this study was the advanced research core of the Weather 14 

Research and Forecasting model (WRF), version 3.2 (Skamarock and Klemp 2008). 15 

The vertical coordinate follows the terrain using hydrostatic pressure, and the model 16 

uses an Arakawa C grid. Prognostic variables are column mass of dry air (d), 17 

velocity (u, v, and w), potential temperature (), geopotential (), and mixing ratios 18 

for water vapor (qv), cloud water (qc), rain (qr), ice (qi), snow (qs), and graupel (qg). 19 

The model was run with two-way grid nesting. The coarse and fine-grid domains 20 

respectively have horizontal grid sizes of 40.5 km and 13.5 km, and grid points of 21 

150×120 and 181×136 (Fig. 5). There are 27 layers in the vertical direction, with a top 22 
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level at 100 hPa. Both domains use the WRF double-moment 6-class microphysics 1 

scheme (Hong et al. 2004), the RRTMG long-wave radiation scheme (Mlawer et al., 2 

1997), the Yonsei University Planetary Boundary Layer scheme (Hong et al. 2006), 3 

and the Grell–Devenyi ensemble cumulus parameterization scheme (Grell and 4 

Devenyi 2002). The initial and boundary conditions were provided by the FNL/NCEP 5 

dataset, which has a time interval of 6 h and a horizontal resolution of 1°×1°.  6 

 7 

b. OSSE configuration 8 

A 48-h ensemble forecast was first performed with an ensemble size of 40 from 9 

0000 UTC 11 to 0000 UTC 13 June 2008. The initial ensemble was generated with 10 

WRF-3DVar (Barker et al. 2004) by adding perturbations randomly sampled from the 11 

default background error covariance of “cv3” with the FNL analysis error as the 12 

standard deviation. The background error covariance of “cv3” was generated through 13 

the National Meteorological Center (NMC) method of averaged forecast differences 14 

(Parrish and Derber 1992; Barker et al. 2004). The random perturbations were 15 

generated initially for control variables (namely stream function, unbalanced velocity 16 

potential, unbalanced surface pressure, unbalanced temperature, and “pseudo” relative 17 

humidity) with a normal distribution (zero mean and unit standard deviation). The 18 

perturbations of the control variables were then transformed into those of the model 19 

prognostic variables via empirical orthogonal function (EOF) transformation, a 20 

recursive filter, and physical transformation. The perturbed variables included the 21 

horizontal wind components, potential temperature, and mixing ratio for water vapor. 22 
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Other prognostic variables, such as vertical velocity (w) and mixing ratios for cloud 1 

water (qc), rainwater (qr), snow (qs), and graupel (qg), were not perturbed. The 2 

domain-averaged standard deviation of these perturbations was 2.16 m s-1 for u, 2.42 3 

m s-1 for v, 0.99 K for T, 1 hPa for pressure perturbation (p), and 0.77 g kg-1 for qv. 4 

This method of generating the initial ensemble has also been used in many other 5 

studies (e.g., Houtekamer et al. 2005; Barker 2005; Zhang et al. 2006; Meng and 6 

Zhang 2007, 2008a,b, 2011; Wu et al. 2013).  7 

The targeted observations were synthetic wind profilers. Wind profilers measure 8 

wind speed and wind direction at various elevations above the ground. Compared 9 

with rawinsonde, wind profilers have the advantage of higher temporal and vertical 10 

resolution with a fully automatic operation. They are not affected by air traffic control 11 

since they do not need an air balloon. Wind profilers are becoming widely used to fill 12 

the spatial and temporal gap of rawinsonde observations.  13 

The synthetic wind profilers were generated by adding observation error to the 14 

“truth” (Figs. 6c1–3), an ensemble member whose simulation was the most 15 

comparable to FNL analyses in terms of the location and intensity of the MCV (Fig. 16 

6a1), and to observations in terms of its associated composite radar reflectivity at its 17 

mature stage (1800 UTC 12 June, provided by the CMA) (Fig. 6a2) and RAIN24  (Fig. 18 

6a3). We assumed that the synthetic profiler winds had independent Gaussian errors 19 

with zero mean and a standard deviation as per the default in the WRF-3DVar 20 

pre-processing package (Table 1), which has been used previously by Meng and 21 

Zhang (2008a) for examining the relative performance of assimilating different 22 
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observation platforms. To emulate the characteristics of the real-world wind-profiler 1 

observations, the limitations of wind profilers, such as impact from ground clutter, 2 

and inaccuracy both in rain and within 500 m above the ground (Zhang 2011, personal 3 

communication) were also taken into account. The observations under the surface and 4 

within 500 m above the ground were removed. Furthermore, the wind speed needed to 5 

be larger than 5.97 m s-1 so that the error of wind direction was within 10° (Chen and 6 

Wang 2000).  7 

The area within which synthetic observations were generated was determined 8 

based on the general size of the target area of TCs, because no literature exists on 9 

targeting observations for MCVs. The target area of a TC is generally within a radius 10 

of 500−1000 km from the TC center (e.g., Majumdar et al. 2006; Wu et al. 2007b, 11 

2009; Yamaguchi et al. 2009;Mu et al. 2009; Harnisch and Weissmann 2010; Qin and 12 

Mu 2011; Aberson et al. 2011; Kim et al. 2011). Since MCVs are generally equivalent 13 

to small and weak TCs, we selected a square of sides 1100 km in domain 1 with the 14 

center of the initial MCV slightly to the southeast of the square’s center (marked in 15 

Fig. 3c) in order to cover more upstream area. Each data unit was a small square that 16 

consisted of nine neighboring grid points, and thus had sides of 121.5 km (the small 17 

squares in the dashed box in the middle of Fig. 4; an enlarged example is shown in 18 

Fig. 7). There were a total of 81 units in the selected square area. Through 19 

unit-by-unit data assimilation, 81 experiments were performed for each member, 20 

consisting of initial one-unit data assimilation and a subsequent 48-h forecast. The 21 

impact of individual data units was then assessed for the chosen forecast metrics, 22 
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described as follows. 1 

 2 

c. Forecast metrics 3 

Two forecast metrics were explored in this work, with different degrees of 4 

nonlinearity. The first was RAIN24, which is strongly nonlinear, and the other was 5 

synoptic-scale wind and temperature in terms of TE, which is weakly nonlinear.  6 

To determine the target area of RAIN24, where assimilating synthetic profiler 7 

winds provided greater improvement than other areas, we designed an index based on 8 

the threat score (TS) of forecasted RAIN24 that exceeded 50 mm in domain 2: 9 

NoDA

NoDA

TS

TSTS
R DA  ,                      (1) 10 

where TSDA and TSNoDA denote the TS of RAIN24 with and without data assimilation, 11 

respectively. A larger R index denotes a greater contribution from the assimilated 12 

observation. The impact of data assimilation on the less-nonlinear TE was determined 13 

by an index based on the mean DTE of domain 2:  14 

NoDA DA

NoDA

DTE DTE
F

DTE


 ,                     (2) 15 

in which DTE is the difference total energy (Zhang et al. 2003) that reflects the 16 

overall error of U, V and T:  17 

                                    (3)
 18 

where U , V , T  are the difference between a given member and the “truth”, 19 

rp TC /  ( Cp = 1004.9 J kg-1 K-1, Tr= 287 K), and i, j, k are the index of x, y, z 20 

coordinates, respectively.  21 

  )(
2

1 2'2'2'
ijkijkijk TVUDTE 
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 1 

d. Determination of the target area 2 

To examine the target area quantitatively, the positive data-impact index was 3 

categorized into four levels (e.g., the R index distribution for member 27, as shown in 4 

Fig. 7). The area covered by the data units with the highest level of data-impact index 5 

was defined as a target area if it was limited or localized enough to satisfy the 6 

following two criteria: 1) the number of data units (denoted by Nu) were no larger 7 

than 30% of the total 81 data units; namely, Nu  24; and 2) Np+Ns  10, in which Np 8 

denotes the number of area with connected pieces of these data units (‘connected’ 9 

means either sharing a same side or a same point), and Ns denotes the least number of 10 

sides of the data unit square that connects different pieces. A larger Np+Ns denotes a 11 

less-localized target area. These criteria were trial-and-error based through eyeball 12 

examination. For example, the highest level of R index of member 27 was L4 (Fig. 7): 13 

Nu = 15  24, Np = 3, Ns = 4, Np + Ns = 7  10. Consequently, the target area for 14 

RAIN24 for this member was established as the area marked in orange in Fig. 7. 15 

 16 

4. Control experiments 17 

a.  Deterministic forecast 18 

Initiated directly from the FNL data at 0000 UTC 11 June, the WRF produced a 19 

decent simulation of the MCV, its radar reflectivity, and associated RAIN24 (Figs. 20 

6a–b). The location of the simulated circulation center at 1800 UTC 12 June (Fig. 6b1) 21 

lay about 50 km to the southwest of the analysis (Fig. 6a1) with a slightly stronger 22 
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intensity in terms of maximum vertical vorticity at 700 hPa. The observed radar 1 

reflectivity at 1800 UTC 12 June (Fig. 6a2) had a maximum value in northeastern 2 

Guangxi, which was well captured by the model (Fig. 6b2). The simulated RAIN24 3 

(Fig. 6b3) approximated the observed heavy rainfall over northern Guangxi Province, 4 

reaching as much as 250 mm (Fig. 6a3). Consequently, the WRF model with current 5 

configuration was able to successfully simulate the evolution of both the MCV and its 6 

rainfall. 7 

 8 

b. The ensemble forecast 9 

The performance of the ensemble forecast in terms of RAIN24 > 50 mm was 10 

examined via the TS against the observation in domain 2. The results showed that six 11 

members (15%) successfully captured the rainfall with a TS > 0.3. Twelve members 12 

(30%) had a TS of 0.2–0.3. The remaining members, which produced poor rainfall 13 

forecasts, accounted for 55% of all members. Thus, the performance of the ensemble 14 

was generally reasonable.  15 

The evolutions of the DTE of the 39 members are plotted in Fig. 8a. Since our 16 

aim was to explore the features of the target areas among different ensemble members 17 

that were almost equally likely, we trimmed the ensemble by dropping six outliers, 18 

including M16, which had the largest initial DTE, and M13, M17, M36, M37, and 19 

M40, which had the smallest initial DTE. The remaining less-scattered 33 members 20 

comprised the working ensemble whose results are examined in the rest of the paper 21 

(Fig. 8b). 22 
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 1 

5. Quality of the target area 2 

a. The strongly nonlinear metric: RAIN24 3 

1) Deterministic approach 4 

The distribution of R index of all 33 of the members is demonstrated in Fig. 9. 5 

Target areas were detected in about 45% of the ensemble (denoted by black numbers). 6 

The effectiveness of the target area was examined through comparing the error of the 7 

forecast metric by assimilating all the data units in the detected target area into the 8 

initial field, to that by assimilating the same amount of data units but in a different 9 

area. We used M27 as an example to calculate the TS of forecasted RAIN24 by 10 

assimilating all the 15 data units in the target area (0.11 in Fig. 10). Then, the 11 

experiment was repeated five times by assimilating the same number of data units but 12 

with a random distribution in the data square, as shown in Fig. 10. The median of the 13 

TS of the five realizations of randomly distributed data was used to denote the impact 14 

of assimilating random observations (0.08 in Fig. 10). First, the TS with targeted data 15 

assimilation was significantly higher than that without data assimilation (NoDA). 16 

Second, the TS with target data assimilation was significantly higher than that with 17 

random data assimilation. In other words, assimilating the targeted observations 18 

substantially improved the forecast of RAIN24 compared to assimilating the same 19 

amount of data but with a random distribution. Consequently, the target area was 20 

effective. Third, the TS with random data assimilation was apparently higher than that 21 

of NoDA. This result indicates that a certain amount of forecast error could still be 22 
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decreased even when the estimated target area was substantially inaccurate, although 1 

the reduced error was not as large as that obtained with an accurate target area.  2 

Significant differences were observed in the magnitude, structure and location of 3 

the target area of RAIN24 among the different members (Fig. 9), indicating a large 4 

variability of the target area. The magnitude of the target area ranged from L1 to L4. 5 

The number of data units in the target area varied from zero to 24. The location of the 6 

target area was scattered all over the domain, such as to the south (M27), northwest 7 

(M4), around (M34), north (M2) or southwest (M11) of the vortex center, with 8 

different degrees of compactness varying from tightly connected (e.g., M4) to widely 9 

separated (e.g., M33).   10 

Substantially different target areas were even found in members very close to 11 

each other in terms of both forecast fields and their DTE. For example, M3 and M27 12 

were very similar to each other in terms of forecasted RAIN24, the patterns of the MCV, 13 

and their vertical vorticities and radar reflectivities at the mature stage (Figs. 6d, e). 14 

The absolute error of initial T, vertical vorticity and horizontal wind speed at 700 hPa, 15 

the magnitude and evolution of volume-averaged DTE (Figs. 11a, b), and their 16 

horizontal distribution of vertically-averaged DTE at the initial and end times were 17 

also similar (Fig. 8b). However, there were no data units of L4 in M3, and only one 18 

data unit reached L2 to the northwest of the MCV center (Fig. 11a1); while in M27 a 19 

target area with L4 was mainly located to the south of the MCV center (Fig. 11b1). 20 

  M6 and M30 were even closer to each other relative to M3 and M27 in terms of 21 

volume-averaged DTE, with almost the same magnitude at the initial time (Fig. 8b) 22 
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and a more similar horizontal pattern of vertically-averaged DTE as well as absolute 1 

error of initial T, vertical vorticity, and horizontal wind speed (Figs. 11c, d). Their 2 

simulated RAIN24, patterns of the MCV, and their vertical vorticities and radar 3 

reflectivities at the mature stage were also very similar (Figs. 6f, g). However, 4 

significant differences were found in their target area features (Figs. 11c1, d1). M30 5 

displayed a feature similar to M3, with a target area located to the northwest of the 6 

MCV center, while the data units of its highest L2 in M6 were too scattered to meet 7 

the criteria of target area (Fig. 11c1; Np = 4, Ns = 13, Np + Ns = 17 >10).  8 

   The above results demonstrate that small differences in the initial field may make 9 

a big difference in terms of the data impact, and consequently in the existence and the 10 

location, structure and magnitude of the target area. The fact that different members 11 

produced apparently different locations of the target area suggests that the target area 12 

of a strongly nonlinear forecast metric cannot be determined through the deterministic 13 

method. 14 

 15 

2) Probabilistic approach  16 

With the huge variability of the target area among different ensemble members in 17 

mind, we subsequently examined the possibility of determining the target area from a 18 

probabilistic point of view. With all the negative R index values in the 33 members set 19 

to zero, the ensemble mean R index was calculated (Fig. 12a). The data units with 20 

high R-index values were located mainly in a southwest–northeast oriented zone with 21 

three pieces of data units of L4. The L4 data units were so scattered that they barely 22 
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met the criteria of the target area (Np = 3, Ns = 7, Np + Ns = 10). Four of the five data 1 

units of the target area were located to the southwest of the MCV center, which 2 

suggested that adding extra data into the southwest of the MCV center may 3 

statistically improve the RAIN24 forecast. The ensemble-based target area was 4 

expected to be closer to the true target area and thus should be more statistically 5 

accurate than the target area determined by individual members. Meanwhile, a large 6 

variability of the target area among different members and a subsequent scattering of 7 

data units in the ensemble-based target area would suggest that the target area for 8 

highly-nonlinear rainfall was probably imprecise and thus possibly not very reliable. 9 

The effectiveness of the ensemble-based target area was verified using a method 10 

similar to that described in section 5a.1. The five observation units in the 11 

ensemble-based target area shown in Fig. 12a were assimilated into the initial fields of 12 

all 33 members. The mean of the TS of the forecasted RAIN24 of the 33 members was 13 

used to represent the impact of assimilating the data in the target area. Then, the 14 

experiment was repeated five times by assimilating the same number of data units but 15 

with a random distribution, as shown in Fig. 10. The median of the TS of the five 16 

realizations of randomly distributed data was used to denote the impact of 17 

assimilating random observations. The results showed that the ensemble-based target 18 

area was effective as indicated by the significantly larger TS with targeted data 19 

assimilation than that of random data assimilation and NoDA, which was the mean of 20 

the TS of the 33 members without data assimilation. An interesting result was that the 21 

TS with random data assimilation was not significantly different from that of NoDA, 22 
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which was apparently different from the result obtained using the deterministic 1 

approach. This suggests that targeted observation for rainfall requires that the target 2 

area is strictly accurate and adequately sampled to obtain a statistically positive effect.  3 

Overall, the above results indicate that, for a forecast metric of rainfall that is 4 

strongly nonlinear, the ensemble-based target area is effective but has a large 5 

uncertainty. Considering the small possibility of obtaining an exactly accurate target 6 

area beforehand in practice and the similar performance of random data assimilation 7 

to NoDA, targeted observation for strongly nonlinear forecast metrics such as rainfall 8 

may easily fail. 9 

 10 

b. The weakly nonlinear metric: total energy 11 

The distribution of F index for TE of all 33 members is demonstrated in Fig. 13. 12 

About 64% of the ensemble had target areas that satisfied our criteria, which was 13 

larger than that for rainfall. Although more members had target areas for TE relative 14 

to RAIN24, there was still apparently large variability in terms of the location, structure 15 

and magnitude of target areas among the 33 members, such as the opposite direction 16 

of location relative to the MCV center of M4 and M19, and the markedly different 17 

magnitudes of M29 and M30.  18 

The difference in the target area of the ensemble pairs that had similar MCV 19 

features and initial, end values and evolution of DTE (M3 and M27, M6 and M30) 20 

became less apparent for the forecast metric of TE (Figs. 11a2–d2). M6 had a target 21 

area for TE with a very similar location as that of M30, though the magnitude was 22 
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apparently different. The location of the target area of M3 and M27 was still markedly 1 

different, but much closer to each other than those for RAIN24. An interesting result 2 

was that the target areas of M3 and M27 for TE were almost in the opposite direction 3 

relative to the MCV center compared to their counterparts for RAIN24. This 4 

phenomenon became less significant for the pair of M6 and M30, whose DTEs were 5 

slightly smaller. This result indicates that extra data assimilation that most efficiently 6 

decreases the total error in TE does not guarantee the most efficient decrease of error 7 

in the associated rainfall.  8 

Together, these results show that, even though the variability of the target areas 9 

was lower for TE, which has a weaker nonlinearity than RAIN24, using a deterministic 10 

approach to determine their target areas still could not guarantee a statistically 11 

positive impact. Initial uncertainties may easily dislocate the target area and thus 12 

compromise the improvement in forecast skill. This could be why some targeted 13 

observation experiments do not obtain apparent improvement in their long-term 14 

verification. The large variability in the target area for synoptic-scale metric was 15 

noticed by Ancell and Mass (2008) using adjoint targeting method. Their results are 16 

further confirmed by our work using a non-linear approach.  17 

Using the probabilistic approach, the ensemble-based target area for TE was also 18 

examined through calculating the mean F index of TE over the 33 ensemble members 19 

(Fig. 12b). The high F index values were mainly located in a zone that was generally 20 

northwest–southeast oriented, which was apparently different from the high-index 21 

zone for RAIN24. A perfectly compact target area was detected to the north of the 22 
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MCV center, with five connected L4 data units. The huge difference between the 1 

location of the ensemble-based target area for RAIN24 and TE further confirmed that 2 

the extra data assimilation that most efficiently decreases the total error in the flow 3 

and temperature pattern does not guarantee the most efficient decrease of error in the 4 

associated rainfall. 5 

The effectiveness of the ensemble-based target area for total energy was assessed 6 

in the same way as for rainfall (Fig.10). The mean DTE was significantly smaller than 7 

that of NoDA but not significantly different from that of random data assimilation, 8 

indicating the ineffectiveness of the ensemble-based target area for TE. This result 9 

suggests that, for targeted observation with TE as the forecast metric, the forecast 10 

error is likely to be reduced by a similar magnitude no matter whether the target area 11 

is accurate or not. This could be what was happening in the previously mentioned 12 

field targeted observation campaigns, in which a 10% improvement of forecast skill 13 

was obtained using linear-based targeting strategies for forecast metrics of 14 

synoptic-scale, weakly nonlinear TE or typhoon track. The impact of these field 15 

campaigns was usually verified by comparing the forecast error with and without the 16 

assimilation of targeted observations. What was really assessed was the importance of 17 

the additional data, but not the importance of all the efforts made to identify a 18 

particular target area, as opposed to any other area. 19 

 20 

c. The possible role of forecast metric nonlinearity 21 

To examine the possible contribution of error growth during the forecast vs. 22 
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initial data assimilation to the distribution of data-impact index values and their 1 

associated target areas, the I index, which reflects the data impact on initial TE, was 2 

defined, similar to the F index, as:  3 

 NoDA DA

NoDA

DTE DTE
I

DTE


 .                     (4) 4 

The distribution of I index values is shown in Fig. 14. The percentage of ensemble 5 

members with target area (76%) was slightly larger than that for the F index (64%), 6 

and both were apparently larger than that of the R index (45%) (Table 2).  7 

The target area showed much less variability than for both the R and F indices, 8 

which was quantitatively shown by the standard deviation of their Np + Ns, with 9 

values of 6.3, 3.4, and 2.1 for the R, F, and I indices, respectively (Table 2). The 10 

mean Np + Ns values for the R, F, and I indices were 5.4, 3.2, and 1.9, respectively 11 

(Table 2), indicating that the target area became more compact and thus showed less 12 

variability from R to F and I. The target area for the initial TE appeared mostly near 13 

or to the southeast of the MCV center. For the two pairs of ensemble members, 14 

which had similar initial, end values and evolution of DTE, their target areas showed 15 

even closer features (Figs. 11a3–d3). The target area of M3 and M27 were both to 16 

the east of the MCV center, with the target area of M27 covering more data units. 17 

M6 and M30, which had even more similar initial DTE, showed almost exactly the 18 

same target area, which was located to the south of the MCV center.  19 

The target areas for TE at the initial time were generally different from the 20 

corresponding target areas for both rainfall and forecasted TE. This feature could be 21 

clearly seen in the location of their ensemble-based target areas (Fig. 12). The mean 22 
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I index showed a perfectly compact target area to the southeast of the MCV center. It  1 

was substantially different from the target area based on the F index, located to the 2 

north of the MCV center, and the target area based on the R index, which was 3 

scattered with a dominant location to the southwest of the MCV center. The 4 

difference in the target area for initial TE from those for forecasted rainfall and TE 5 

suggested that nonlinear error growth might have played an important role in the 6 

distribution of the target area for both strongly nonlinear rainfall and weakly 7 

nonlinear TE. The additional data assimilation that was able to reduce the initial 8 

DTE the most did not guarantee the largest error reduction in the forecasted DTE, let 9 

alone rainfall. For weakly nonlinear forecast metrics, the variability of target areas 10 

was smaller and thus resulted in a more compact target area. The weakly nonlinear 11 

error growth seemed to change the location of the localized target area only, while 12 

the strongly nonlinear error growth seemed to change both the location and 13 

compactness of the target area.  14 

 15 

6. Summary and discussion 16 

In the present reported study, we examined the quality of the target area for two 17 

forecast metrics with different nonlinearity (rainfall vs. TE) associated with an MCV 18 

in Southwest China during 11–13 June 2008. The examination was performed from 19 

both a deterministic and statistical perspective using the PBPDA method within the 20 

framework of an OSSE. The quality of the target area was examined in terms of its 21 

effectiveness and variability.  22 
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Data assimilation is a common way to assess the performance of targeted 1 

observation. Through examining the direct impact of assimilating synthetic 2 

observations, piece-by-piece, at the initial time by 3DVar on the reduction of the 3 

forecast error of certain metrics, the target area was defined as the limited area with 4 

the highest level of data-impact index values. This targeting method not only 5 

accommodates fully nonlinear error evolution, thus avoiding the limitation of current 6 

strategies with linear assumptions, but is also consistent with the data assimilation 7 

method.  8 

Results showed that the target area determined via the deterministic approach 9 

was not quite reliable for both strongly nonlinear forecasted rainfall and weakly 10 

nonlinear TE. Large variability was observed in terms of the location, structure and 11 

magnitude of target areas among different equally-likely ensemble members with a 12 

reasonable initial ensemble spread. Even those members that had very small 13 

differences in their flow and rainfall simulations showed substantially different target 14 

areas. The high sensitivity of the target area to the uncertainties of the initial field, 15 

which were comparable to the analysis error, for both the strongly nonlinear 16 

forecasted rainfall and the weakly nonlinear TE, indicates that target areas can be 17 

easily misplaced in deterministic scenarios. Larger variability was seen in the target 18 

area for rainfall among different members than for TE. Less ensemble members 19 

produced target areas for rainfall than for TE. The target area for TE was also more 20 

compact than that for rainfall. These results indicated that the target area for rainfall 21 

was less reliable than that for TE. 22 
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Through averaging the data-impact index values of ensemble members, the 1 

ensemble-based target area was obtained for both forecasted rainfall and TE. The data 2 

units in the ensemble-based target area for rainfall were much more scattered, almost 3 

failing to meet the criteria of the target area, as compared to that for TE, suggesting 4 

less reliability. Analyses on the effectiveness of the ensemble-based target area 5 

suggest that adding more data in a particular estimated target area, or in a random 6 

distribution near the weather system concerned, can both decrease the forecast error 7 

of TE by a similar magnitude, thus targeted observing may not be necessary. On the 8 

other hand, the forecast error of rainfall tends to be markedly reduced only when the 9 

data are added to an accurate target area. Since the target area for rainfall has less 10 

precision due to its larger variability relative to that of TE, it is thus likely to be 11 

difficult to estimate accurately in practice, and so targeted observation for rainfall may 12 

easily fail. 13 

   The large variability of the target area for forecasted rainfall was mainly due to its 14 

highly nonlinear error-growth feature. By comparing the target areas for forecasted 15 

rainfall and TE with that for initial TE, it was found that target areas for forecasted 16 

rainfall and TE were substantially different from that for initial TE. This result 17 

indicates that assimilating extra data that may improve the initial flow and 18 

temperature the most does not guarantee the greatest improvement in their forecast 19 

skill, let alone their associated rainfall. The weak nonlinearity of TE seemed to only 20 

change the location of the compact target area for the initial TE, while the strong 21 

nonlinearity of rainfall seemed to change both the location and compactness of the 22 
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target area. 1 

 Finally, it is important to note that this study was based on one case using the 2 

3DVar data assimilation method for synthetic wind-profiler observations. The results 3 

obtained within an OSSE framework may not be fully applicable to real-world 4 

situations. Using real-world satellite data to examine the quality of target areas is 5 

worthy of examination in the future. Further work covering more cases, different 6 

forecast metrics, data assimilation methods, synthetic observation platforms and sizes 7 

of data units needs to be done to obtain more general conclusions. The direct 8 

piece-by-piece data assimilation targeted observation strategy used in this study is an 9 

ideal method to examine targeted observation in a theoretical context, but it is almost 10 

impossible to apply it operationally since it requires future observations or “truth” to 11 

work. Besides assessing the quality of the target area, this PBPDA targeting strategy 12 

could also be used to verify the relative performance of various targeting observation 13 

strategies.  14 
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Figure captions 1 

Fig. 1. The observed 24-h accumulated rainfall (0000 UTC 12 June – 0000 UTC 13 June 2008; 2 

shaded). The heavy line represents the track of the MCV center at 12-h intervals. The names of 3 

different provinces are also given in the figure for reference.  4 

 5 

Fig. 2. Geopotential height [solid, 10 geopotential meters (gpm)] and temperature (dotted, every 6 

2K) at 500 hPa, and relative vertical vorticity at 700 hPa (shaded, 10-5s-1) at (a) 1200 UTC 10 June, 7 

(b) 0000 UTC 11 June, (c) 1800 UTC 12 June, and (d) 0000 UTC 13 June. The white crosses in 8 

(b)–(d) represent the center of the MCV.  9 

 10 

Fig. 3. Geopotential height [red, 10 geopotential meters (gpm)], streamline (black), and relative 11 

vertical vorticity at 700 hPa (gray shaded, 10-5s-1) at (a) 1200 UTC 10 June, (b) 1800 UTC 10 June, 12 

(c) 0000 UTC 11 June, (d) 1200 UTC 12 June, (e) 1800 UTC 12 June, and (f) 0000 UTC 13 June. 13 

The black box in (c) indicates the area in which synthetic observations were generated and 14 

assimilated in the OSSE. The white crosses in (c)–(f) represent the center of the MCV.  15 

 16 

Fig. 4. Schematic flow chart of the piece-by-piece data assimilation targeting strategy. 17 

 18 

Fig. 5. Model domains and their grid sizes in the numerical experiments. 19 

 20 

Fig. 6. The streamline and relative vertical vorticity (left column, shaded,10-5s-1) at 700 hPa, the 21 

composite radar reflectivity (middle column, dBZ) at 1800 UTC 12 June, and RAIN24 (right 22 

column, mm) in the (a) observation, (b) control experiment, (c) “truth”, and (d) M3, (e) M27, (f) 23 

M6, and (g) M30. The white crosses in the left column indicate the location of the MCV center.  24 

 25 

Fig. 7. Schematic representation of how the target area was determined with the R index of M27 26 

of the ensemble as an example. The individual pieces are marked by white boundaries. The sides 27 

connecting all the pieces are marked in orange. The white cross indicates the location of the MCV 28 

center of the “truth” at the initial time.     29 

 30 

Fig. 8. The evolution of the DTEs of the 39 ensemble members (a) with respect to simulation time. 31 

Panel (b) is the same as (a) but with six outlier members [black line in (a)] removed from the 39 32 

members. The highlighted members were selected to examine the variability of the target area 33 

with similar error evolution. 34 

 35 

Fig. 9. The distribution of R index in the 33 members. The white crosses indicate the center of the 36 

MCV of the “truth” at the initial time. The number in the lower-left corner of each panel is Np + Ns, 37 

and that in the lower-right corner is Nu. Members that have target area are denoted by the numbers 38 

in black.  39 

 40 

Fig. 10. The TSs and DTEs in different experiments as well as the random distribution of data 41 

units.  42 

 43 



39 
 

Fig. 11. The distribution of R index in the panels with “1” in their titles, F index in the panels with 1 

“2” in their titles, I index in the panels with “3” in their titles (the number in the lower-left corner 2 

of each panel is Np + Ns, and that in the lower-right corner is Nu), error (an ensemble member 3 

minus “truth”) of initial temperature (shaded; K) in the panels with “4” in their titles, vertical 4 

vorticity (shaded; 10-5 s-1) and horizontal wind speed (contour; m s-1) in the panels with “5” in 5 

their titles at 700 hPa, the vertically averaged DTE at the initial (0000 UTC 11 June, marked by 6 

“6” in the title of the panels) and end time (0000 UTC 13 June, marked by “7” in the title of the 7 

panels) of the integration time period for different members of (a) M3, (b) M27, (c) M6, and (d) 8 

M30. The black box in panels with “6” in their titles indicates part of the square area in which 9 

synthetic observations were generated and assimilated in the OSSE. The white crosses indicate the 10 

location of the MCV center of the “truth” at the initial time.  11 

 12 

Fig. 12. The mean (a) R, (b) F, and (c) I index over the 33 members. The white cross indicates the 13 

center of the MCV of the “truth” at the initial time. The number in the lower-left corner of each 14 

panel is Np + Ns, and that in the lower-right corner is Nu. 15 

 16 

Fig. 13. The distribution of F index in the 33 members. The white crosses indicate the center of 17 

the MCV of the “truth” at the initial time. The number in the lower-left corner of each panel is Np 18 

+ Ns, and that in the lower-right corner is Nu. Members that have target area are denoted by the 19 

numbers in black.  20 

 21 

Fig. 14. The distribution of I index in the 33 members. The white crosses indicate the center of the 22 

MCV of the “truth” at the initial time. The number in the lower-left corner of each panel is Np + Ns, 23 

and that in the lower-right corner is Nu. Members that have target area are denoted by the numbers 24 

in black.  25 

26 
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Tables 1 

Table 1. Default observation error of wind profiler in WRF-3DVar. 2 

Pressure (hPa)  1000 900 850 800 750 700 650 600 550 
Error (m s-1) 2.2 2.2 2.2 2.2 2.2 2.2 2.4 2.6 2.7 
Pressure (hPa)  500 450 400 350 300 250 200 150 100 
Error (m s-1) 2.8 2.9 3.0 3.1 3.2 3.1 3.0 2.8 2.8 

 3 

 4 

 5 

 6 

Table 2. The compactness and variability of target areas and the percentage of the ensemble with 7 

target areas for forecasted rainfall, initial and forecasted total energy.  8 

 9 

 RAIN24 Forecast total energy  Initial total energy  
Mean of  Np + Ns 5.4 3.2 1.9 
STD of  Np + Ns 6.3 3.4 2.1 

Percentage with target area 45% 64% 76% 

 10 

11 
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Figures 1 

 2 

 3 

 4 

 5 
 6 

Fig. 1. The observed 24-h accumulated rainfall (0000 UTC 12 June – 0000 UTC 13 June 2008; 7 

shaded). The heavy line represents the track of the MCV center at 12-h intervals. The names of 8 

different provinces are also given in the figure for reference.  9 
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 1 

 2 

Fig. 2. Geopotential height [solid, 10 geopotential meters (gpm)] and temperature (dotted, every 3 

2K) at 500 hPa, and relative vertical vorticity at 700 hPa (shaded, 10-5s-1) at (a) 1200 UTC 10 June, 4 

(b) 0000 UTC 11 June, (c) 1800 UTC 12 June, and (d) 0000 UTC 13 June. The white crosses in 5 

(b)–(d) represent the center of the MCV.  6 
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 2 

3 

  4 

Fig. 3. Geopotential height [red, 10 geopotential meters (gpm)], streamline (black), and relative 5 

vertical vorticity at 700 hPa (gray shaded, 10-5s-1) at (a) 1200 UTC 10 June, (b) 1800 UTC 10 June, 6 

(c) 0000 UTC 11 June, (d) 1200 UTC 12 June, (e) 1800 UTC 12 June, and (f) 0000 UTC 13 June. 7 

The black box in (c) indicates the area in which synthetic observations were generated and 8 

assimilated in the OSSE. The white crosses in (c)–(f) represent the center of the MCV. 9 
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  2 

Fig. 4. Schematic flow chart of the piece-by-piece data assimilation targeting strategy. 3 

 4 

 5 

 6 

 7 
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 2 

 3 

Fig. 5. Model domains and their grid sizes in the numerical experiments. 4 

 5 

6 



46 
 

 1 

Fig. 6. The streamline and relative vertical vorticity (left column, shaded,10-5s-1) at 700 hPa, the 2 

composite radar reflectivity (middle column, dBZ) at 1800 UTC 12 June, and RAIN24 (right 3 

column, mm) in the (a) observation, (b) control experiment, (c) “truth”, and (d) M3, (e) M27, (f) 4 

M6, and (g) M30. The white crosses in the left column indicate the location of the MCV center.  5 

 6 
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 1 

Fig. 7. Schematic representation of how the target area was determined with the R index of M27 2 

of the ensemble as an example. The individual pieces are marked by white boundaries. The sides 3 

connecting all the pieces are marked in orange. The white cross indicates the location of the MCV 4 

center of the “truth” at the initial time. 5 
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 1 

 2 

Fig. 8. The evolution of the DTEs of the 39 ensemble members (a) with respect to simulation time. 3 

Panel (b) is the same as (a) but with six outlier members [black line in (a)] removed from the 39 4 

members. The highlighted members were selected to examine the variability of the target area 5 

with similar error evolution. 6 
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 8 

Fig. 9. The distribution of R index in the 33 members. The white crosses indicate the center of the 9 

MCV of the “truth” at the initial time. The number in the lower-left corner of each panel is Np + Ns, 10 

and that in the lower-right corner is Nu. Members that have target area are denoted by the numbers 11 

in black.  12 
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 6 

Fig.10  The TSs and DTEs in different experiments as well as the random distribution of data 7 

units.  8 
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 1 

Fig. 11. The distribution of R index in the panels with “1” in their titles, F index in the panels with 2 

“2” in their titles, I index in the panels with “3” in their titles (the number in the lower-left corner 3 

of each panel is Np + Ns, and that in the lower-right corner is Nu), error (an ensemble member 4 

minus “truth”) of initial temperature (shaded; K) in the panels with “4” in their titles, vertical 5 

vorticity (shaded; 10-5 s-1) and horizontal wind speed (contour; m s-1) in the panels with “5” in 6 

their titles at 700 hPa, the vertically averaged DTE at the initial (0000 UTC 11 June, marked by 7 

“6” in the title of the panels) and end time (0000 UTC 13 June, marked by “7” in the title of the 8 

panels) of the integration time period for different members of (a) M3, (b) M27, (c) M6, and (d) 9 

M30. The black box in panels with “6” in their titles indicates part of the square area in which 10 

synthetic observations were generated and assimilated in the OSSE. The white crosses indicate the 11 

location of the MCV center of the “truth” at the initial time. 12 

13 
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 6 
 7 

Fig. 12. The mean (a) R, (b) F, and (c) I index over the 33 members. The white cross indicates the 8 

center of the MCV of the “truth” at the initial time. The number in the lower-left corner of each 9 

panel is Np + Ns, and that in the lower-right corner is Nu. 10 
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 7 

Fig. 13. The distribution of F index in the 33 members. The white crosses indicate the center of 8 

the MCV of the “truth” at the initial time. The number in the lower-left corner of each panel is Np 9 

+ Ns, and that in the lower-right corner is Nu. Members that have target area are denoted by the 10 

numbers in black.  11 
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 7 

Fig. 14. The distribution of I index in the 33 members. The white crosses indicate the center of the 8 

MCV of the “truth” at the initial time. The number in the lower-left corner of each panel is Np + Ns, 9 

and that in the lower-right corner is Nu. Members that have target area are denoted by the numbers 10 

in black.  11 
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