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1 Introduction
The construction of exact solutions of nonlinear evo-

lution equations in mathematical physics plays an impor-
tant role in understanding the nonlinear problems. In re-
cent years, important progress has been made in under-
standing the higher-dimensional nonlinear partial differ-
ential equations (PDEs), especially in (2+1)- and (3+1)-
dimensions.[1,2] Particularly, various powerful methods
have been used to explore different kinds of solutions
of various physical models described by nonlinear PDEs,
such as the inverse scattering transform method,[1] Hi-
rota method,[3] tanh method,[4] sine-cosine method,[5] ho-
mogeneous balance method (HBM),[6−8] and Lie group
analysis,[9−11] etc. Recently, the Jacobi elliptic-function
methods for finding periodic-wave solutions to nonlinear
evolution equations were proposed in Refs. [12] ∼ [14].
Senthilvelan[15] and Chen et al.[16] studied the travel-
ling wave solutions for the (2+1)-dimensional Boussinesq
equation and (3+1)-dimensional KP equation by HBM
and explored certain solutions of the equations. In this let-
ter, we would like to further discuss the (2+1)-dimensional
Boussinesq equation and (3+1)-dimensional KP equation
by our extended Jacobi elliptic-function method. As a
result, exact periodic-wave solutions and solitary wave so-
lutions to the two equations are obtained.

2 Method
Consider a given PDE of the form
N(u, ut, ux, uy, uz, uxx, uxy, uxz, uyz, uxt, . . .) = 0 , (1)

where ut = ∂u/∂t, ux = ∂u/∂x, etc. In this letter, we seek
the following formal travelling wave solutions to Eq. (1),

u(x, y, z, t) = u(ξ), ξ = kx+ ly + sz − ωt , (2)
where (k, l, s) are the components of the wave-number
vector in the x, y, and z directions respectively, and ω is
the angular frequency. Substituting Eq. (2) into Eq. (1)
yields an ordinary differential equation (ODE) for u(ξ)
with constant coefficients,

N(u, u′, u′′, u′′′, . . .) = 0 , (3)
where prime denotes differentiation with respect to ξ.
Equation (3) can be integrated as long as all terms con-

tain derivatives (this is true for the equations considered
here). In this process we take the integration constants to
be zero. The next crucial step is to express the solutions of
the resulting ODE by the Jacobi elliptic-function method
in Ref. [12], u(ξ) can be expressed as a finite power series
of Jacobi elliptic sine function, sn ξ, i.e., the ansatz

u(ξ) =
n∑

j=0

aj sn jξ, an 6= 0 . (4)

We assume the degree of u(ξ) as O(u(ξ)) = n, which leads
to the degrees of other expressions in Eq. (3) as

O
( dpu

dξp

)
= n+ p, O

(
uq dpu

dξp

)
= (q + 1)n+ p ,

q = 0, 1, 2, . . . , p = 1, 2, 3, . . . (5)

Notice that
du
dξ

=
n∑

j=0

jaj snj−1ξ cn ξ dn ξ , (6)

where cn ξ and dn ξ are Jacobi elliptic cosine function and
the Jacobi elliptic function of the third kind, respectively.
And

cn2ξ = 1− sn2ξ, dn2ξ = 1−m2 sn2ξ , (7)
d
dξ

sn ξ = cn ξ dn ξ ,

d
dξ

cn ξ = −sn ξ dn ξ ,

d
dξ

dn ξ = −m2 sn ξ cn ξ . (8)

In this article, for Jacobi elliptic functions, we use the
notation sn ξ, cn ξ, dn ξ with argument ξ and modulus pa-
rameter m (0 < m < 1). The parameter n in Eq. (4) will
be fixed by balancing the highest order of derivative term
and the nonlinear term in the nonlinear ODE Eq. (3) by
using Eq. (5). Substituting Eq. (4) (with fixed value of
n) into the reduced nonlinear ODE (3) and equating the
coefficients of various powers of sn ξ to zero we get a set
of algebraic equations for aj , k, l, s, and ω. Solving them
consistently we obtain relations among the parameters aj ,
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k, l, s, and ω. If any parameters are left unspecified, they
are regarded as being arbitrary constants. Making use of
these relations we can find a final expression for u(ξ) which
leads to an expression for the travelling wave solutions for
Eq. (1).

We also wish to mention that instead of the sn ξ in the
ansatz (4) one can choose the cn- or dn-function method
in Refs. [13] and [14]. We only mention it here without
going into details.

3 Solutions

3.1 (2+1)-Dimensional Boussinesq Equation

Let us consider a (2+1)-dimensional Boussinesq
equation,[17]

utt − uxx + 3(u2)xx − uxxxx − uyy = 0 , (9)
which is introduced to describe the propagation of grav-
ity waves on the surface of water, in particular the head-
on collision of oblique waves. This equation combines
the two-way propagation of the classical Boussinesq equa-
tion with the dependence on a second spatial variable, as
occurs in the two-dimensional Korteweg-de Vries (KdV)
equation, also known as Kadomstev–Petviashvili (KP)
equation. Equation (9) is not a completely integrable
equation, although it still provides a description of head-
on collision of oblique waves and it does possess some
interesting properties.[17] In Ref. [17], exact and gen-
eral solitary-wave, two-soliton, and resonant solutions of
Eq. (9) are obtained by Hirota’s bilinear method. In this
letter, we will find exact periodic-wave solutions to Eq. (9).
As described in Sec. 2, we seek for a travelling wave solu-
tion u(x, y, t) = u(ξ), ξ = kx+ ly − ωt. Substituting u(ξ)
into Eq. (9) yields

k4 d4u

dξ4
+ (k2 + l2 − ω2)

d2u

dξ2
− 6k2u

d2u

dξ2

− 6k2
( du

dξ

)2

= 0 , (10)

O
(
u

d2u

dξ2
)

= 2n+ 2, O
( d4u

dξ4
)

= n+ 4 . (11)

Considering Eq. (11) to balance the highest order deriva-
tive with the nonlinear terms in Eq. (10), we get n = 2,
and the solution of Eq. (9) in terms of sn ξ is

u(ξ) = a0 + a1 sn ξ + a2 sn2ξ . (12)
Integrating Eq. (10) with respect to ξ twice yields

k4 d2u

dξ2
− 3k2u2 + (k2 + l2 − ω2)u = 0 . (13)

Substituting Eq. (12) into Eq. (13) yields
3k2(2m2k2 − a2)a2sn4ξ + 2k2(m2k2 − 3a2)a1sn3ξ

+ {[(k2 + l2 − ω2)− 4k4(1 +m2)]a2

− 3k2(a2
1 + 2a0a2)}sn 2ξ

+ [(k2 + l2 − ω2)− k4(1 +m2)− 6k2a0]a1 sn ξ
+ 2k4a2 − 3k2a2

0 + (k2 + l2 − ω2)a0 = 0 . (14)
Setting each coefficient of sn n(ξ) (n = 0, 1, 2, 3, 4) to zero
yields a set of equations for a0, a1, a2, k, l, and ω. From

the solution of these equations under condition a2 6= 0,
k 6= 0, l 6= 0, and ω 6= 0, the coefficients are determined
as

a0 =
k2 + l2 − ω2

6k2
− 2

3
(1 +m2)k2 ,

a1 = 0, a2 = 2m2k2 . (15)

Substituting Eq. (15) into Eq. (12), a final solution is given
as

u(x, y, t) =
k2 + l2 − ω2

6k2
− 2

3
(1 +m2)k2 + 2m2k2sn2ξ

=
k2 + l2 − ω2

6k2
− 2

3
(1− 2m2)k2

− 2m2k2cn2(kx+ ly − ωt) , (16)

which is the exact periodic-wave solution to Eq. (9). Usu-
ally, it is known as the cnoidal wave solution of the
(2+1)-dimensional Boussinesq equation. The behavior
of u(x, y, t) in Eq. (16) for the parameters m = 0.95,
k = l = ω = 1 is illustrated in Fig. 1.

Fig. 1 u(x, y, t = 0) vs. (x, y) for m = 0.95, k = l =
ω = 1.

For m→ 1, cn ξ → sech ξ, thus equation (16) degenerated
as the following form,

u(x, y, t) =
k2 + l2 − ω2

6k2
+

2
3
k2

− 2k2sech2(kx+ ly − ωt) . (17)

This is the solitary wave solution of Eq. (9).

3.2 (3+1)-Dimensional KP Equation

Let us now consider the (3+1)-dimensional KP equa-
tion,

uxt − 6u2
x + 6uuxx − uxxxx − uyy − uzz = 0 . (18)

We firstly make the formal travelling wave transformation
Eq. (2). Substituting u(ξ) into Eq. (18) and integrating it
with respect to ξ twice yields

k4 d2u

dξ2
− 3k2u2 + (kω + l2 + s2)u = 0 . (19)
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According to the same steps as the above-mentioned ones,
its corresponding ansatz solution is Eq. (12). Similarly, ex-
act periodic-wave solutions to Eq. (18) can be obtained,

u(x, y, z, t) =
kω + l2 + s2

6k2
− 2

3
(1− 2m2)k2 − 2m2k2cn2ξ

=
kω + l2 + s2

6k2
− 2

3
(1− 2m2)k2

− 2m2k2cn2(kx+ ly + sz − ωt) , (20)
and its corresponding solitary wave solution is

u(x, y, z, t) =
kω + l2 + s2

6k2
+

2
3
k2

− 2k2 sech 2(kx+ ly + sz − ωt) . (21)

4 Conclusions
Exact periodic-wave solutions and solitary wave so-

lutions for both (2+1)-dimensional Boussinesq equation
and (3+1)-dimensional KP equation have been obtained
by our extended Jacobi elliptic-function method. This
method is very simple and powerful. It has three obvi-
ous advantages: (i) only some algebra is needed to ob-
tain exact periodic-wave solutions to the equations under
consideration; (ii) the Jacobi elliptic-functions can be eas-
ily manipulated by the symbolic computation software,
Mathematica or Maple, which allows us to perform com-
plicated deducing and tedious algebraic calculation on a
computer and output directly the required solutions; (iii)
the periodic-wave solutions for the two equations can also
be obtained by making appropriate linear superpositions
of known periodic solutions. This unusual procedure for

generating solutions is successful as a consequence of some
powerful, recently discovered, cyclic identities by the Ja-
cobi elliptic functions. The interested reader is referred to
Refs. [18] ∼ [20] for more details. The extended Jacobi
elliptic-function method as described in Sec. 2 can be also
applied to other higher-dimensional nonlinear PDEs, for
example, the cylindrical KP equation

(ut + 6uux + uxxx)x +
1
2t
ux +

3σ2

t2
uyy = 0 ,

σ2 = ±1 , (22)

which is also known as the Johnson’s equation and de-
scribes cylindrical solitons in an ideal, inviscid fluid.[21]

Another example is Zakharov–Kuznetsov (ZK) equation,

ut + uux + (∂2
x + ∂2

y)ux = 0 , (23)

which was first derived by Zakharov and Kuznetsov to
describe nonlinear ion-acoustic waves in a strongly mag-
netized plasma.[22] The ZK equation can be thought of
as a generalization of the KdV equation to two spatial
dimensions but, unlike the Kadomstev–Petviashvili equa-
tion, it is not integrable by the inverse scattering trans-
form method.[23] The (2+1)-dimensional NLS equation[24]

is
iψt + ψxx + σdψyy + 2σn|ψ|2ψ = 0 , (24)

where σn = ±1 defines the type of the cubic nonlin-
earity, i.e., focusing (at σn = +1) or defocusing (at
σn = −1), and σd = ±1 defines the type of the wave
dispersion/diffraction. We only mention it here without
going into details.
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