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ABSTRACT

The current study explores the use of an ensemble Kalman filter (EnKF) based on the Weather Research

and Forecasting (WRF) Model to continuously assimilate high-resolution Doppler radar data during the

peak-intensity stage of Tropical Cyclone (TC) Vicente (2012) before landfall. The WRF-EnKF analyses and

forecasts alongwith the ensembles initialized from the EnKF analyses at different times were used to examine

the subsequent evolution, three-dimensional (3D) structure, predictability, and dynamics of the storm.

Vicente was an intense western North Pacific tropical cyclone that made landfall around 2000 UTC 23 July

2012 near the Pearl River Delta region of Guangdong Province, China, with a peak 10-m wind speed around

44m s21 along with considerable inland flooding after a rapid intensification process. With vortex- and

dynamics-dependent background error covariance estimated by the short-term ensemble forecasts, it was

found that the WRF-EnKF could efficiently assimilate the high temporal and spatial resolution 3D radar

radial velocity to improve the depiction of the TC inner-core structure of Vicente, which in turn improved the

forecasts of the track and intensity along with the associated heavy precipitation inland. The ensemble

forecasts and sensitivity analyses were further used to explore the leading dynamics that controlled the

prediction and predictability of track, intensity, and rainfall during and after its landfall. Results showed that

TC Vicente’s intensity and precipitation forecasts were largely dependent on the initial relationship between

TC intensity and location and the initial steering flow.

1. Introduction

Landfalling tropical cyclones (TCs) are big threats to

shipping and fishing interests far offshore and coastal and

even inland areas. The accuracy of TC track, intensity,

and associated rainfall forecasts near their landfall are of

great importance for warning the public and protecting

lives and property in the affected area.Over the last three

decades, despite recent advances in TC track forecasts

[Franklin (2004, updates available online at www.nhc.

noaa.gov/verification); Cangialosi and Franklin (2011)], it

remains difficult to predict intensity, structure, and pre-

cipitation amounts in TCs (Zou andXiao 2000; Xiao et al.

2007; Houze et al. 2007; Rappaport et al. 2009; Cangialosi

and Franklin 2011).

Besides the quality of forecast models, intensity pre-

diction depends largely on how well the initial condi-

tions can represent the inner-core structure that is

strongly influenced by moist convection (Houze et al.

2007; Fovell et al. 2010). Landfalling TCs generally
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spend most of their lifetime over the ocean, where the

lack of sufficient conventional and high-resolution inner-

core observations adds difficulty to the initialization of

numerical weather prediction (NWP) models, which

may be one of the most important factors in limiting the

current operational forecast skill for TC intensity (Wang

2002; Hendricks et al. 2004; Montgomery et al. 2006;

Rogers at al. 2006; Zhang et al. 2009, hereafter Z09).

Observations over the open sea that are capable of

revealing the structure of TCs include satellite data,

airborne and ground-based radar data, and aircraft re-

connaissance data (including dropwindsonde data).

Satellite data including both the radiance and satellite-

derived atmospheric motion vector (AMV) obser-

vations do not contain detailed vertical structure

information, and at present, cloudy or rainy radiances,

especially over the TC inner-core regions, cannot be

readily or efficiently ingested into NWP models to ini-

tialize TC vortices because of our current limited data

assimilation capability (Liu et al. 2012; Xu et al. 2013).

Doppler weather radar and aircraft reconnaissance data

represent the only two currently available observations

that can survey the TC inner core. Relative to aircraft

data, Doppler weather radar data offers a more com-

plete spatial and temporal coverage of precipitation and

kinematic fields.

Studies have shown that assimilating ground-based

radar radial velocity and reflectivity and airborne radial

velocity through an ensemble Kalman filter (EnKF;

Evensen 1994) can efficiently improve TC vortex ini-

tialization, structure, intensity, and precipitation in the

Atlantic basin (Z09; Wu et al. 2010; Zhang et al. 2011;

Xue and Dong 2013; Dong and Xue 2013; Weng and

Zhang 2012, hereafter WZ12; Li et al. 2012; Aksoy et al.

2012, 2013; Sippel et al. 2013, 2014; Zhang and Weng

2015; Aberson et al. 2015). The EnKF uses an ensemble

of short-term forecasts to estimate flow-dependent

background error covariance and has been widely ex-

amined with various dynamical systems and adapted to

realistic situations (Snyder and Zhang 2003; Zhang et al.

2004; Dowell et al. 2004; Tong and Xue 2005; Zhang

et al. 2006; Fujita et al. 2007; Meng and Zhang 2007,

2008a,b; Aksoy et al. 2009, 2010; Zhang et al. 2011;

WZ12; Zhang and Weng 2015).

Tropical cyclones are frequent in the western North

Pacific (WNP), and landfalls along China’s coast com-

monly cause severe damage. In WNP, there are no op-

erational airborneDoppler radar observations, and only

ground-based radar observations are available. The

Chinese ground-based Doppler radar network is now in

its final development stage after a decade of de-

ployment, expansion, and calibration. The averaged

distance between two neighboring Doppler weather

radars in eastern China is about 180 km near the coast,

which is smaller than that in the eastern United States

(about 228km according to our rough calculation).

Though these radars have similar technology and data

formats to those of the WSR-88Ds in the United States,

their potential contribution to analyses and forecasts of

landfalling TCs has not been fully examined. Though

Wang et al. (2014) examined the impact of assimilating

Taiwan ground-based radar data at the peak stage of

landfalling TC Jiangmi using an ARPS-based EnKF

system, the improvement in the analysis and forecast

with the EnKF assimilation of radar data was rather

limited. Effective assimilation of coastal ground-based

radar data is an important reference point for the po-

tential development of an operational modeling system

for WNP TC forecasting, which would be beneficial for

TC-associated disaster prevention and mitigation.

In July 2012, TC Vicente made landfall in Guangdong

China at 2000 UTC 23 July 2012 near the Pearl River

Delta region (Figs. 1a,b), one of the most populated and

industrialized areas in China. It caused severe flooding

and 15 fatalities in the affected area. The direct eco-

nomic loss was about $329 million (U.S. dollars). Vicente

was one of the strongest landfalling storms to ever hit

the Pearl River Delta. It formed at 1200 UTC 18 July

2012 to the east of Luzon Island. Vicente moved gen-

erally west-northwest in a trochoidal pattern (Fig. 1b)

and rapidly intensified on 23 July (Figs. 1c and 2a). The

maximum surface wind speed (maxWSP) increased

from 25.7m s21 at 1800 UTC 22 July to 43.7m s21 at

1800UTC 23 July according to the best track estimate of

Hong Kong Observatory (HKO) (Fig. 1c), thus satisfy-

ing the criteria of rapid intensification for the WNP TCs

[15.4m s21 or 30 kt in 24 h by Wang and Zhou (2008)].

There was quite a large uncertainty in the intensity es-

timate of Vicente from different monitoring agencies

(Figs. 1c and 2a); we chose to use HKO (with a 10-min

sampling period) best track data since it was roughly in

the middle of all the available best track estimates. This

large uncertainty was likely related to different sampling

periods in wind definitions, the lack of sufficient direct

observations, and inconsistencies in the use of the

Dvorak technique by different centers.

Thiswork examines the impact of assimilatingGuangzhou

radar datawhenVicente started to enter the radar coverage

(radar location and velocity coverage is given in Fig. 1b)

throughout the period of its highest intensity and remained

within radar coverage for 18h. The official TC intensity

forecast and operational guidance during Vicente’s rapid

intensification were all too weak (Shieh et al. 2013), which

partly motivated this data assimilation study.

The purpose of this work is twofold: 1) to show the

potential benefit of assimilating coastal Chinese radar
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data with an EnKF analyses in the WNP high-impact,

landfalling TC Vicente; and 2) to examine the prediction

and predictability of the track, intensity, and rainfall of

Vicente based on the EnKF analysis and forecasts. In

particular, the forecast uncertainty of the minimum SLP,

the storm-associated rainfall, and key controlling factors

of the forecast uncertainties were examined through en-

semble sensitivity analyses based on ensemble forecasts

initiated with the EnKF analyses and perturbations.

Section 2 introduces the numerical modeling system,

the EnKF technique, the processing of the observations

to be assimilated, and the experiment setup. Section 3

presents EnKF analyses of Vicente in terms of track,

minimum SLP, and the TC 3D structure. Section 4

shows the comparison among observations, experiments

without data assimilation, and forecasts initialized with

EnKF analyses. The results of sensitivity analyses using

the ensemble forecasts are given in section 5. The last

section gives the summary and some discussion.

2. Methodology

a. WRF and EnKF

The numerical model used in this work was the Ad-

vanced Research version of the Weather Research and

Forecasting (WRF)Model (ARW) version 3.3 (Skamarock

et al. 2008). Three two-way nested domains were used

with 35 vertical levels, a model top at 10hPa, 202 3 181,

181 3 163, and 259 3 259 grid points in the horizontal,

and grid spacings of 40.5, 13.5, and 4.5km for D1,D2, and

D3, respectively (Fig. 1a). The initial and boundary con-

ditions were provided by the 18 3 18 and 6-hourly final

analyses (FNL) of the Global Forecast System from the

National Centers for Environmental Prediction (NCEP;

NOAA/National Centers for Environmental Prediction

2000). The Grell–Devenyi cumulus scheme (Grell and

Devenyi 2002) for the outermost domain (D1), the WRF

single-moment (WSM) 6-class microphysics scheme with

graupel (Hong et al. 2004), and the Yonsei State Uni-

versity (YSU) scheme (Noh et al. 2003) for planetary

boundary layer (PBL) processes were used in this work.

The WRF-based EnKF system used in this work is

the same as in Z09 and WZ12, which was originally

developed for regional-scale data assimilation in Meng

and Zhang (2008a,b). The ensemble size was 60. The

initial ensemble members were generated by adding

perturbations, which were randomly sampled from

the default ‘‘cv3’’ background error covariance option

in the WRF 3DVar package [refer to Barker et al.

(2004) for details], to the FNL/NCEP analysis data at

0000 UTC 23 July 2012. The perturbed variables in-

cluded horizontal wind components (u, y), potential

FIG. 1. (a) Model domain configuration. Also shown is the HKO

best track (black line) of Vicente (2012) starting from 0600UTC20 Jul

to 0000 UTC 25 Jul 2012. The red part denotes the period between

1200 UTC 23 Jul and 1200 UTC 24 Jul during which the numerical

experiments were performed. All the positions at 0000 UTC were

marked by a white dot with the date given in the white circle. Also

given is the location (black cross mark) and radial velocity coverage

(black circle) of Guangzhou Doppler radar and the terrain elevations

(color shaded, mMSL). (b) A close-up of the area within D2. (c) The

maximumsurfacewind speed (maxWSP) from thebest track estimates

of TC Vicente of the Hong Kong Observatory (HKO), the Japan

Meteorological Agency (JMA), the China Meteorological Adminis-

tration (CMA, final estimate after TC season), CMA_operational

(real-time estimate), and the Joint TyphoonWarning Center (JTWC).

The data assimilation period is shaded in gray.
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temperature and mixing ratio for water vapor, and the

standard deviations of 2ms21 for wind, 1K for tempera-

ture, and 0.5gkg21 for mixing ratio [similar perturbations

have been used by Meng and Zhang (2008a,b), and Z09]

approximated by the analysis error of theFNLdata (surface

error of NCEP FNL is available online at http://polar.ncep.

noaa.gov/mmab/papers/tn233/mmab233.pdf). Similar per-

turbations were also used to represent the boundary con-

dition uncertainties of the ensemble. The covariance

relaxationmethod proposed byZhang et al. [2004, their Eq.

(5)] was used to inflate the background error covariance

with a relaxation coefficient of 0.8 (Z09; WZ12). Data as-

similation was performed for all domains. The prognostic

variables of perturbationpotential temperature (T), vertical

velocity (W), horizontal wind components (U and V),

mixing ratio for water vapor (QVAPOR), cloud water

(QCLOUD), rainwater (QRAIN), perturbation geo-

potential (PH), perturbation dry air mass in column (MU),

surface pressure (PSFC), and perturbation pressure (P)

were updated. The successive covariance localization

(SCL) method (proposed by Z09) was used with the

horizontal localization radius of influence (ROI) of 1215,

405, and 135km for D1, D2, and D3, respectively, using

the fifth-order correlation function proposed by Gaspari

and Cohn (1999). The ROI in the vertical direction was

set to the model depth. This approach has been adopted

in several previous papers (e.g., Z09; WZ12; Zhang and

Weng 2015).

b. Guangzhou Doppler radar data processing and
superobservations

The radial velocity data from the Guangzhou radar

located in the south China coast (Fig. 1b) were assimi-

lated by the EnKF. This is an S-band Doppler radar that

is similar to the WSR-88Ds of the United States (Zhu

and Zhu 2004). Given that the Chinese Doppler radar

network is still in the development stage, and there is no

uniform software to process the radar observations, a

considerable amount of our initial effort was invested to

decode and quality control the data. We first converted

FIG. 2. (a),(b) The best track estimate of TC Vicente fromHKO, JMA, CMA, CMA_operational, and JTWC, as

well as (c) the simulated intensity in terms of minSLP (hPa) and (d) the positions of Vicente in the deterministic

WRF forecasts (color curves) initialized with the EnKF analyses every 3 h from 1500 UTC 23 Jul to 0000 UTC

24 Jul 2012 in comparison with the best track estimate from HKO.
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the full-3D-volume radial velocity data to the format

equivalent to that of Level-II data fromWSR-88D. The

NCAR radar editing software (SOLO-II) (Oye et al.

1995) was then used to do velocity unfolding manually.

We further used the superobservation (SO) procedure

developed by Z09 to combine multiple observations

with additional quality control. The observation error

for radial velocity was 3ms21.

c. Experimental design

As shown in the schematics of Fig. 3, the ensemble was

first integrated for 12 h to develop a high-resolution,

flow-dependent background error covariance structure.

Starting at 1200 UTC 23 July, SOs were assimilated

every half hour until 1200UTC 24 July, during which TC

Vicente experienced a rapid intensification and peak

intensity followed by landfall (shaded in Figs. 1c and 2a).

Deterministic forecasts were initiated from the ensem-

ble mean of the EnKF analyses every 3h starting from

1500 UTC 23 July to 0000 UTC 24 July. Two ensemble

forecasts were performed starting from 1500 and

2100 UTC 23 July, respectively. As a benchmark,

‘‘NoDA’’ was performed as a deterministic forecast ini-

tiated from theNCEPFNL analyses at 1200UTC 23 July

without data assimilation. All these forecast experiments

were integrated to 1800 UTC 24 July by which time the

observed storm had nearly completely dissipated.

3. The EnKF analyses

a. Track and minimum SLP

The analyzed minimum SLP (referred to as minSLP

hereafter as a proxy for TC intensity) and position of

Vicente from the continuous EnKF analysis are shown

in Figs. 2c and 2d (green line). Considering the possible

intensity forecast bias in comparing the instantaneous

rawmodel results to theHKObest track data in terms of

maximum surface wind velocity, which is an average

over a certain sampling period, we chose to discuss

the TC intensity only in terms of minSLP hereafter. A

10-min sampling period is used by HKO to estimate

surface wind. Besides, there is usually large uncertainty

in wind estimate even with a same sampling period. For

example, Landsea and Franklin (2013) found that the

uncertainties of the best track estimates in the Atlantic

basin have an error bar of over 5m s21 for maximum

10-m winds and over 6 hPa for minSLP.

The EnKF analyses successfully captured the evolu-

tion of Vicente in terms of both minSLP and track

(Figs. 2c,d). The impact of the radar data assimilation

can be best seen through direct comparison with

‘‘NoDA’’ directly initialized from the FNL analysis

without ingesting any additional observations through-

out the model integration. The most noticeable effect of

Doppler radar assimilation was upon the minSLP esti-

mate in Fig. 2c (EnKF analyses, green; NoDA, gray). In

particular, the EnKF analysis was able to decrease the

minSLP toward the best track minSLP within 2–3 h after

assimilating only 3–4 volumetric Doppler velocity ob-

servations. Except for a negative bias at 1600 UTC

23 July and after 0300UTC 24 July, the EnKF estimates

of the minSLP matched closely with the HKO best

track estimate. This benefit can be clearly seen in the

evolution and mean (Fig. 4a) of the absolute minSLP

error during the 12 h around the minimum minSLP

point. The mean absolute minSLP error decreased by

about 17 hPa.

With the continuous assimilation of theDoppler radar

data, the track in the EnKF analysis (green line, Fig. 2d)

followed the best track estimates well, including the

meandering segment after landfall. In contrast, the track

of NoDA had a marginally rightward bias relative to

FIG. 3. The schematic flowchart for the EnKF and NoDA experiments. The small vertical

arrows together with the heavy red arrow between 1200 UTC 23 Jul and 1200 UTC 24 Jul

represent EnKF cycling at half-hour intervals. The thin black arrow between 1200 UTC 23 Jul

and 1800 UTC 24 Jul represents the deterministic forecast initiated from the GFS analyses

(NoDA). The thin and heavy blue arrows denote deterministic and ensemble forecasts initiated

during 1500 and 2100 UTC 23 Jul.
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the best track and a large variability from hour to hour.

This noise was also reflected in the track error evolution

during the 12h around the minimum minSLP point

(Fig. 4b). NoDA had a smaller error at 1200 UTC than

that of the EnKF and then a consistent larger error after

1800 UTC. However, the EnKF analysis track still

showed a decrease of the mean error of about 8km

(Fig. 4b).

b. TC 3D structure

Moving beyond point metrics of track and minSLP,

Fig. 5 shows the EnKF analyses of the 0.58 base scans of
the radial velocity at selected times verifying with in-

dependent unassimilatedobservations from theGuangzhou

radar, which were randomly chosen from the total SOs

(;10% of total SOs), in comparison with the ‘‘NoDA’’

simulation without Vr assimilation. Promisingly, even

after the first volumetric Vr assimilation cycle at 1200

UTC 23 July, the EnKF analysis (Fig. 5b) was able to

capture well the observed radial velocity dipole pattern

(Fig. 5a). At this time, the root-mean-squared error

(RMSE) of radial velocity for the EnKF analysis (red in

Fig. 6) was about 2m s21 smaller than that of NoDA

(gray in Figs. 6 and 5c), mainly due to a more accurate

representation of TC structure and minSLP (Figs. 4a

and 5b). Except for those very small-scale features or

over complex terrain, the EnKF estimate of the 0.58 base
scan further improved over time with respect to verify-

ing independent observations, while the NoDA esti-

mates deviated farther and farther from the

observations (Figs. 5d–l and 6). The largest improve-

ment (about 4ms21) was observed at the minimum

minSLP stage of 1800 and 2100 UTC 23 July (Fig. 6).

The evolution of observation-based statistics during

the EnKF cycling was then examined in terms of the

RMSE of radial velocity (Fig. 7a). The error growth rate

was larger during the first 6 h before the TC reached its

minimum minSLP with a peak error growth rate near

the TC minimum minSLP. The error growth rate de-

creased slightly in the next 6 h when the TC started to

weaken. The error of radial velocity saturated starting at

about 0300 UTC 24 July, which was about 15 h into the

EnKF cycling. The impact of observations on the prior

became quite small thereafter. The small impact from

the observation in later stages can also be clearly seen

in either the evolution of the TC minSLP and track at

30-min intervals from prior to posterior estimations

even early from 2100 UTC 23 July (Figs. 7b,c) or the

errors of prior and posterior at the 6-h interval (Figs. 7d,e).

Though the error improvement became smaller in the

later cycles (‘‘convergence or saturation’’), the observa-

tions were still likely responsible for maintaining the level

of convergence.

To further explore the impact of assimilating Doppler

velocity observations, Fig. 8 shows the EnKF analysis

increments of 850-hPa horizontal wind vectors and po-

tential temperature. Consistent with the improvement

seen in Fig. 5, the EnKF analysis after the first cycle of

radar data assimilation produced a clear asymmetric

cyclonic pattern around the observed center of Vicente

(Fig. 8a) with the largest increments appearing to the

northeast. This asymmetric cyclonic increment of the

wind resulted in a stronger circulation (Fig. 2c). Corre-

spondingly, there was an overall increase (decrease) of

potential temperature inside (just outside) the inner

core, as more clearly seen from a direct comparison of

FIG. 4. The TC (a)minSLP and (b) track error aroundTC landfall for the EnKF analyses andNoDAexperiments at

different times as well as an average over the three times.
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FIG. 5. (a),(d),(g),(j) The raw radial velocity (m s21) observations from the 0.58 base scan of the Guangzhou radar (OBS); (b),(e),(h),(k)

the corresponding EnKF analyses; and (c),(f),(i),(l) the NoDA forecast valid at 1200, 1500, 1800, and 2100 UTC 23 Jul 2012, respectively.

The TC mark denotes the corresponding TC center (red for the simulated and black for the observed).
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horizontal wind speed and potential temperature be-

tween the EnKF andNoDA in the vertical cross sections

through the simulated TC center (Figs. 9a vs 9e). The

EnKF-analyzed TC had a smaller radius of maximum

winds and a deeper warm core. A stronger thermal

gradient in the eyewall region is consistent with stronger

tangential winds, suggesting that the ensemble-based

covariance estimate is congruent with the underlying

TC dynamics. Also at the first analysis time, there were

broad areas of considerable wind and temperature

increments over land away from the TC center (Fig. 8a)

as well as over the open ocean (not shown). The en-

semble sensitivity analysis (to be discussed in section 5)

suggests that these analysis increments may be critical in

leading to a better track and minSLP forecast during

and after landfall.

As more volumes of Doppler data were assimilated,

and the priors of subsequent analysis cycles became

more accurate (Fig. 6), the analysis increments became

more focused near the vortex core and vicinity (Fig. 8).

Though not shown explicitly, the more focused and

stronger TC vortex in the EnKF analysis was again

evident in the cross sections of Fig. 9 in comparison

to NoDA.

At 2100 UTC 23 July, just after the landfall (Fig. 8d),

both the temperature and wind increments were greatly

reduced in areal coverage and magnitude compared to

the initial analysis time (Fig. 8a) at different levels. The

TC vortex also underwent dramatic adjustment, espe-

cially in the wind field, right before and after the landfall

as seen in the EnKF analyses in Figs. 9g and 9h. The

boundary layer wind to the east of the vortex center

greatly reduced in magnitude due to strong interaction

with land (and friction) though this effect was smaller in

NoDA (Figs. 9c,d).

It is also worth noting that there were only small and

sporadic analysis increments in the outer region of TC at

the later analysis times (Figs. 8c,d). This was also a re-

flection of the tropical storm dynamics: the larger-scale

features in the outer part of the TC had likely already

been adequately adjusted by earlier observations (and

there was no apparent growth of large-scale error), thus

requiring less frequent and less dense observations.

The impact of assimilating Doppler radar in the wind

field was clearly seen in the radius–time evolution of

the azimuthally averaged tangential winds at 850hPa

(Fig. 10). AlthoughNoDA captured some strengthening

of the mean vortex shortly before landfall (2000 UTC

23 July), the maximum mean 850-hPa tangential wind

with the EnKF radar analysis was at least 10ms21 larger

than that of NoDA for most of the duration before and

after landfall. Moreover, the radius of maximum tan-

gential wind in the EnKF analysis was about half of that

in NoDA, indicating a much stronger and more compact

storm of Vicente.

4. Deterministic forecast initiated with the EnKF
analysis

a. Track and minSLP

As also shown in Figs. 2c and 2d, progressively better

track and minSLP predictions were obtained in con-

secutive deterministic forecasts initiated every 3 h from

the EnKF analyses after more and more 3D volumetric

radar data were assimilated (in comparison to NoDA

verifying against HKO best track estimates). With more

Doppler radial velocity data assimilated, the simulated

tracks also became less noisy compared to that in

NoDA. Slightly northward bias were observed in

the deterministic forecasts initiated at 1500, 1800, and

2100 UTC 23 July, while a much smaller track error

was observed in the deterministic forecast initiated at

0000 UTC 24 July. The forecast landfall locations and

times initialized from both the 1500 and 1800 UTC

EnKF mean analyses matched well with the observa-

tions (Fig. 2d). All the deterministic forecasts initiated

from the EnKF analyses showed clear improvement in

the minSLP simulation compared with NoDA in terms

of minSLP before landfall. Despite some timing error,

likely due to the random nature of individual intense

convective cells, forecasts from both the 1500 and

1800 UTC runs also captured the observed minimum

minSLP very well. However, for the reasons not com-

pletely clear, both the 1500 and 1800 UTC forecasts

failed to weaken the TC as fast as in the observations

right after landfall (Fig. 2c). This was less evident in the

continuous EnKF analysis (green) or in forecasts

FIG. 6. The RMSE of radial velocity of the prior forecasts and

posterior analyses of the EnKF in comparison with the RMSE of

NoDA forecasts at different times.

28 MONTHLY WEATHER REV IEW VOLUME 144



initialized after landfall. Similar results were also ob-

served in Du et al. (2012) and Dong and Xue (2013).

The relative performance among different determin-

istic forecasts can be seen more clearly in terms of their

actual errors (Figs. 7a,d,e). Longer time data assimila-

tion produced progressively smaller forecast errors of

minSLP, track, and also radial velocity likely due to the

improved TC positions. In all the deterministic forecast

FIG. 7. The evolution of the RMSE of (a) radial velocity, (b) minSLP, (c) track, (d) error_minSLP, and (e) error_

track in EnKF and deterministic forecast experiments. EnKF_for and EnKF_ana represent the forecast and

analysis stage of the EnKF cycles, respectively.
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experiments, the RMSE of radial velocity rapidly in-

creased during the first three hours then decreased

gradually with similar oscillations. The largest errors

were all observed near the minimum minSLP point.

Generally speaking, the deterministic forecasts initi-

ated from the EnKF analyses with radar data assimila-

tion produced better track and minSLP simulations for

Vicente relative to NoDA. These results clearly dem-

onstrate the significance and potential of assimilating

land-based Doppler radar observations with an EnKF in

the initialization and prediction for intense coastal

storms such as Vicente. This complements an earlier

study of Z09 that assimilated WSR-88D ground-based

Doppler velocity observations to simulate the formation

stages of a TC over the Gulf of Mexico [Hurricane

Humberto (2007)].

b. Precipitation and hazards

In addition to TC track and minSLP, the EnKF radar

data assimilation also improved the forecasts of 1-h ac-

cumulated rainfall. Figure 11 compares the 1-h rainfall

observations obtained by rain gauge with simulations

of 1-h rainfall from NoDA- and EnKF-initialized de-

terministic forecasts (with a 3-h lead time) valid at

1500, 1800, and 2100 UTC 23 July. At 1500 UTC

23 July, the first 3-h forecast initiated from the EnKF

FIG. 8. The EnKF-analysis increments of 850-hPa potential temperature (shaded, K) and wind (vector, m s21)

valid at (a) 1200, (b) 1500, (c) 1800, and (d) 2100 UTC 23 Jul 2012. The black dot denotes the HKO best track

estimate of the TC center position. The gray circle denotes Vr coverage of the Guangzhou radar.
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analyses at 1200 UTC produced improvement in both

the pattern and magnitude of the 1-h rainfall relative to

NoDA (Figs. 11a–c). NoDA had a larger areal cover-

age of precipitation than was observed but less rainfall

near the TC center. Meanwhile the EnKF-initialized

forecast successfully captured the intense precipitation

area near the TC center and the spiral rainbands in the

Pearl River Delta region that includes Hong Kong and

Guangzhou (though the areal coverage was still larger

than the observed). To assess the improvement quan-

titatively, we calculated the 1-h rainfall threat scores

(TS) for different thresholds (5, 10, 15, and 20mm)

FIG. 9. East–west vertical cross sections of the analyzed horizontal wind speed (shaded, m s21) and potential temperature (contours, K)

across the simulated TC center from (a)–(d) NoDA and (e)–(h) the EnKF analyses valid at 1200, 1500, 1800, and 2100 UTC 23 Jul 2012.

FIG. 10. Radius–time plots of the 850-hPa mean tangential winds (m s21) for (a) NoDA and (b) EnKF analysis.
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over the plot area of Fig. 11. Results showed that the

1-h EnKF-initialized forecasts had higher TS than those

of NoDA for all the thresholds except for 10mm at this

time (Fig. 12a).

The 1-h precipitation forecast from the EnKF analysis

at 1800UTC (Fig. 11e; a couple of hours before landfall)

compared even more favorably (than NoDA) to the

observed rainfall (Fig. 11d) in terms of both location and

minSLP (Fig. 11f), the latter of which overpredicted the

rainfall in the eastern coastal areas of Guangdong

Province. Consistently higher TS were observed in the

EnKF prediction than that of NoDA for all the thresh-

olds (Fig. 12b); the mean TS was about twice that of

NoDA and much larger than that at 1500 UTC 23 July.

The rainfall in both the observations and the EnKF-

initialized forecasts was the most intense during

FIG. 11. (a),(d),(g) Observational analysis of the 1-h accumulated precipitation (mm) using automated weather station measurements

(OBS); (b),(e),(h) the corresponding deterministic forecast initialized from the EnKF analysis with a 3-h lead time; and (c),(f),(i) the

corresponding forecast from NoDA valid at (top) 1500, (middle) 1800, and (bottom) 2100 UTC 23 Jul 2012. The HKO best track, the TC

track of the EnKF analysis ensemblemean, and the forecast TC track of NoDAas well as the corresponding TC position at the three times

are also plotted for references.
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Vicente’s landfall (1-h accumulation valid at 2100 UTC),

though the EnKF-based prediction produced too

much precipitation (Figs. 11g,h). The NoDA simula-

tion nearly completely missed most of the intense

rainfall near the observed landfall location just west

of the Pearl River Delta region (Fig. 11i). Again,

consistently higher TS were observed in the EnKF

prediction than in NoDA though both EnKF and

NoDA had lower TS (and a smaller improvement of

EnKF over NoDA) at the landfalling stage than at

other times (Fig. 12c). The largest relative improve-

ment was obtained in the intense rainfall greater

than 20mm.

The simulated 24-h accumulated precipitation valid

from 1500 UTC 23 July to 1500 UTC 24 July 2012 of the

EnKF and NoDA were also compared with observa-

tions (Fig. 13). Consistent with the 1-h accumulation

comparisons above, and despite some overestimation of

the most intense rainfall by the EnKF-initialized fore-

casts, the overall 24-h accumulated rainfall forecast

initialized with the EnKF assimilation of the Doppler

radar observation was much better than the NoDA

simulation throughout the region. Improvement was

evident for intense rainfall greater than 50mm, which

can be clearly seen in the comparison of 24-h rainfall TS

(Fig. 12d).

5. Ensemble forecasts and sensitivity analyses

a. TC track and minSLP

In addition to deterministic forecasts initiated from

the EnKF mean analyses, two 60-member ensemble

forecasts were initialized from the ensemble analyses of

the EnKF. One started at 1500 UTC, before the storm’s

landfall, and the other started at 2100 UTC, right after

its landfall. Figures 14a and 14b show the simulated

minSLP and tracks of Vicente from the two ensemble

forecasts, along with the two deterministic forecasts

from the mean EnKF analyses starting at the same

times. The ensemble initialized from 1500 UTC showed

larger uncertainty in the short-term forecast of the

storm’sminimumminSLP beforeVicente’s landfall than

that after Vicente’s landfall. The 3-h forecasts of

minSLP (valid at 1800 UTC) from different ensemble

members varied from 939 to 957 hPa, which covered

well both best track estimates and the deterministic

forecast from the EnKF mean analysis (Fig. 14a).

However, the ensemble forecast of minSLP initialized

FIG. 12. Threat score of 1-h rainfall for different thresholds valid at (a) 1500, (b) 1800, and (c) 2100 UTC 23 Jul

and (d) 24-h rainfall valid at 1500 UTC 24 Jul for NoDA and deterministic forecasts initialized from the EnKF

analysis (a)–(c) 3 h and (d) 24 h before.
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from 1500 UTC was systematically lower than the best

track estimate after the storm’s landfall (Fig. 14a),

which was also noted in section 4 for the deterministic

EnKF forecast.

The uncertainty in the track forecasts from the

1500 UTC ensemble was somewhat opposite of that of

minSLP. All ensemble members were tightly clustered

around the best track estimate at the initial and earlier

FIG. 13. The 24-h accumulated precipitation (mm) valid at 1500 UTC 24 Jul 2012 for (a) the observational analysis, (b) the deterministic

forecast initialized from the EnKF analysis at 1500 UTC 23 Jul, and (c) NoDA. The corresponding TC tracks are also shown for references.

FIG. 14. Forecasts from two 60-member ensembles initialized from 1500 (red) and 2100 UTC (green) 23 Jul 2012

in comparison with the HKO best track estimate, the deterministic forecasts from the corresponding mean EnKF

analyses, as well as NoDA for (a) minSLP and (b) tracks. The tracks of the ensemble initialized from 1500 UTC

were grouped into the strongest (red) and weakest (green) 25% in terms of (c) initial and (d) average minSLP over

1500, 1800, and 2100 UTC 23 Jul and 0000, 0300, and 0600 UTC 24 Jul. Also plotted in (c),(d) are the initial TC

positions of the two groups as well as the ensemble mean TC position (black dot).

34 MONTHLY WEATHER REV IEW VOLUME 144



forecast times, though position spread increased during

the decaying stage after the storm moved farther inland

(Fig. 14b). The distance between different ensemble

members was as large as 200–300km in the 12–24-h

forecasts, during which time the ensemble spread for the

minSLP forecasts was greatly reduced due to the uni-

versal weakening of the storm after landfall (Fig. 14a).

Likely due to six more hours of radar data being

assimilated, and also due to the weakening after the

landfall, the uncertainty in the minSLP forecasts from

the 2100 UTC ensemble (initialized right after land-

fall) was greatly reduced, compared to the 1500 UTC

ensemble (Fig. 14a; green lines). The track uncertainty

was also reduced, though there was still considerable

spread after the decaying storm moved farther inland

(Fig. 14b).

b. 24-h accumulated rainfall

Since the inland flooding was the leading cause of the

loss of lives and property due to Vicente, it is natural to

ask how uncertain the rainfall forecast was during and

after the storm’s landfall. The 24-h rainfall TS scores are

shown in Fig. 15a for different thresholds of 10, 25, 50,

100, and 200mm. The benefit of EnKF radar assimila-

tion relative to NoDA was more apparent for more

intense rainfall with the largest benefit obtained for

200-mm rainfall. The ensemble spread of the TS in-

creased from the 10- to 100-mm thresholds and de-

creased again for the 200-mm threshold. For the 100-mm

threshold, the 25 percentile was 0.1 while the 75

percentile was near 0.2. Another interesting result was

that the TS of the deterministic forecast was below the

25 percentile for the 10-mm TS, closer to the medians of

25- and 50-mm TS, and higher than the 75 percentile of

100- and 200-mm rainfall TS.

The relationship between the 24-h rainfall distribu-

tions and TC tracks was then examined. Figure 16 shows

the 24-h accumulated precipitation forecasts from 15 of

the 60 ensemble members. These members were sub-

jectively selected based on their track forecasts com-

pared to HKO best track, which included five members

with small averaged position error (left column), five

with apparent deviations to the left side of the best track

(middle column), and five members with apparent de-

viations to the right side of the best track (right column).

The rainfall patterns for different groups were very

similar in terms of the juxtaposition of rainfall with the

TC track. In general, the 24-h accumulated precipitation

in each member was focused along the track, and

members with the lowest track error had the best pre-

cipitation forecasts (Figs. 15b,c). The regionwith rainfall

larger than 100mm was mainly located immediately to

the south of TC track for all the three groups (Fig. 16).

As a result, TCs with a leftward track deviation had

rainfall more to the south, while TCs with a rightward

track deviation had rainfall more to the north. In addi-

tion, themore leftward the TC tracks deviated, themore

extensive the rainfall larger than 100mm was. This

feature was even more clearly seen in the distribution of

200-mm accumulated rainfall. This result was also

FIG. 15. (a) Box-and-whisker plot of the TS of the whole ensemble forecast initiated from the EnKF analysis

ensemble at 1500UTC 23 Jul for different rainfall thresholds. Also plotted are the TSs of the deterministic forecasts

initiated from the EnKF mean analysis at 1500 UTC 23 Jul and NoDA. The shaded box covers the 25th–75th

percentiles. The whiskers extend to the 10th and 90th percentiles, and themedian value is marked by the horizontal

line within each box. The mean (b) track error and (c) TS for the three groups according to their closeness to the

best track are also plotted for references.
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FIG. 16. As in Fig. 13, but for 15 selected ensemblemembers initialized at 1500UTC 23 Jul 2012. The track of each ensemble is shown in

each panel in brown in comparison with the ensemble mean track in black. (left) The five members with the simulated track close to the

ensemble mean. The five members with the simulated track to the (middle) south and (right) north of the mean track.
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consistent with the higher TS for the leftward-biased

tracks than those with a rightward bias. Large un-

certainties were mainly observed in the location of

rainfall larger than 100mm among different groups.

Even larger uncertainty was observed in the extent and

location with rainfall larger than 200mm among dif-

ferent groups or among different members in the same

group. This suggests the most catastrophic and ex-

treme forecasts to be associated with the largest

uncertainties.

c. Ensemble sensitivity analysis

This subsection uses the ensemble sensitivity analysis

to examine the controlling factors associated with the

storm or the environment that might have led to the

uncertainties revealed by the ensemble forecast initiated

from the 1500 UTC analyses.

Results showed that the forecast uncertainties in TC

track, minSLP, and precipitation were essentially a re-

sult of the initial relationship between TC minSLP and

location. If ensemble forecast tracks are grouped by

minSLP into the lowest (strongest) and highest (weak-

est) 25% (Fig. 14c), it is found that initially intense

storms tended to be clustered near and to the northwest

of the observed center, while initially weak storms were

more spread out to the southeast. By examining the

data assimilation cycling results, it was found that the

initially random distribution of the weak and strong TC

groups started to show this location bias in the 1-h

forecast at 1400 UTC 23 July after two assimilation cy-

cles (Fig. 17). This distribution becamemore apparent in

the analysis ensemble at 1500 UTC.

The forecast tracks were closely related to this initial

minSLP distribution. Figure 18 gives a schematic of the

track features of the weak and strong groups as shown in

Fig. 14c as well as the mean track of the strong and weak

groups, the whole ensemble, and their initial positions. It

shows that the initially strongest (weakest) ensemble

members tended to have leftmost (rightmost) forecast

tracks. The initially weaker storms at first moved cycloni-

cally around the observed TC location and thus wound up

mostly north of the mean track. Meanwhile, the initially

stronger storms had fairly straight tracks to the south of the

mean track. This track feature was mainly determined by

the steering flow of the two groups. The steering flow was

calculated by averaging the winds over a 300-km annulus

from the TC center in the horizontal direction and 500–

700hPa in the vertical direction (Wu et al. 2007). Results

showed that the weaker group had an initially more

northward steering flow, resulting in the more northward

track, which can be clearly seen from both group averages

(Fig. 19a) and individualmembers (Fig. 19b). The stronger

northward-steering flow at 1500 UTC is probably a result

of the synoptic pattern (Fig. 19c) since the strong TC cases

had higher heights to the north. Though theweaker storms

were initially farther south, they moved northward

quicker, which is demonstrated in the instantaneous cor-

relation between TC latitude and minSLP (solid green in

Fig. 20). In the meantime, the weaker storms were initially

farther east, but later they were farther west, which can

also be seen in the instant correlation between TC longi-

tude and minSLP (dashed green in Fig. 20).

The impact of the initial minSLP distribution on the

forecast track was first examined using the concept of

FIG. 17. The evolution of TC positions of the strongest 25% (red) and weakest 25% (green) members in both the (a)–(d) prior and

(e)–(h) posterior ensemble from 1200 to 1500 UTC.
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partial correlation. Assume we have independent variables

x and z and a dependent variable y. To calculate partial

correlation, first regress x on z and determine the residual

exz, and then regress y on z to determine the residual eyz.

The correlation between exz and eyz is the partial correlation

between x and y with respect to z, which is denoted in this

study by rxyjz [this is similar to Sippel et al. (2011)]. More

concisely, it can be calculated in a single equation with

r
xyjz 5

r
yx
2 r

yz
r
xzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 r2yz

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2xz

p . (1)

In the partial correlation, the effect of z is removed from

both x and y. Results showed that for a storm of a given

initial latitude, a weaker initial stormmoved farther north

with a decreasing tendency through 24h (solid red in

Fig. 20a). This was likely due to the initial relationship

between initial minSLP and longitude and the subsequent

track as shown in Fig. 18. For a storm of a given initial

minSLP, when the storm was initially farther north it

tended to stay farther north (solid blue in Fig. 20a). This is

clear for both the strong andweakTCgroups (Figs. 20c,e).

The impact of the initial minSLP distribution on the

forecast minSLP was then examined. Results showed

that for a storm of an initial given latitude, if it was ini-

tially strong, it stayed strong (solid red in Fig. 20b). This

was essentially a reflection of strong time-lag minSLP

correlation (dashed red in Fig. 20b). For a storm of an

initial given minSLP, when it was initially farther south

it would be stronger later on (solid blue in Fig. 20b),

which was likely dominated by the weak group due to its

larger initial position variance (Figs. 20d,f). This could

be because systems farther south in the weak group

spent more time over water.

The 24-h accumulated precipitation was found to be

correlated well with the forecast latitude at three dif-

ferent forecast times (Figs. 21a–c). A leftward track had

lower latitude throughout the forecast and vice versa.

The negative correlations to the left of the mean track

indicate that the more leftward tracks (lower latitude)

were associated with stronger precipitation to the left of

the mean track, while positive correlations indicate

more rightward tracks (higher latitude) were associated

with more precipitation along and to the right of the

mean track. Interestingly, the dipole in correlation was

not precisely over the ensemble mean track. The stripe

of the positive correlation followed the ensemble mean

track. This was likely because the heaviest precipitation

was to the south of the center, thus any positive per-

turbation to latitude would result in heavy rainfall over

the ensemble mean track location.

FIG. 18. A schematic of the track features of the weak and strong

groups (thin lines), as well as themean track of the strong andweak

groups (heavy colored lines), the whole ensemble (heavy black

line), and their initial positions (dots).

FIG. 19. The steering flow (black arrows) of (a) the weak (green) and strong (red) TC groups, and (b) two members from each group:

member 51 (green) from the weak group and member 59 (red) from the strong group. (c) Also shown are the 500-hPa geopotential height

(dam) of the strong member 59 (red) and the weak member 51 (green) at 1500 UTC 23 Jul.
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FIG. 20. The relationship between track andminSLP. Red and blue solid lines show partial correlation calculations

with (a) track and (b)minSLP as the independent variable. The instantaneous correlation coefficient between the TC

track and minSLP is plotted in green. The three gray lines denote the lower limit with 90%, 95%, and 99% confi-

dence, respectively. The dashed red line in (b) denotes the time-lag correlation between initial and forecast minSLP.

(c)–(f) As in (a),(b), for the strong andweak groups, respectively. The rAf Ai jBi
denotes the partial correlation between

variableA at forecast time f and variableA at initial time (1500 UTC 23 Jul, denoted by i) with respect to variableB

at the initial time. The rAf Bf
denotes the instantaneous correlation coefficient betweenA and B at different forecast

time f. The formula rAf_time-lag represents the time-lag correlation between initial and forecast A.
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Strong correlations (confidence level over 90%) were

also observed between the 24-h accumulated precipitation

and minSLP valid at 1500 UTC estimated for the

1500 UTC ensemble forecasts (Fig. 21d). It was evident

that initially stronger storms tended to produce larger

24-h accumulated precipitation to the left of the ensemble

mean track,while initiallyweaker storms tended to produce

more precipitation to the right of the mean track. The

correlation pattern between the 24-h rainfall and initial

TCminSLP was quite similar to those between the 24-h

rainfall and forecast TC positions (Figs. 21d vs 21a–c).

This result was consistent with the significant correlation

between the initial TC minSLP and forecast TC track, in

which stronger TCs tended to move farther to the south.

6. Summary and conclusions

This work explored the performance of a WRF-based

EnKF in continuous assimilation of Doppler radar data

inmainland China during theminimumminSLP stage of

TC Vicente (2012). Vicente was an intense western

North Pacific TC that made landfall in the Pearl River

Delta region of Guangdong Province, China, around

2000 UTC 23 July 2012. The storm made landfall near

minimum minSLP following rapid intensification, and it

caused severe inland flooding.

Through the assimilation of radar radial velocity data at

30-min frequency, EnKF analyses successfully captured

the track, the evolution of minSLP, and the inner-core

structure ofVicente. The analyzedTC track followedwell

the best track estimates for both the timing and location

of the landfall. After assimilating only 3–4 Doppler ve-

locity volumes, the EnKF analysis was able to decrease

the minSLP to the best track minSLP. Immediately after

the first assimilation cycle, the inner structure of the TC

significantly improved due to the asymmetric increments

in wind and temperature fields. It was also found that the

TC circulation improved both its outer and inner regions

FIG. 21. Correlations (shaded) between the 24-h forecasted accumulated precipitation (mm) valid at 1500 UTC

24 Jul 2012 and the forecasted TC positions in terms of latitude at (a) 2100 UTC 23 Jul, (b) 0000 UTC 24 Jul, and

(c) 0300 UTC 24 Jul 2012, and (d) the initial analysis of minSLP estimated from the 1500 UTC ensemble. The

contours denote the ensemble-mean 24-h accumulated precipitation forecast (mm) and the purple line denotes the

ensemble mean TC track.
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during earlier assimilation cycles. Later on, most im-

provements were constrained to near or within the inner

part of the TC circulation.

All the deterministic forecasts initiated from the

ensemble mean of the EnKF analyses showed clear

improvement in terms of TC track, minSLP, and pre-

cipitation compared with NoDA. The forecast landfall

locations and times initialized from the EnKF mean

analyses matched well with observations. With more

data assimilated, the simulated tracks also became less

noisy. Despite some timing error, forecasts near the

minimum minSLP of the TC captured reasonably the

observed minimum minSLP. However, these forecasts

failed to weaken the TC as fast as in the observations.

In addition, the 1-h precipitation forecast from the

EnKF analysis compared more favorably to the ob-

served rainfall in terms of both location and minSLP

than did NoDA. The EnKF forecast successfully cap-

tured the intense precipitation area and the spiral

rainbands in the Pearl River Delta region. Despite

some overestimation of the most intense rainfall, the

overall 24-h accumulated rainfall forecast initialized by

the EnKF analyses was much improved over NoDA

after only four volumes of the Doppler radial velocity

being assimilated.

The ensemble forecasts initialized from the EnKF

perturbations were further used to explore the dynamics

and predictability of Vicente with respect to different

lead times before and during the landfall. Larger un-

certainty in the short-term forecast of the storm’s min-

imum minSLP was observed before Vicente’s landfall.

Meanwhile, the uncertainty in the track forecasts in-

creased with time. Furthermore, forecast uncertainties

in the rainfall over land associated with TC Vicente was

largely associated with track uncertainty. The intense

rainfall (.50mm) was tightly associated with the TC

track mainly lying to the south of the TC track. Large

uncertainty was observed in the extent and location

along the track of the unusually catastrophic rainfall

(.100mm), which is a big challenge for disaster

prevention.

Sensitivity analyses were further used to explore the

leading dynamics that controlled the prediction and

predictability of track, minSLP, and rainfall during and

after TC landfall. Results showed that the initial re-

lationship between TC minSLP, location, and the initial

steering flow played an important role in the outcome of

the subsequent forecast. In this case, the initially intense

storms tended to be clustered near and to the northwest

of the observed center, while initially weak storms were

more spread out to the southeast. The weaker storms

tended to have stronger initial southerly flow and ended

up being farther north.

Results showed that the forecast track and minSLP

were closely related to this initial minSLP distribution.

The initially strongest (weakest) ensemble members

tended to have a leftmost (rightmost) forecast track.

Partial correlation analyses showed that a weaker initial

storm at a given latitude moved farther north, and a

storm of a given SLP that was initially farther north

tended to stay farther north. Results also showed that an

initially strong TC stayed strong. The initial latitude

could be regarded as a factor impacting subsequent

minSLP evolution considering that storms in the weak

group appeared to intensify more or weaken less when

they were initially farther south.

The 24-h accumulated precipitation was found to be

correlated well with the forecast latitude. More leftward

tracks (lower latitude) were associated with stronger

precipitation to the left of the mean track, while more

rightward tracks (higher latitude) were associated with

more precipitation along and to the right of the mean

track. Since stronger TCs tended to move farther

south, a similar correlation was observed between the

initial TC minSLP and TC 24-h accumulated

precipitation.

Overall, results of this work clearly demonstrate the

significance and potential of assimilating land-based

Doppler radar observations with an EnKF in the ini-

tialization and prediction for TC Vicente. It provides a

good example for the potential benefits of assimilating

coastal radar data using ensemble-based data assimila-

tion to improve operational TC forecasts. Note that the

system described here may serve as a prototype for fu-

ture forecasts and warnings, but that improvements,

especially in the timeliness of the forecast output, must

be made before such a system becomes feasible for

operational use.
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