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a b s t r a c t 

Based on multi-fractal detrended fluctuation analysis (MF-DFA) method, the extended self- 

similarity (ESS) is incorporated to develop a novel method to quantify multi-fractal char- 

acteristics. Detailed results show that compared with MF-DFA this new extended self- 

similarity based MF-DFA (ESS-MF-DFA) method can significantly extend scaling range and 

reduce uncertainties in estimating the exponents. Moreover, although ESS-MF-DFA method 

is developed from the DFA method with a fundamental assumption of a definite scal- 

ing range between fluctuation function and scale, ESS-MF-DFA can still work well even 

when DFA fails due to no scaling range between fluctuation function and scale. Further- 

more, a criterion without estimating the generalized Hurst exponents is developed based 

on ESS-MF-DFA to distinguish multi-fractal from mono-fractal behavior and to quantify 

multi-fractal strength. All these results indicate that ESS-MF-DFA outperforms MF-DFA in 

reliably handling multi-fractal quantifications for much wider fields. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Long-term persistence (or fractal behavior) is ubiquitous in real world, and is a significant feature in time series analysis.

The time series from complex system exhibiting long-term persistence in nature, e.g. DNA sequences, can be characterized

by a power law relation [1–3] . They may exhibit mono-fractal scaling behavior in spectral analysis with a single scaling

exponent, which is the simplest case. Or, they may exhibit multi-fractal scaling behavior with different scaling exponents

to depict the different scaling behaviors from variation of fluctuations [4] . This complicated character results in the well es-

tablishment of multi-fractal theory, which has already been utilized in many fields, such as climatology, turbulence, finance,

ecology, physiology, geophysics and many other fields. Multi-fractal theory makes profound impacts on studying nonlin-

ear features and complex dynamical details in various physical phenomena [5] , and plays a fundamental role in signals

identification and trend prediction [6–8] . In the progress of deeper understanding multi-fractal theory, what has caught

our attention is that it is becoming much urgent to accurately differentiate multi-fractal from mono-fractal characteristic

through reasonable quantitative criteria. 

Since the critical achievement of detrended fluctuation analysis (DFA) method by Peng et al. [2] , which could detect long-

term persistence or (mono-) fractal scaling properties in time series, multi-fractal detrended fluctuation analysis (MF-DFA)

method [4] is developed to identify multi-fractal behaviors based on DFA method. 
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Fig. 1. Scaling range of boundary layer wind speed defined in (a) MF-DFA. (b) ESS-MF-DFA. The gray dash lines denote the same position in (a) and (b). 

The variation of local Hurst exponent with scale derived from (c) MF-DFA. (d) ESS-MF-DFA. The different colors from blue to red correspond to H ( q ) of q 

from −3 to 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MF-DFA method is widely adopted to quantify multi-fractal properties in recent years [5–9] . For the time series with

long-term persistence, there exists F q ( s ) ∼ s H ( q ) , where H ( q ) is the generalized Hurst exponent, F q ( s ) is q th-order fluctuation

function, and s is the scale. For multi-fractal time series, H ( q ) is significantly dependent on q , and H ( q ) varies with q (Details

of MF-DFA method can be seen at Methods section). If q is positive, H ( q ) describes the scaling behavior of large fluctua-

tions, while H ( q ) with negative q describes the scaling behavior of small fluctuations. For mono-fractal time series, H ( q ) is

independent of q [4] . Usually, proceeding a log computation obtains 

log 10 F q ( s ) ∼ H ( q ) log 10 s. (1)

Then we can get H ( q ) through linear fitting directly within a scaling range, and �H q = max H q − min H q could give a

simple quantification for multi- or mono- fractal strength with a finite range of q . In this article, we choose q ranging from

−3 to 3, which ensures the ability to distinguish multi-fractal from mono-fractal behavior with limited data size [10] . 

However, limitations are clear for both DFA and MF-DFA method. Both of them require a definite scaling range to esti-

mate the related scaling exponents. This scaling range, or called fitting region, is difficult to determine, because the scaling

exponent is very sensitive to the selected range [9] . Subtle changes of the selected scaling range can cause a dramatic vari-

ation on estimation of scaling exponent. More importantly, there is no objective criterion for the determination of scaling

range in many studies [2,11] . Previous research has provided a criterion based on crossover time scales for the determination

of optimal scaling ranges in DFA and MF-DFA [9] . However, this kind of criterion does not work well in all circumstances.

For example, it fails for the case that the selected scaling range is very narrow, or even too narrower to define, just the case

for wind records ( Fig. 1 a). So segmented fitting has been performed to the fluctuation function over large and small scales,

respectively [12] . Moreover, the scaling exponent also could be estimated through fitting the fluctuation function directly

[5] . Both of these cases may not be convincing. Thus, consistent results for quantifying the multi-fractal strength of time

series could not be fulfilled using DFA and MF-DFA method. Accurate estimation of the multi-fractal strength is far more

important for this circumstance. 

So the first problem in DFA or MF-DFA related studies is how to extend the scaling ranges if they do exist. Secondly,

how to reduce the uncertainties of the estimated scaling exponents when a definite scaling range does exist? What’s more,

if there is no scaling range in DFA or MF-DFA results, can MF-DFA still be employed with certain modification to quantify

the multi-fractal strength? Can this modification provide a reasonable quantification to differentiate the multi-fractal from

mono-fractal feature? Extended self-similarity (ESS) found in fluid turbulence may provide us the right solution in dealing

with the problems above, since a scaling range can be extended strikingly wider [13] . Inspired by ESS, we can solve problems

by creatively incorporating the ESS to MF-DFA to develop a novel method, extended self-similarity based MF-DFA (ESS-MF-

DFA). Further details of ESS-MF-DFA method will be shown in the Method section. 

In this paper, contrast with the results of MF-DFA, we will show how ESS-MF-DFA can improve the quantification of

multi-fractal strength. The advantages of ESS-MF-DFA to deal with the above problems will be introduced by conducting
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two numerical tests. Further, the utility of ESS-MF-DFA is confirmed by the observed boundary-layer wind speed data. The

first test is an idealized long-range correlated mono-fractal series, where the generalized Hurst exponent H ( q ) is supposed to

be independent of q . Fourier transform method [14] is employed to generate 100 repeated simulated long-range correlated

time series with a given Hurst exponent H . The results from both MF-DFA and ESS-MF-DFA show the ability of ESS-MF-DFA

to extend the scaling range and to reduce the uncertainties in estimating the scaling exponents compared with MF-DFA. The

second test is multi-fractal series generated from binomial multi-fractal model [4,14] , where the generalized Hurst exponent

H ( q ) is known for given a and q . The generalized scaling exponent function H ( q ) has an analytic form [14] , 

H ( q ) = 

1 

q 
−

ln 

[
a q + ( 1 − a ) 

q 
]

q ln ( 2 ) 
. (2) 

Since each H ( q ) is exactly known from Eq. (2) for each generated series, we can clearly get the idea how well the ESS-

MF-DFA estimates each H ( q ) with much smaller uncertainties over wider scaling range and extract the multi-fractal strength

compared with MF-DFA. In the end, the observed wind speed within atmospheric boundary layer has been analyzed. It is

shown that ESS-MF-DFA can truly accurately quantify multi-fractal features in the real case where no scaling range exists in

DFA. 

2. Data and methods 

2.1. Data 

2.1.1. Measured data 

Observed boundary-layer wind speed data used here are provided by the field experiment in Huaihe River Basin from 9

to 22 June 1998. The observation field is located at the western edge of a large paddy field. The wind velocity component

has been measured through a three-dimensional sonic anemometer (SAT-211/3 K, sampling rate 10 Hz, located 4 m above

ground). The more details can be found in the Ref. [15–20] . This data set has been widely used to analyze nonlinear features

and properties of turbulence in the atmospheric boundary layer [18–20] . We analyzed 12 time series of the measured data,

and obtained the same result as showed in Fig. 1 . 

2.1.2. Description and preprocessing of the data 

For mono-fractal model, 100 time series of length 20,000 with a given Hurst exponent were generated. When Hurst

exponent below 0.5, we first estimate the scaling exponent α′ of the integrated data and then obtain α by α = α′ − 1

[21,22] . 

For binomial multi-fractal model, the time series satisfy x k = a n ( k −1 ) ( 1 − a ) n max −n ( k −1 ) , where the length N = 2 n max and

k = 1 , . . . , N with parameter 0.5 < a < 1. And n ( k ) is the number of digits 1 in the binary form of the index k. Here, the 100

time series of length 20,0 0 0 for given a were generated. And the cases for q = −3 , −2 , −1 , 0 , 1 , 2 , 3 were analyzed in this

paper. 

The exponents of the fluctuation function F q ( s ) are estimated at 73 s -values logarithmically sampled in the interval

[4,4570] for both methods. For each time series, we calculated the local slope of log 10 F q ( s ) fitting in the moving window.

The length of every moving window is 10 s -values logarithmically, and every 5 s -values logarithmically move a step forward.

2.2. Methods 

2.2.1. MF-DFA method 

In this subsection, we briefly explain the algorithm of the MF-DFA method [4] , more detailed steps can be found in the

Ref. [4] . 

Consider a time series { x (t) , t = 1 , 2 , . . . , N } with zero mean, the profile y ( t ) can be calculated by the cumulative sum

of x ( t ). Divide y ( t ) into N s nonoverlapping segments of equal length s . And similar calculating can be repeated starting from

the opposite end. Thereby, 2 N s segments are gotten. Calculate the local trend of each segment, and the variance is 

F 2 ( v , s ) = 

1 

s 

s ∑ 

i =1 

{ y [ ( v − 1 ) s + i ] − t v ( i ) } 2 , (3) 

where t v ( i ) is the fitting polynomial in segment v . There are linear, quadratic or high order polynomials available to fit which

corresponds to MF-DFA1, MF-DFA2, etc. [4] . In this article, we choose MF-DFA3 for comparison. Average over all segments

to lead to the q th order fluctuation function: 

F q ( s ) ≡
{ 

1 

2 N s 

2 N s ∑ 

v =1 

[
F 2 ( v , s ) q/ 2 

]1 /q 

} 

, (4) 

where q can take any real value [4] . For q = 2 , Eq .(4) is the standard DFA procedure. 
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Fig. 2. Scaling range (within two dark dash vertical lines) of a realization of mono-fractal series with H = 0 . 5 . (a) [ 18 ,954] by MF-DFA . (b) [ 18 ,4570] by 

ESS-MF-DFA. The length of time series is 20,0 0 0 and the different colors for the different values of the exponent q from −3 to 3. The grey dash lines 

indicate the same position in different coordinates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is worth noting that when q = 0 , Eq .(4) can’t be used to determine H (0) directely. Instead, one can adopt a logarithmic

average procedure [4] , 

F 0 ( s ) = exp 

{ 

1 

4 N s 

2 N s ∑ 

v =1 

ln 

[
F 2 ( v , s ) 

]} 

∼ s H ( 0 ) , (5)

In this paper, we set q = −3 , −2 , −1 , 0 , 1 , 2 , 3 . 

2.2.2. ESS-MF-DFA method 

Benzi et al. discovered ESS in studies of the velocity differences of turbulent flows [13] . The structure function (SF) of the

velocity increments �V ( r ) of turbulent flows exhibits a well-defined scaling law: 〈
�V ( r ) 

3 
〉
≈ r ξ ( 3 ) , 

〈∣∣�V ( r ) 
n 
∣∣〉 = B n 

〈∣∣�V ( r ) 
3 
∣∣〉ξ ( n ) 

. (6)

They found that there are considerable statistical errors due to the limited scaling range in the log-log relations of

〈 �V ( r ) 2 〉 vs r and 〈 �V ( r ) 3 〉 vs r . This case is similar to what we encountered with the scaling behaviors of fluctuation func-

tions under DFA or MF-DFA method. Then they discovered an impressive wider scaling range for 〈 �V ( r ) 2 〉 versus 〈 �V ( r ) 3 〉 .
Similar results [13] with much wider scaling range hold for 〈 | �V ( r ) n | 〉 versus 〈 �V ( r ) 3 〉 with n > 3. 

When calculating the q th order fluctuation function F q ( s ) for a time series, from Eq. (1) , one can obtain 

log 10 ( F q ( s ) ) ∼ A q,q ′ log 10 ( F q ′ ( s ) ) , A q,q ′ = 

H ( q ) 

H ( q ′ ) 
(7)

where q and q ′ can be different, and H ( q ′ ) 	 = 0. It can be found that Eq. (7) is similar to Eq. (6) and it defines a novel method

to modify the MF-DFA. Given by ESS consideration, we use A q,q ′ instead of H ( q ) to quantify multi-fractal properties. 

�H q = max H q − min H q has been applied to quantify the multi-fractal strength in MF-DFA [10] . Similarly, we get 

�A q = max A q − min A q . (8)

Where �H q = �A q ∗H( q ′ ) , and H ( q ′ ) is a constant. In this paper, we let q ′ = 2 , and H( q ′ ) = H(2) that can be estimated by

DFA procedure. Since there are much wider scaling range and smaller uncertainties in ESS-MF-DFA (see the results section),

and this indicates that there are much smaller uncertainties in determining �A q than in �H q . 

What’s more, �A q is completely independent of the value of H ( q ′ ). Thereby, The error and uncertainty caused by the

estimation of H ( q ′ ) are completely independent of �A q . So �A q can be taken as a better measure to distinguish multi-fractal

from mono-fractal series compared with �H q , and ESS-MF-DFA method may accurately capture multi-fractal information.

Detailed results will be shown in the next section. 

3. Results 

3.1. Wider scaling range of ESS-MF-DFA compared with MF-DFA 

Firstly, the test based on mono-fractal model reveals the ability for ESS-MF-DFA to enlarge the estimated scaling range.

Fig. 2 demonstrates the results. When the scale s is large, the straightness of fluctuation functions changing with scale for all

q ∈ [ −3 , 3 ] in ESS-MF-DFA is remarkable, while the fluctuation functions changing with scale depart larger in MF-DFA. The

scaling range is much wider in ESS-MF-DFA ([18,4570], see Fig. 2 (b)) than in MF-DFA ([18,954], see Fig. 2 (a)). Furthermore,

the wider scaling range in ESS-MF-DFA can be seen vividly in local Hurst exponents compared with the narrower scaling
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Fig. 3. Averaged local Hurst exponents obtained by MF-DFA (solid) and ESS-MF-DFA (open) over 100 repeated simulations with 5 fixed Hurst exponents 

( H = 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 ). Each column corresponds to results for a fixed q ( q = −3 , −2 , −1 , 0 , 1 , 2 , 3 , from left to right). The red solid line indicates 

the theoretical Hurst exponent. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

H(q ) , σ H ( q ) and linear fit of goodness parameters (SSE and R-square) within scaling range by MF-DFA 

and ESS-MF-DFA over 100 repeated simulations for mono-fractal model with H = 0 . 7 . 

q −3 −2 −1 1 2 3 −3 

H(q ) MF-DFA 0.6959 0.6947 0.6938 0.6931 0.6923 0.6912 0.6898 

ESS-MF-DFA 0.7044 0.7033 0.7024 0.7017 0.7010 0.70 0 0 0.6986 

σ H ( q ) MF-DFA 0.0239 0.0239 0.0242 0.0249 0.0260 0.0274 0.0288 

ESS-MF-DFA 0.0140 0.0117 0.0090 0.0061 0.0031 0.0 0 0 0 0.0029 

SSE MF-DFA 0.0173 0.0155 0.0145 0.0144 0.0153 0.0173 0.0203 

ESS-MF-DFA 0.0119 0.0082 0.0050 0.0024 0.0 0 06 0.0 0 0 0 0.0 0 06 

R-square MF-DFA 0.9976 0.9978 0.9980 0.9980 0.9979 0.9976 0.9972 

ESS-MF-DFA 0.9983 0.9989 0.9993 0.9997 0.9999 1.0 0 0 0 0.9999 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

range in MF-DFA, see Fig. 3 . The mean local Hurst exponents from 100 simulations of mono-fractal models indicate that

there are much wider plateaus closed to the theoretical exponents in ESS-MF-DFA, while there are no or much narrower

plateaus closed to the theoretical exponents in MF-DFA. 

In the following, we will further illustrate the ability of ESS-MF-DFA in enlarging the scaling range by revisiting the

observed wind speed data, which has no definite scaling based on MF-DFA method, see Fig. 1 (a). When scale s is larger than

300 in Fig. 1 (a), power law assumption in MF-DFA is not valid for each q (scaling range is too narrower to define). Thus right

now MF-DFA lost the ability to estimate each H ( q ) in boundary-layer wind speed at the larger scales. However, ESS-MF-DFA

is capable of estimating it. When using the ESS-MF-DFA, in Eq. (7) , let q ′ = 2 (the 2th order fluctuation function F 2 ( s ) as

the abscissa) and the ordinate is q th order fluctuation function F q ( s ). Then a definite wider scaling range can be found,

see Fig. 1 (b), where the scaling range in MF-DFA below s = 300 is extended to the whole range in ESS-MF-DFA. The slopes

A q = A q, 2 for each q th F q ( s ) versus F 2 ( s ) in log-log plot can be obtained through linear fitting. In order to compare with

results based on MF-DFA method, the estimated slope needs to be converted to generalized Hurst exponent H ( q ). According

to Eq. (7) , there exists H(q ) = A q × H(2) , then we reach H ( q ) through ESS-MF-DFA procedure. 

As we can see, ESS-MF-DFA method effectively solves the problem where the scaling range is too narrower to define in

MF-DFA for some cases just like boundary-layer wind speed. Fig. 1 (c) and (d) compare the scaling range of results calculated

with two methods (MF-DFA and ESS-MF-DFA). It is noticed that the MF-DFA results of boundary layer wind speed confirm

those results in the Ref. [5,12] , which demonstrates local Hurst exponents from MF-DFA changing dramatically with scale

( Fig. 1 (c)). There are no plateaus in local Hurst exponents from MF-DFA to define a definite scaling range. When ESS-MF-

DFA method is considered, there are marked plateaus in local Hurst exponents ( Fig. 1 (d)) with a much wider scaling range.

Although ESS-MF-DFA is derived from DFA based on the power law relationship between fluctuation function and scale,

it works well even DFA fails to work, i.e., there is no definite scaling between fluctuation function and scale ( power law

assumption is not valid ). 

3.2. Smaller uncertainties in ESS-MF-DFA than in MF-DFA 

In order to perform the multi-fractal analysis over the variables in real world using MF-DFA or ESS-MF-DFA method, it is

of vital necessity to improve accuracy of estimated exponents for each q . In fact, wider scaling range will reduce the error

in estimating exponents for each q , and then ESS-MF-DFA method can work better than MF-DFA in improving accuracy

of estimated exponents for each q , see Fig. 4 . For both methods, standard errors are small at small scales while large at

large scales. ESS-MF-DFA method performs better than MF-DFA at all scales, especially when q is positive. In detail, 100

repeated simulations for a mono-fractal model with H = 0 . 7 are shown in Table 1 , where the fitting parameters (mean
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Fig. 4. Uncertainties of estimated H(q ) quantified by σ H ( q ) over 100 repeated simulations. Each plot includes results from seven fixed q ( q = 

−3 , −2 , −1 , 0 , 1 , 2 , 3 ) obtained by MF-DFA (top row) and ESS-MF-DFA (bottom row). Each column corresponds to results for a Hurst exponent 

( H = 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , from left to right). The black dash line corresponds the theoretical Hurst exponent. 

Fig. 5. Scatter plot of R-square vs. SSE for three Hurst exponents: H = 0 . 5 ( �, �), H = 0 . 7 ( ●, ◦), H = 0 . 9 ( � , � ). Solid symbol stands for results from MF-DFA, 

and open symbol stands for results from ESS-MF-DFA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hurst exponents and their standard deviations, R squares and fitted sum of squared error (SSE) for linear fit of goodness)

have been calculated over the same scaling range. It is obvious that ESS-MF-DFA method extremely reduces SSE and standard

deviation with increasing R square simultaneously. SSE stands for the difference between true and fitting results, and the

smaller the SSE, the closer to the true value. The results shown in Fig. 4 and Table 1 indicate that the results of ESS-MF-

DFA are closer to the true value. And ESS-MF-DFA performs better than MF-DFA for all q ∈ [ −3 , 3 ] , and this can be seen

much clearer in the scatter plot of R square vs. SSE in Fig. 5 . The best fitting with smaller uncertainties in estimating the

exponents for each q is that R square is close to 1 and SSE is close to zero simultaneously, i.e., in the up-left corner on

the scatter plot of R square vs. SSE (corresponding to ESS-MF-DFA results). On the contrary, larger uncertainties have been

found in the down-right corner of the scatter plot of R square vs. SSE (corresponding to MF-DFA results). So ESS-MF-DFA

method can improve accuracy of the estimated exponents for each q , which makes the overall fitting enhanced compared

with MF-DFA. 

3.3. Reliable quantification of multi-fractal strength 

When we use �A q to quantify the multicractality, the calculation of �A q is no matter with estimation of H (2). Thereby,

the error caused by DFA procedure to obtain H (2) has no relationship with �A q . Therefore, when we compare the effects

between the two methods, we can use the theoretical value of H (2) to convert A q and �A q of ESS-MF-DFA to H ( q ) and �H q ,

and compare with the results of MF-DFA. 

Based on binomial multi-fractal model, the comparison between theoretical H ( q ) and the estimated H ( q ) from MF-DFA

and ESS-MF-DFA can tell us which method works better in estimating the generalized Hurst exponents. More importantly,

reasonable quantitative criterion based on ESS-MF-DFA is proposed to differentiate multi-fractal from mono-fractal behavior.
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Table 2 

Comparison between the theoretical value of Eq. (2) and H ( q ) estimated from outputs 

of the binomial multi-fractal model with a = 0 . 9 by MF-DFA and ESS-MF-DFA. 

q −3 −2 −1 1 2 3 

H ( q ) Theoretical 2.9893 2.8308 2.4739 1.0 0 0 0 0.6432 0.4847 

MF-DFA 2.9776 2.8096 2.4027 0.9946 0.6230 0.4586 

ESS-MF-DFA 2.9812 2.8127 2.4012 1.0040 0.6432 0.4813 

Fig. 6. Criterion to distinguish multi-fractal from mono-fractal behavior and its check by outputs of binomial multi-fractal model. The black circle means 

�A over 100 repeated mono-fractal simulations from H = 0 . 1 to H = 0 . 99 with the error bar showing σ�A . The red line means the varying range of �A ( q ) 

when 95% of all the samples are included, which determines the criterion �0.95 ≈ 0.05. The blue solid triangle is �A estimated from binomial multi-fractal 

series with a from 0.6 to 0.9, with x-coordinate corresponding to theoretical H (2). The blue open triangle is �A estimated from over 100 repeated PRS 

binomial multi-fractal series. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Eq. (2) , H ( q ) for each q can be derived theoretically for binomial series. In addition, the outputs from binomial

multi-fractal model can be used to estimate H ( q ) by MF-DFA, or H(q ) = A q × H(2) by ESS-MF-DFA, where H (2) can be theo-

retically derived from Eq. (2) . Detailed results for Eq. (2) with a = 0 . 9 are shown in Table 2 , where it can be found that all

the estimated exponents are underestimated compared with the theoretical ones. At the same time, it is obvious that the

estimated exponents for each q from ESS-MF-DFA are much closer to the theoretical ones, but the estimated exponents for

each q from MF-DFA depart much greatly from the theoretical ones, especially for certain q . Similar results can be found

when a = 0 . 6 , 0 . 7 , 0 . 8 (results are not shown). From the above results, we know that �H q = �A q ∗H(2) derived from �A q 

by ESS-MF-DFA is much believable than �H q calculated by MF-DFA. 

For the measured time series, the true value of H (2) is unknown, their multi-fractal behaviors can be quantified directly

by �A q from ESS-MF-DFA based on Eqs. (7) and (8) . In order to determine whether a time series has a significantly multi-

fractal behavior or not, a threshold of �A q should be determined. According to Kantelhardt et al. [4] , the mono-fractal

model used in this paper can be taken as a typical model for mono-fractal series [4] to establish a threshold of �A q . So

100 repeated simulations of mono-fractal model with each H changing from 0.1 to 0.99 to determine the criterion �0.95 as

the threshold of �A q , which is utilized to diagnose whether the multifractal behavior is significant or not at the confidence

probability of 0.95. The red line in Fig. 6 represents the varying range of �A q when 95% of all the samples are included. The

result shows that the �0.95 and standard deviation of different Hurst exponents almost remain stable for all Hurst exponents

from 0.1 to 0.99. Meanwhile, �0.95 also changes with sample size and reaches their saturated value when the sample size

arrives at around 400, which is consistent with the results given in Ref. [10] . However, we find that the variation of �0.95 

is less than 0.004 when the sample number varies from 100 to 10 0 0, which is too small to cause significant difference.

Thereby, our results from experiments of 100 repeated simulations are reasonable within the error range. In this paper,

the criterion is taken as �0.95 ≈ 0.05, see Fig. 6 . Therefore, if �A q is larger than �0.95 , the analyzed series has significant

multi-fractal properties (within the confidence probability of 0.95). 

The validity of the established criterion �0.95 ≈ 0.05 can be checked through the idealized binomial multi-fractal model.

The results from ESS-MF-DFA for outputs of binomial multi-fractal model are in excellent agreement with the theoretical

ones derived directly from Eq. (2) . And all the computed multi-fractal measure �A q is significantly distinguished from the

mono-fractal behavior with all estimated �A q larger than the established criterion �0.95 ≈ 0.05 (see Fig. 6 ). At the same

time, if the outputs of binomial multi-fractal model is handled by phase randomize surrogate procedure (PRS) to remove
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the multifractality of original outputs [23,24] , and then the multifractality will be lost in the ESS-MF-DFA computations

with all the averaged �A q below �0.95 ( Fig. 6 ). In binomial multi-fractal model, the larger the value of a , the smaller the

theoretical H (2), and the more marked the multifractal behavior. Even when a = 0 . 6 , the multifractal behavior is really weak

and difficult to distinguish from mono-fractal series [4] , the estimated �A q is still much larger than �0.95 in Fig. 6 , which

indicates that ESS-MF-DFA really works well in distinguish multi-fractal from mono-fractal behavior. 

4. Conclusion and discussions 

In this paper, we have developed a new ESS-MF-DFA method for identifying and quantifying multi-fractal behavior in

time series. Since DFA or MF-DFA is based on a fundamental assumption that there exists power law relation between the

fluctuation functions and the scale, the narrower scaling range will cause severe problem in estimating the (generalized)

Hurst exponents. How to extend the scaling range is vital to reduce the uncertainties in estimating the (generalized) Hurst

exponents, i.e., the wider scaling range, the smaller uncertainties. Incorporated ESS can help us to reach this goal by extend-

ing the scaling range and reducing the uncertainties in estimating the (generalized) Hurst exponents. For time series from

complex systems or natural processes, sometimes the scaling range is too narrower to define, DFA or MF-DFA will fail to

work, at this case ESS- MF-DFA may still work well (see Fig. 1 for details). In addition, we have proposed a criterion based

on ESS-MF-DFA for discriminating multi-fractal from mono-fractal behavior and verified that it works well in distinguishing

binomial multi-fractal series from their PRS series (see Fig. 6 for details). 

Previous studies show that the violations of ESS should be due to the presence of strong shear in the flows [25] , where

non-stationary larger scale structures are playing an essential role in flows’ statistics. While DFA and MF-DFA are methods

developed for analysis of non-stationary time series [1–4,21,22] , since ESS-MF-DFA is extended from DFA and MF-DFA, ESS-

MF-DFA may still work well in this kind of cases. 

Furthermore, the ESS-MF-DFA method can be used to not only boundary layer wind speed, but also stratospheric vari-

ability [26] , output of nonlinear systems and other similar systems. The scaling ranges in these systems are too narrower

to define or there is even no scaling range, which makes the fundamental assumption in DFA and MF-DFA is invalid. The

applications of ESS-MF-DFA to these fields also deserve to be further explored in future. 
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