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Exact solutions to sine-Gordon-type equations
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Abstract

In this Letter, sine-Gordon-type equations, including single sine-Gordon equation, double sine-Gordon equation and triple sine-Gordon equa-
tion, are systematically solved by Jacobi elliptic function expansion method. It is shown that different transformations for these three sine-Gordon-
type equations play different roles in obtaining exact solutions, some transformations may not work for a specific sine-Gordon equation, while
work for other sine-Gordon equations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Sine-Gordon-type equations, including single sine-Gordon
(SSG for short) equation

(1)uxt = α sinu,

double sine-Gordon (DSG for short) equation

(2)uxt = α sinu + β sin 2u,

and triple sine-Gordon (TSG for short) equation

(3)uxt = α sinu + β sin 2u + γ sin 3u,

are widely applied in physics and engineering. For example,
DSG equation is a frequent object of study in numerous phys-
ical applications, such as Josephson arrays, ferromagnetic ma-
terials, charge density waves, smectic liquid crystal dynamics
[1–5]. Actually, SSG equation and DSG equation also arise in
nonlinear optics 3He spin waves and other fields. In a resonant
fivefold degenerate medium, the propagation and creation of
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ultra-short optical pulses, the SSG and DSG models are usu-
ally used. However, in some cases, one has to consider other
sine-Gordon equations. For instance, TSG equation is used to
describe the propagation of strictly resonant sharp line optical
pulses [6].

Due to the wide applications of sine-Gordon-type equa-
tions, many solutions to them have been obtained in different
functional forms, such as tan−1 coth, tan−1 tanh, tan−1 sech,
tan−1 sn and so on, by different methods [7–9]. In this Let-
ter, we will show the systematical results about solutions for
these three sine-Gordon-type equations. Here different trans-
formations will be introduced to derive more types of solutions,
of course, some transformations may not work for a specific
sine-Gordon-type equation.

2. Solutions to SSG equation

In order to solve the sine-Gordon-type equations, certain
transformations must be introduced. For example, the transfor-
mation

(4)u = 2 tan−1 v or v = tan
u

2
,

has been introduced in Refs. [7,9] to solve DSG equation.
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When the transformation (4) is considered, there are

(5)sinu = 2 tan u
2

1 + tan2 u
2

= 2v

1 + v2
,

and

(6)utx = 2

1 + v2
vtx − 4v

(1 + v2)2
vtvx.

Combining (5) and (6) with (1), the SSG equation can be
rewritten as

(7)
(
1 + v2)vtx − 2vvtvx − αv − αv3 = 0.

Eq. (7) can be solved in the frame

(8)v = v(ξ), ξ = k(x − ct),

where k and c are wave number and wave speed, respectively.
Substituting (8) into (7), we have

(9)k2c
(
1 + v2)d2v

dξ2
− 2k2cv

(
dv

dξ

)2

+ αv + αv3 = 0,

which can be solved directly by Jacobi elliptic function expan-
sion method [10,11]. For instance, the ansatz solution can be
written as

(10)v = a0 + a1 sn ξ,

where sn ξ is Jacobi elliptic sine function [12–14].
The constants a0 and a1 can be determined by substituting

(10) into (9) as

(11)a0 = 0, a1 =
√

−α − (1 + m2)k2c

2k2c
,

with

(12)c = ± α

k2(1 − m2)
,

where 0 � m � 1 is called modulus of Jacobi elliptic functions,
see [12–14].

Thus, the solution to the SSG equation is

(13)u1S = 2 tan−1

[√
−α − (1 + m2)k2c

2k2c
sn ξ

]
, m �= 1.

The second transformation is introduced in the form

(14)u = 2 sin−1 v or v = sin
u

2
,

and then

(15)sinu = 2 sin
u

2
cos

u

2
= 2v

√
1 − v2,

and

(16)utx = 2√
1 − v2

vtx + 2v

(1 − v2)
√

1 − v2
vtvx.

Combining (15) and (16) with (1), the SSG equation can be
rewritten as

(17)
(
1 − v2)vtx + vvtvx − αv

(
1 − v2)2 = 0.
In the travelling wave frame (8), the formal solution of
Eq. (17) by the Jacobi elliptic function expansion method [10,
11] can be written as

(18)v = a0 + a1 sn ξ.

Similarly, the expansion coefficients can be determined as

(19)a0 = 0, a1 = ±1, c = α

m2k2
,

or

(20)a0 = 0, a1 = ±m, c = α

k2
.

Thus, we can obtain two more solutions to the SSG equation:

(21)u2S = ±2 sin−1[sn ξ ],
and

(22)u3S = ±2 sin−1[m sn ξ ].
Moreover, it is known that when m → 1, sn(ξ,m) → tanh ξ .

So we can get more kinds of solution expressed in terms of
hyperbolic function,

(23)u4S = ±2 sin−1[tanh ξ ],
with

(24)c = α

k2
.

Next, we introduce the third transformation

(25)u = cos−1 v or v = cosu,

and then

(26)sinu =
√

1 − v2,

and

(27)utx = − 1√
1 − v2

vtx − v

(1 − v2)
√

1 − v2
vtvx.

Combining (26) and (27) with (1), the SSG equation can be
rewritten as

(28)
(
1 − v2)vtx + vvtvx + α

(
1 − v2)2 = 0.

In the travelling wave frame (8), the formal solution of
Eq. (28) by the Jacobi elliptic function expansion method [10,
11] can be written as

(29)v = a0 + a1 sn ξ + a2 sn2 ξ.

Similarly, the expansion coefficients can be determined as

(30)a0 = ±1, a1 = 0, a2 = −2m2k2c

α
,

with

(31)c = α

m2k2
for a0 = 1,

and

(32)c = α

k2
for a0 = −1,
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or

(33)a0 = (1 + m2)k2c

α
, a1 = 0, a2 = −2m2k2c

α
,

with

(34)c = ± α

(1 − m2)k2
.

Thus, we can obtain still more solutions to the SSG equation

(35)u5S = cos−1
[

1 − 2m2k2c

α
sn2 ξ

]
,

(36)u6S = cos−1
[
−1 − 2m2k2c

α
sn2 ξ

]
,

and

(37)u7S = cos−1
[
(1 + m2)k2c

α
− 2m2k2c

α
sn2 ξ

]
.

Moreover, when m → 1, sn(ξ,m) → tanh ξ , we can get
more kinds of solution expressed in terms of hyperbolic func-
tion,

(38)u8S = cos−1
[
±1 − 2k2c

α
tanh2 ξ

]
,

with

(39)c = α

k2
.

3. Solutions to DSG equation

First of all, we consider the first transformation (4), then we
have

(40)sin 2u = 4v(1 − v2)

(1 + v2)2
.

Combining (5), (6) and (40) with (2), the DSG equation can
be rewritten as

(41)
(
1 + v2)vtx − 2vvtvx − (α + 2β)v − (α − 2β)v3 = 0.

In the travelling wave frame (8), the formal solution of
Eq. (41) by the Jacobi elliptic function expansion method [10,
11] can be written as

(42)v = a0 + a1 sn ξ.

Similarly, the expansion coefficients can be determined as

(43)a0 = 0, a1 = ±
√

− 2m2k2c

(α − 2β) + (1 + m2)k2c
,

with

(44)c = 2β(1 + m2) ± √
(1 − m2)2α + 16m2β2

(1 − m2)2k2
for m �= 1,

and

(45)c = −α2 − 4β2

8βk2
for m = 1.
Thus, the solutions to the DSG equation are

(46)

u1D = ±2 tan−1

[√
− 2m2k2c

(α − 2β) + (1 + m2)k2c
sn ξ

]
, m �= 1,

and

(47)u2D = ±2 tan−1

[√
− 2k2c

(α − 2β) + 2k2c
tanh ξ

]
.

When the second transformation (14) is considered, it can
be easily proven that the DSG equation (2) cannot be solved
directly. So, the second transformation (14) does not work for
the DSG equation (2), more further transformations are needed.
This case does not happen in the third transformation (25),
where we have

(48)sin 2u = 2v
√

1 − v2.

Combining (26), (27) and (48) with (2), the DSG equation
can be rewritten as

(49)
(
1 − v2)vtx + vvtvx + α

(
1 − v2)2 + 2βv

(
1 − v2)2 = 0.

In the travelling wave frame (8), the formal solution of
Eq. (49) by the Jacobi elliptic function expansion method [10,
11] can be written as

(50)v = a0 + a1 sn ξ.

Similarly, the expansion coefficients can be determined as

(51)a0 = − α

4β
, a1 = ±

√
−m2k2c

2β
,

with

(52)c = − α2 + 16β2

4(1 + m2)k2β
.

Thus, another solution to the DSG equation is

(53)u3D = cos−1

[
− α

4β
±

√
−m2k2c

2β
sn ξ

]
.

When m → 1, we have

(54)u4D = cos−1

[
− α

4β
±

√
−k2c

2β
tanh ξ

]
,

with

(55)c = −α2 + 16β2

8k2β
.

4. Solutions to TSG equation

First of all, we consider the first transformation (4), then we
have

(56)sin 3u = 6v

1 + v2
− 4

(
2v

1 + v2

)3

.
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Fig. 1. Graphical presentation for solution u = 2 sin−1[m sn(x,m)] for
m = 0.5.

Fig. 2. Graphical presentation for solution u = cos−1[1 − 2m2k2c
α sn2(x,m)]

for m = 0.5, α = 1.

Combining (5), (6), (40) and (56) with (3), the TSG equation
can be rewritten as

(
1 + v2)vtx − 2vvtvx − (α + 2β + 3γ )v − 2(α − 5γ )v3

(57)− (α − 2β + 3γ )v5 = 0.

In the travelling wave frame (8), the formal solution of
Eq. (57) by the Jacobi elliptic function expansion method [10,
11] can be written as

(58)v = a0 + a1 sn ξ.

Similarly, the expansion coefficients can be determined as

(59)a0 = 0, a1 = ±
√

5γ

(1 − m2)k2c
, m �= 1,

here the solution to the TSG equation (3) is

(60)u1T = ±2 tan−1

[√
5γ

(1 − m2)k2c
sn ξ

]
, m �= 1.

Unfortunately, the second transformation (14) and the third
transformation (25) cannot be applied to solve the TSG equa-
tion (3) directly, i.e., the second transformation (14) and the
third transformation (25) do not work for the TSG equation (3),
more further transformations are needed.
Fig. 3. Graphical presentation for solution u = cos−1[− α
4β

+
√

−m2k2c
2β

×
sn(x,m)] for m = 0.5, α = 1, β = 1.

Fig. 4. Graphical presentation for solution u = cos−1[− α
4β

+
√

− k2c
2β

tanh(x)]
for α = 1, β = 1.

Fig. 5. Graphical presentation for solution u = 2 tan−1[
√

5γ

(1−m2)k2c
sn(x,m)]

for m = 0.5, γ = 1.

5. Conclusion

In this Letter, the sine-Gordon-type equations, including sin-
gle sine-Gordon equation, double sine-Gordon equation and
triple sine-Gordon equation, are systematically solved by Ja-
cobi elliptic function expansion method. Here some new solu-
tions have not been reported in the literature, for example, for
the DSG equation (2), u3D and u4D have not been reported in
the related works [3,4,7,9]. It is shown that different transforma-
tions for these three sine-Gordon-type equations play different
roles in obtaining exact solutions, some transformations may
not work for a specific sine-Gordon equation, while work for
other sine-Gordon equations. Of course, there are still more ef-



S. Liu et al. / Physics Letters A 351 (2006) 59–63 63
forts needed to explore what kinds of transformations are more
suitable to solve these sine-Gordon-type equations, especially
for the higher multiple sine-Gordon equations. Because differ-
ent transformations result in different partial balances for these
sine-Gordon-type equations, which will lead to different ex-
pansion truncations in the Jacobi elliptic function expansion
method. Finally, these will result in different solutions of the
sine-Gordon-type equations. Details can be found in the above
graphical representations of the solutions. From these graphical
representations, we can see that the solutions take different be-
haviors when different transformations (see Fig. 1 and Fig. 2)
and different parameters (see Fig. 3 and Fig. 4) are chosen.
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