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Exact Periodic-Wave Solutions to Nizhnik Novikov Veselov Equation∗
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Abstract Exact periodic-wave solutions to the generalized Nizhnik–Novikov–Veselov (NNV) equation are obtained
by using the extended Jacobi elliptic-function method, and in the limit case, the solitary wave solution to NNV equation
are also obtained.
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1 Introduction
In this letter we consider the generalized Nizhnik–

Novikov–Veselov (NNV) equation,[1−3]

ut + auxxx + buyyy − 3a(uv)x − 3b(uw)y = 0 ,

ux = vy , uy = wx , (1)

which is a (2+1)-dimensional integrable system known as
isotropic Lax extension of the well-known one-dimensional
KdV equation. Equations (1) have been payed much at-
tention by many authors[4−11] and some types of the soli-
ton, multisoliton, chaotic and fractal solutions have been
obtained by means of the inverse scattering transform
method, Bäcklund transformation, homogeneous balance
method, and so on. The aim of this letter is to obtain the
periodic-wave solutions to Eqs. (1) by making use of the
extended Jacobi elliptic-function method, which can be
thought of as an over-all generalization of tanh-method,[12]

sech-method,[13] and the Jacobi elliptic-function method
proposed and developed in Refs. [14] ∼ [16]. In Sec. 2
we describe briefly the method. In Sec. 3 we apply the
method described in Sec. 2 to Eqs. (1) and bring out ex-
act solutions. Conclusions will be presented in Sec. 4.

2 Extended Jacobi Elliptic-Function Method
Consider a given PDE of the form

P (u, ut, ux, uy, uz, uxx, uxy, uxz, uyz, uxt, . . .) = 0 , (2)

where ut = ∂u/∂t, ux = ∂u/∂x, etc. In this paper, we seek
the following formal travelling wave solutions to Eq. (2)

u(x, y, z, t) = u(ξ) , ξ = kx + ly + rz − ωt , (3)

where (k, l, r) are the components of the wave-number
vector in the x, y, and z directions, respectively, and ω is
the angular frequency. Substituting Eq. (3) into Eq. (2)

yields an ordinary differential equation (ODE) for u(ξ)
with constant coefficients

N
(
u,

du

dξ
,
d2u

dξ2
,
d3u

dξ3
, · · ·

)
= 0 . (4)

We assume the degree of u(ξ) as O(u(ξ)) = n, which leads
to the degrees of other expressions in Eq. (4) as

O
( dpu

dξp

)
= n + p ,

O
(
uq dpu

dξp

)
= (q + 1)n + p ,

q = 0, 1, 2, . . . , p = 1, 2, 3, . . . (5)

The next crucial step is that u(ξ) is expanded into a finite
power series of E(ξ),

u(ξ) =
n∑

j=0

AjE
j(ξ) , An 6= 0 , (6)

where Aj are constants to be determined later, n will be
fixed by balancing the highest order of derivative term and
the nonlinear term in the ODE (2) by using Eq. (5), and
E(ξ) satisfies the following ODE,

E′′ + αE + βE3 = 0 , (E′)2 + αE2 +
1
2
βE4 = γ , (7)

where α, β, and γ are constants to be determined. Be-
cause of the entrance of three parameters α, β, and γ,
equation (7) has rich structures of solutions. For example,
as α = 2, β = −2, and γ = 1, the solutions of Eq. (7) read
E(ξ) = tanh ξ, and the method is called tanh-function
method. When α = −1, β = 2, and γ = 0, equation (7)
has the solution E(ξ) = sech ξ, and the method is named
sech-function method. Above all, equation (7) has many
Jacobi elliptic-function solutions for different values of α,
β, and γ. In Table 1 we present the constants α, β, γ for
the twelve Jacobi elliptic functions.
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Table 1 Jacobi elliptic functions and parameters of Eq. (7).

N E(ξ) = E(ξ, m) α β γ

1 sn ξ 1 + m2 −2m2 1

2 cn ξ 1− 2m2 2m2 1−m2

3 dn ξ −(2−m2) 2 −(1−m2)

4 ns ξ ≡ 1/ sn ξ 1 + m2 −2 m2

5 nc ξ ≡ 1/ cn ξ 1− 2m2 −2(1−m2) −m2

6 nd ξ ≡ 1/ dn ξ −(2−m2) 2(1−m2) −1

7 sc ξ ≡ sn ξ/ cn ξ −(2−m2) −2(1−m2) 1

8 sd ξ ≡ sn ξ/ dn ξ 1− 2m2 2m2(1−m2) 1

9 cs ξ ≡ cn ξ/ sn ξ −(2−m2) −2 1−m2

10 cd ξ ≡ cn ξ/ dn ξ 1 + m2 −2m2 1

11 ds ξ ≡ dn ξ/ sn ξ 1− 2m2 −2 −m2(1−m2)

12 dc ξ ≡ dn ξ/ cn ξ 1 + m2 −2 m2

In this article, for Jacobi elliptic functions, we use the
notation E(ξ) instead of E(ξ, m) (ξ is the variable ar-
gument, m is the modulus parameter). The three basic
Jacobi elliptic functions are determined as

sn ξ = sinϕ, cn ξ = cos ϕ, dn ξ =
√

1−m2 sin2 ϕ , (8)

where ϕ is implicity defined by the elliptic integral of the
first kind,

ξ =
∫ ϕ

0

dτ√
1−m2 sin2 τ

, (9)

and

cn 2ξ = 1− sn 2ξ , dn 2ξ = 1−m2 sn 2ξ , (10)

d
dξ

sn ξ = cn ξ dn ξ ,
d
dξ

cn ξ = − sn ξ dn ξ ,

d
dξ

dn ξ = −m2 sn ξ cn ξ , (11)

where sn ξ, cn ξ, and dn ξ are Jacobi elliptic sine, cosine
functions, and the Jacobi elliptic function of the third
kind, respectively. The rest of the nine Jacobi elliptic
functions are reciprocals of these three functions, and the
quotients of any two of them. The Jacobi elliptic functions
are doubly periodic functions of the complex argument ξ.
If restricting ξ to real values we see that sn ξ, cn ξ, and
dn ξ have periods 4K, 4K, 2K, respectively, where

K = K(m) =
∫ π/2

0

dτ√
1−m2 sin2 τ

. (12)

Detailed explanations about the Jacobi elliptic functions
can be found in Refs. [17] and [18],

Substituting Eq. (6) (with fixed value of n) into the
reduced nonlinear ODE (4) and equating the coefficients
of various powers of E(ξ) to zero we get a set of algebraic
equations for Aj , k, l, r, and ω. Solving them consis-
tently we obtain relations among the parameters Aj , k, l,

r, and ω, if any of the parameters is left unspecified, it
is regarded as arbitrary constants. Making use of these
relations we can find a final expression for u(ξ), which
leads to an expression for the travelling wave solutions
for Eq. (2). Therefore, equation (6) establishes an alge-
braic mapping relation between the solution to Eq. (7)
and that to Eq. (2). Obviously, the extended Jacobi
elliptic-function method is a unified approach, including
tanh-, sech-, and the Jacobi elliptic-function methods in
Refs. [14] ∼ [16] as special cases.

3 Periodic-Wave and Solitary Wave Solutions
We perform a travelling wave solutions u(x, y, t) =

u(ξ), v(x, y, t) = v(ξ), w(x, y, t) = w(ξ), ξ = kx + ly − ωt.
Substituting u(ξ), v(ξ), and w(ξ) into Eqs. (1) yields

−ω
du

dξ
+(ak3+bl3)

d3u

dξ3
−3ak

d(uv)
dξ

−3bl
d(uw)

dξ
= 0 , (13a)

k
du

dξ
= l

dv

dξ
, l

du

dξ
= k

dw

dξ
. (13b)

Integrating Eq. (13b) with respect to ξ and taking the
integration constants to be zero yields

v =
k

l
u , w =

l

k
u . (14)

Substituting Eq. (14) into Eq. (13a) yields

d3u

dξ3
− 6

kl
u

du

dξ
− ω

ak3 + bl3
du

dξ
= 0 , (15)

where ak3 + bl3 6= 0. Considering Eq. (5) to balance the
highest derivative with the nonlinear terms in Eq. (15) we
get n = 2, that is

u(ξ) = A0 + A1E(ξ) + A2E
2(ξ) . (16)

Substituting Eq. (16) into Eq. (15) and using Eq. (7) yields
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(
α− 6A0

kl
− ω

ak3 + bl3

)
A1E

′(ξ) +
[
2A2

(
4α− 6A0

kl
− ω

ak3 + bl3

)
− 6A2

1

kl

]
E(ξ)E′(ξ)

+ 3A1

(
β − 6A2

kl

)
E2(ξ)E′(ξ) + 12A2

(
β − A2

2

kl

)
E3(ξ)E′(ξ) = 0 . (17)

Cancelling E′(ξ) and setting each coefficient of En(ξ) (n = 0, 1, 2, 3) to zero yields a set of equations for A0, A1, A2,
k, l, and ω. From the solution of these equations under condition A2 6= 0, k 6= 0, l 6= 0, and ω 6= 0, the coefficients are
so determined that

A0 =
2αkl

3
− klω

6(ak3 + bl3)
, A1 = 0, A2 = ±

√
βkl . (18)

Substituting Eqs. (18) into Eqs. (16) and (14) yields a general form solution to Eqs. (1),

u(x, y, t) = u(ξ) =
2αkl

3
− klω

6(ak3 + bl3)
±

√
βklE2(ξ) ,

v(x, y, t) = v(ξ) =
2αk2

3
− k2ω

6(ak3 + bl3)
± k

l

√
βklE2(ξ) ,

w(x, y, t) = w(ξ) =
2αl2

3
− l2ω

6(ak3 + bl3)
± l

k

√
βklE2(ξ) . (19)

From Table 1, if we take α = 1− 2m2, β = 2m2, γ = 1−m2, then E(ξ) = cn ξ, thus

u(x, y, t) =
2(1− 2m2)kl

3
− klω

6(ak3 + bl3)
±m

√
2kl cn 2(kx + ly − ωt) ,

v(x, y, t) =
2(1− 2m2)k2

3
− k2ω

6(ak3 + bl3)
± km

l

√
2kl cn 2(kx + ly − ωt) ,

w(x, y, t) =
2(1− 2m2)l2

3
− l2ω

6(ak3 + bl3)
± lm

k

√
2kl cn 2(kx + ly − ωt) , (20)

which are the exact periodic-wave solutions to Eqs. (1). Usually, they are known as the cnoidal wave solutions of the
generalized NNV equation. In the limit case when m → 1, then cn ξ → sech ξ, and equation (20) becomes the solitary
wave solution to Eqs. (1),

u(x, y, t) =
−2kl

3
− klω

6(ak3 + bl3)
±
√

2kl sech 2(kx + ly − ωt) ,

v(x, y, t) =
−2k2

3
− k2ω

6(ak3 + bl3)
± k

l

√
2kl sech 2(kx + ly − ωt) ,

w(x, y, t) =
−2l2

3
− l2ω

6(ak3 + bl3)
± l

k

√
2kl sech 2(kx + ly − ωt) . (21)

More exact periodic-wave solutions to Eqs. (1) may also be obtained in terms of other Jacobi elliptic functions in
Table 1, which we omit here for simplicity.

4 Conclusions
Exact periodic-wave solutions to the generalized NNV equation are obtained by using the extended Jacobi elliptic-

function method. It can be seen that the method has three obvious advantages.

(i) We may obtain multiple exact solutions to the equations under consideration in a unified way, and only some
algebra is needed to find these solutions.

(ii) The Jacobi elliptic functions involved can be easily manipulated by the symbolic computation programs Math-
ematica or Maple, which allow us to perform complicated deducing and tedious algebraic calculation on a
computer and output directly the required solutions.

(iii) The periodic-wave solutions for the equations we have studied can also be obtained by making appropriate linear
superpositions of known periodic solutions.

This unusual procedure for generating solutions is successful as a consequence of some powerful, recently discovered,
cyclic identities of the Jacobi elliptic functions. The interested reader is referred to Refs. [19] ∼ [21] for more details.



722 ZHAO Qiang, LIU Shi-Kuo, and FU Zun-Tao Vol. 41

We also wish to mention that the method presented in Sec. 2 can be applied to other higher-dimensional nonlinear
PDEs, too.
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