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Scaling behaviors of the long daily wind speed records of four selected weather stations over China
were analyzed by using Multi-Fractal Detrended Fluctuation Analysis (MF-DFA). The results indicated
that all these four stations are characterized by long-range power-law correlations, but MF-DFA results
showed non-universal multi-fractal behaviors over China. We fitted generalized Hurst exponent h(q) via
a modified generalized binomial multiplicative cascade model, and different widths of the multi-fractal
spectrum are estimated.
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1. Introduction

The long-range power law correlations of many physiological,
physical signals and meteorological variables have been a well
known phenomenon [1–5]. Such a characterization has led to data
classification [6] and also to persistence in the data [1–5]. The ex-
istence of this power law scaling in the statistics used to describe
the patterns of temporally fluctuating systems indicates the pres-
ence of a fractal behavior. Meteorological variables, as indicators of
fluctuations in general atmospheric circulation and climate system,
show the fractal phenomenon by taking the self-similar structure
over a wide range of time scales.

Quantitatively, the long-range correlations indicate that meteo-
rological variables of very distant time interval are correlated with
each other, which can be captured by the auto-correlation function
(ACF) or equivalently, the power spectrum [7,8]. The power spec-
trum S( f ) exhibits a power-law decay of the form S( f ) ∼ 1/ f β ,
while the ACF C(s) ∼ s−γ decays slowly to zero. Such features
are characteristic of statistically self similar processes with well
defined power-law correlations. Hurst exponents are also used to
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quantify long-term correlations in plasma turbulence [9], finance
[10], and network traffic [11].

But there still exist some limitations of traditional techniques
such as spectral analysis and Hurst estimators, since meteorolog-
ical variable is governed by a variety of physical processes and
exhibits fluctuations at various spatial and temporal scales, time
series are susceptible to non-stationary effects, so we explore an
alternate method known as Detrended Fluctuation Analysis (DFA)
to qualify the scaling exponents [6]. Recently, the DFA method has
been successfully applied to study scaling properties of meteoro-
logical data such as temperature [12], relative humidity [13,14],
high frequency sampled wind speed [15,16], and cloud breaking
[17].

Scaling exponent approaches mentioned above can be merely
used to estimate a single scaling exponent from a time series.
However, these techniques are insufficient to fully characterize a
complex process which may be governed by more than one scaling
exponent. Therefore, aforementioned methods are appropriate only
for the estimation of mono-fractal signals which characterized by
a single scaling exponent but cannot be used to capture the char-
acteristics of multi-fractal signals characterized by more than one
exponent completely [18].

To further characterize the daily wind speed record, we extend
the study by using a fairly robust and powerful method called
Multi-Fractal Detrended Fluctuation Analysis (MF-DFA) [19]. This
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method provides a systematic means to identify and more impor-
tantly quantify the multiple scaling exponents in the data [19], and
it has been applied to study multi-fractal properties of many fields
[20–23]. Some early studies also extract multi-fractal properties of
high frequency sampled wind speed by using MF-DFA [15,16,24].

We study the multi-fractal properties of daily wind speed
records from four representative stations over China during 1951–
2000, the scaling exponents of the data are estimated under the
assumption of a binomial multiplicative cascade model. This Let-
ter is organized as follows. In Section 2, we briefly describe the
method MF-DFA and the wind speed data used in this Letter. In
Section 3, the results of MF-DFA and the calculation of the multi-
fractal spectrum are provided. And the conclusions are summa-
rized and discussed in Section 4.

2. Methodology and data

2.1. Methodology outline

In this Letter, we consider a fluctuating time series xi (i =
1, . . . , N) of daily average wind speed with equidistant time i�t ,
and the seasonal cycle is removed.

In the MF-DFA procedure [19], we build the profile time se-
ries by integrating the anomaly of wind speed series with removed
seasonal cycle firstly,

Y (i) =
i∑

k=1

(xi − x̄). (1)

This profile time series preserves variability characteristics of the
origin time series [19] but degrades the noise level by removing
non-stationary effects.

In order to perform the fluctuation analysis, profile series is di-
vided into two non-overlapping Ns = N/s segments of equal length
s for data integrity since N is not always an integer multiple of s
[25]. Then in every segment ν , kth order polynomial is applied to
fit Pk

ν to eliminate the local trend, the order of the polynomial
fixes the order of the DFA (k = i, DFA(i)). In the end, we get the
detrended time series

Ys(i) = Y (i) − P v
k , (2)

and corresponding square fluctuation F 2
s (ν, s), which defined as

the variance of Ys(i), is calculated in each segment

F 2
s (v) = 〈

Y 2
s (i)

〉 = 1

s

s∑
i=1

Y 2
s

[
(v − 1) + i

]
. (3)

Finally, the root-mean-square deviation gives the DFA fluctua-
tion function by averaging over all segments

F (s) =
[

1

2Ns

2Ns∑
k=1

F 2
s (k)q/2

]1/q

. (4)

For long-range power-law correlated data, Fq(s) increases
asymptotically with s and follows the power-law: Fq(s) ∼ sh(q) ,
where the exponent h(q) describes the scaling behavior of the
q-th order fluctuation function. This scaling exponent displays self-
similar fractal behavior over a broad range of time scales. For
positive values of q, h(q) describes the scaling behavior of seg-
ments with large fluctuations while for negative values of q, h(q)

describes the scaling behavior of segments with small fluctuations
[19]. For stationary time series, the exponent h(2) is identical to
the well-defined Hurst exponent. Thus we call the exponent h(q)

the generalized Hurst exponent [19]. For mono-fractal time series

Table 1
Detailed information of four selected stations.

Station
(No.)

Longitude
(E)

Latitude
(N)

Height
(m)

Series length
(days)

50915 Dongwuzhumuqinqi 116.58 45.31 838.9 1955.11.1–2005.12.31
51156 Hebukesaier 85.43 46.47 1291.6 1953.7.1–2005.12.31
56739 Tengchong 98.30 25.01 1654.6 1951.1.1–2005.12.31
59632 Qinzhou 108.37 21.57 4.5 1952.10.1–2005.12.31

characterized by a single exponent over all time scales, h(q) is in-
dependent of q, whereas for multi-fractal time series, h(q) varies
with q. This dependence is considered to be a characteristic of
multi-fractal process [19].

Traditional way to characterize a multi-fractal time series is to
calculate the multi-fractal spectrum f (α) [7]. This singularity spec-
trum can be related to h(q) via a Legendre transform [7,19]

α = h(q) + q
dh(q)

dq
(5)

and

f (α) = q
(
α − h(q)

) + 1, (6)

where α is the singularity strength or Holder exponent which
characterizes the singularities (cusps, ridges, chirps, spikes) in a
process X(t) at time t [26]. The multi-fractal spectrum f (α) de-
notes the singularity content of the process, i.e. the dimension of
the subset of the series that is characterized by α.

2.2. Data sets

The records used in this Letter were obtained from a high-
quality daily surface climatic data set, processed by Chinese Na-
tional Meteorological Information Center (NMIC), of 194 Chinese
meteorological stations taking part in international exchange. This
data set has been used in many studies to analysis climate change
over China in recent years [27,28]. We selected four representative
weather stations to study power-law scaling properties for daily
wind speed records. The detailed information about the four sta-
tions is provided in Table 1. Since we don’t have enough data of
wind direction in the same period, we didn’t involve wind direc-
tion in this study.

3. Results

A number of studies in recent years reveal that surface wind
speed records show self-similarity properties or, more generally,
fractal behavior manifested in a power-law scaling analysis. In [29]
and [30], the strength and direction of the daily wind records over
more than 100 years are considered as a two-dimensional random
walk via numerical simulations and numerical analysis, they show
verification of persistence law governing wind speed records with
an exponent of 1 over short time scales. By application of MF-
DFA to eleven surface wind speed series over a span of 24 hours,
Govindan and Kantz [15] studied the correlations in wind speed
data with a fluctuation exponent of α ∼ 1.1 along with a broad
multi-fractal spectrum. The other examples given by several stud-
ies focus on wind speed data over North Dakota of America. In [24]
and [31], a group of weather stations’ records also admitted sim-
ilar broad multi-fractal spectrum over a regional area, under the
assumption of a binomial multiplicative cascade model.

Since high frequency sampled records are complicated by small
scale effects resulted from topography [32], they usually fail to
capture memory effect of large scale atmospheric circulation. Do
long period daily wind speed variations show different scaling
characteristics? To answer this question, by considering daily wind
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Fig. 1. Annual cycle of four representative weather stations used in this study.

speed records with relatively long time periods about fifty years,
we extend analysis of long-range correlations up to time scale of
several thousand of days.

Furthermore, to study local or some regional measurements can
estimate temporal correlations only, but fails to reveal temporal-
spatial diversities of scaling properties. A direct motivation for
the present work is to seek the fractal phenomenon for daily
wind speed over a broad geographic distributions. Our study in-
volves measurements at four selected locations representing the
most typical climate characteristics over China, which include
mid-latitude frontal cyclone, disturbance in the westerlies, low-
latitude plateau detouring flow and South China Sea monsoon.
Dongwuzhumuqinqi is a city located in mid-latitude and North-
east China where the climate character is cold, with strong wind
in wintertime and springtime; and the Mongolian high pressure
is an important influence factor. The strong wind characteristics in
spring and fall exist in Hebukesaier where belongs to the continen-
tal dry climate belt. The characteristics of climate of Tengchong in
low latitude with plateau area exhibiting little change in a whole
year, and monitored wind speed is in good agreement with this
pattern. The city of Qinzhou has a sub-tropical monsoonal climate
with long summers and warm winters, plentiful rainfall, and fre-
quent rainstorms and typhoons in summer and autumn.

The seasonal cycle of daily wind speed for four selected stations
are shown in Fig. 1, which appears as background climatic mode
of four selected stations.

The log–log plots of the fluctuation function Fq(s) versus s for
the daily mean wind speed records at four weather stations are
shown in Fig. 2, by using fourth order polynomial detrending (MF-
DFA4) to eliminate cubic trends in the origin data. For stations
Qinzhou and Hebukesaier, the slopes h(q) decrease as the mo-

ment is increased from negative to positive values, the curve shifts
steeper and steeper vertically for clarity which indicates the multi-
fractal behavior in wind speed records. But the curves’ group not
takes similar shape in four different sites, for stations Dongwuzhu-
muqinqi and Tengchong the slope of the curve changes little from
the top to the bottom.

Quantitatively, the scaling exponent h(q) can be obtained
by analyzing log–log plots of Fq(s) versus s for each q. Time
scale in the range [100–1000 days] are selected for its consis-
tency with a given q. The generalized Hurst exponents h(q) es-
timated via the MF-DFA4 procedure with varying moments (q =
−6,−5,−4,−3,−2,−1,1,2,3,4,5,6) are shown in Fig. 3. Daily
wind speed time series of stations Qinzhou and Hebukesaier show
multi-fractal behavior as indicated by the strong q dependence of
the generalized Hurst exponents. While the value of h(q) seems
to be constant for all q in stations Tengchong and Dongwuzhu-
muqinqi, possibly indicating the phenomena of the mono-fractals,
and average scaling exponent of Tengchong is higher than that of
station Dongwuzhumuqinqi.

Generally, the observed multi-fractal scaling behavior is due to
a fatness of the probability density function (PDF) of the time se-
ries or different long-range correlations in small and large scale
fluctuations. Randomized shuffled surrogates are applied to origin
time series, by comparing MF-DFA4 results of origin data to shuf-
fled series, we can distinguish multi-fractality due to long-range
correlations from multi-fractality due to a broad probability den-
sity function. Since all long-range correlations are destroyed by the
shuffling procedure, if the multi-fractality belongs only to the long-
range correlation, we should find hshuf(q) = 0.5. If both types of
multi-fractality are present, the shuffled series will show weaker
multi-fractality than the original series. As shown in Fig. 4, it is
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Fig. 2. Log–log plots of the MF-DFA4 curves of daily wind speed for (a) Dongwuzhumuqinqi, (b) Hebukesaier, (c) Tengchong and (d) Qinzhou. From the top to the bottom
curves correspond to different q (from q = −6 to q = 6) and are shifted vertically for clarity.

Fig. 3. (a) h(q) versus q plots for Dongwuzhumuqinqi. Solid squares: estimated from MF-DFA4 results in Fig. 2(a); open circles: obtained by fits of the two-parameter binomial
model. The analog to (a) but for Hebukesaier (b), Tengchong (c) and Qinzhou (d).



Author's personal copy

4138 T. Feng et al. / Physics Letters A 373 (2009) 4134–4141

Fig. 4. Log–log plots of the MF-DFA4 curves of daily wind speed for the shuffled data of Dongwuzhumuqinqi (a), Hebukesaier (b), Tengchong (c) and Qinzhou (d).

obvious that the multi-fractality of four selected stations is due to
long-range correlations, since hshuf(q) = 0.5 characterizes a loss of
correlation.

The generalized Hurst exponent h(q) can be estimated accord-
ing to the formula

h(q) = 1

q
− ln(aq + bq)

q ln 2
, (7)

assuming a binomial multiplicative cascade model [7], which has
served as one of the standard paradigms to describe multi-fractal
scaling behavior (see Ref. [19] for details). Finally, the width of the
multi-fractal spectrum f (α) at f = 0 given by

�α = h(−∞) − h(∞) = ln(b) − ln(a)

ln 2
, (8)

is computed to characterize the different strength of multi-
fractality for four selected stations over China. Fig. 3 illustrates the
generalized Hurst exponents of the daily mean wind speed and
nonlinear least-squares fits for these stations. We find that for all
of these stations the generalized binomial multiplicative cascade
model fits the h(q) curves very well.

Using the values of a and b obtained from Eqs. (5), (6), (7),
the multi-fractal spectrum can be estimated from the generalized
binomial multiplicative cascade model. Four stations’ generalized
Hurst exponents h(q) and the width of the multi-fractal spectrum
obtained from this model are shown in Fig. 5. The width �α of
the multi-fractal spectrum f (α) is correspond to the vertical width
of calculated h(q) from Eq. (7). The figure shows that stations
Hebukesaier and Qinzhou are characterized with strong multi-
fractal behavior, while stations Dongwuzhumuqinqi and Tengchong
exhibit weakly multi-fractal fluctuations. Specific values of a, b and
the width of the multi-fractal spectrum �α are shown in Table 2.

Table 2
Specific values of a, b and the width of the multi-fractal spectrum �α.

Station (No.) a b �α

50915 Dongwuzhumuqinqi 0.643 0.686 0.093
51156 Hebukesaier 0.594 0.739 0.315
56739 Tengchong 0.572 0.608 0.088
59632 Qinzhou 0.584 0.765 0.389

Since the multi-fractal spectrum f (α) denotes the singularity
content of the process, the difference of width of f (α) shown in
Fig. 5 indicates that the strength of the multi-fractal behavior of
daily mean wind speed appears not universal, but has great rele-
vance to the singularity characteristics for the different areas. Time
series of anomaly daily wind speed records of four representa-
tive stations over three years are shown in Fig. 6, we can find
that the fluctuations of Qinzhou’s record and Hebukesaier’s record
show more furious behavior than that of Dongwuzhumuqinqi’s
record and Tengchong’s record. This difference reflects the differ-
ent atmospheric circulation patterns and processes controlling the
area around selected stations. For example, station Hebukesaier is
located in the Northwest region of China, where the activity of
cold wave cyclone is frequent in winter, while station Qinzhou
is under control of irregular frequent tropical cyclones (Typhoon)
in summer. Both climate modes accompanied with abrupt strong
wind show strongly asymmetry and singularity attribute to high
frequency of extreme cyclone event. Since both Hebukesaier and
Qinzhou exhibit intense multifractality which is due to a variety of
long-range correlations for small and large scale fluctuations. We
definitely approve of the key role of extreme wind event in in-
tense multifractality, which contributes to the different statistical
properties between large scale and small scale fluctuations, and
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Fig. 5. Generalized Hurst exponent h(q), as a function of q for the daily wind speed data, obtained by fits of the two-parameters binomial model. For station Dongwuzhu-
muqinqi (a), �α = 0.093; for station Hebukesaier (b), �α = 0.315; for station Tengchong (c), �α = 0.088; for station Qinzhou (d), �α = 0.389.

Fig. 6. Time series of anomaly daily mean wind speed record for the station Dongwuzhumuqinqi (a), Hebukesaier (b), Tengchong (c) and Qinzhou (d), as derived from the
same period over three years.
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Fig. 7. The relationship between skewness, kurtosis and detrend time window: (a) skewness of Hebukesaier; (b) kurtosis of Hebukesaier; (c) skewness of Tengchong; (d) kur-
tosis of Tengchong.

finally leds to the distinct power-law scaling for small and large
scale fluctuations. To confirm this idea, we perform an analysis
of skewness and kurtosis of detrended time series over segments
from small scale to large scale.

Statistically, skewness and kurtosis are measurements of the
nonlinearity. The moment coefficient of skewness and kurtosis are
defined as the normalized third and fourth statistical moment,

skewness = m3

m3/2
2

, (9)

kurtosis = m4

m2
2

− 3 (10)

where mk is the kth moment,

mk =
N∑

i=1

(
(xi − X̄)

N

)k

(11)

and where xi is the ith observation, X̄ the mean, and N the num-
ber of observations.

Fig. 7 shows results from stations Hebukesaier and Tengchong.
The two stations present definitely different behaviors on the scale
from 100 days to 1000 days. For station Hebukesaier which repre-
sents intense multifractality, skewness and kurtosis show a clearly
change with different time windows. But for station Tengchong
which represents monofractality, skewness and kurtosis show co-
herent value. Stations Dongwuzhumuqinqi and Qinzhou also show
very similar results, but figures are not posted here. Such results

agree with that extreme wind events lead to strongly asymmetry
in wind speed records, and then contribute to the different statis-
tical properties between large scale and small scale fluctuations,
and finally lead to the distinct power-law scaling for small and
large scale fluctuations.

Additionally, if we apply multi-fractal detrended fluctuation
analysis (MF-DFA) to eleven equal-length subseries where annual
cycle has been removed and we choose a subseries to calculate
the width of the multi-fractal spectrum by MF-DFA, then move
subseries gradually without changing the length of subseries, and
repeat this operation until the end of the original series, we will
reach almost the same results. This indicates that the stationar-
ity of the wind dynamics during the considered period for both
records in stations Dongwuzhumuqinqi and Hebukesaier play weak
impact on the conclusion given in the study.

4. Conclusion and discussion

In this study, we analyzed the power-law scaling behavior of
the daily mean wind speed records from four selected weather sta-
tions using multi-fractal detrended fluctuation analysis (MF-DFA)
method, and different multi-fractal behaviors have been identified.
We indeed found that the presence of multi-fractal behavior of
daily wind speed records, but the strength of the multi-fractal be-
havior exhibits non-universal law over China. Station Hebukesaier
located in Northwest of China and station Qinzhou in coastal ar-
eas of southern China, records for these two stations show very
strong multi-fractal behavior. While station Tengchong located in

fuzt
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Southwest of China and station Dongwuzhumuqinqi in Northeast
of China records for these two stations exhibit weak multi-fractal
behavior. This difference may be due to some external forces.

And we found that the type of multi-fractal behavior in daily
wind speed records over China exhibits consistence with a gener-
alized binomial multiplicative cascade model [20]. The width �α
of the multi-fractal spectrum f (α) can be estimated from this
modified model, and difference of multi-fractal spectrum width
corresponds to singularity characteristics of representative stations
over very wide geographical distribution. This difference reflects
the different atmospheric circulation patterns and processes con-
trolling the area around representative stations. But the origin of
this diversity in fractal behavior and related atmospheric mecha-
nism are still unknown, we will discuss these problems further in
the future.
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