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Structures of Equatorial Envelope Rossby Wave Under a Generalized External Forcing∗
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Abstract The cubic nonlinear Schrödinger (NLS for short) equation with a generalized external heating source is
derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for
these equatorial envelope Rossby waves are obtained with the help of a new transformation, Jacobi elliptic functions,
and elliptic equation. It is shown that different types of resonant phase-locked diabatic heating play different roles in
structures of equatorial envelope Rossby wave.

PACS numbers: 03.65.Ge
Key words: NLS, periodic structure, diabatic heating, Jacobi elliptic function

1 Introduction
In the last decades, the theory of equatorial waves

has attracted much more attention on equatorial atmo-
spheric dynamics and nonlinear dynamics. It provides
a dynamical frame to analyze the slowly evolving large-
scale phenomena in low latitudes and underlining dynam-
ics. These theories of equatorial waves have been used
for various purposes, especially in explaining some fun-
damental features of tropical climate and global changes,
such as Walker circulation,[1] the low-frequency Madden–
Julian oscillation,[2] and ENSO.[3] Among the nonlinear
theories for equatorial waves, many are related to nonlin-
ear Rossby wave activity, for it can manifest some of the
prime events of geophysical fluid flows, and this activity
often leads to a large-scale localized coherent structure
that has remarkable permanence and stability. When the
zonal flow shear is taken to be nonuniform, one can de-
rive Rossby solitary waves and envelope Rossby solitary
waves. Benney,[4] Yamagata[5] and Zhao[6] investigated
envelope Rossby solitary waves in barotropic shear and
uniform or nonuniform flows, independently. However,
none of them considered the effect of external sources,
especially the influence of diabatic heating from oceans.
In our last paper,[7] we applied the method of multi-scale
expansion to derive the NLS equation with an external
heating source satisfied by the large-amplitude equatorial
Rossby waves. It reads

i
∂A

∂T
+ α

∂2A

∂X2
+ δ|A|2A = ηQ11(X,T ) (1)

with the following coordinate transformation defined by
Jeffrey[8]

T = T2 , X =
1
ε
(X2 − cgT2) = X1 − cgT1 , (2)

where Q11(X,T ) is the slowly varying external heating
source, η denotes its strength, and ε is a small parameter.

In Ref. [7], we just considered two cases of diabatic
heating. The first one is

Q11(X,T ) = 0 (3)

and then equation (1) reduces to the canonical NLS equa-
tion

i
∂A

∂T
+ α

∂2A

∂X2
+ δ|A|2A = 0 . (4)

The second case is that the external heating source is an
external phase-locked travelling wave source, i.e.

Q11(X,T ) = e i(kX−ωT ) , (5)

then equation (1) reduces to

i
∂A

∂T
+ α

∂2A

∂X2
+ δ|A|2A = η e i(kX−ωT ) . (6)

And there the basic structures of these two NLS equa-
tions without and with phase-locked source are obtained
by using knowledge of Jacobi elliptic functions and elliptic
equation. It is shown that phase-locked diabatic heating
plays an important role in periodic structures of rational
form.

If we suppose that equation (1) takes solution of the
following form

A(X,T ) = φ(ξ) exp[i(kX − ωT )] , ξ = s(X − CgT ) , (7)

and the external heating is chosen as

Q11(X,T ) = ψ(ξ) e i[kX−ωT ] , (8)

then equation (1) is rewritten as

d2φ

dξ2
=

γ

αs2
φ− δ

αs2
φ3 +

η

αs2
ψ (9)

with
Cg = 2αk , −γ = ω − αk2 . (10)
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The two cases of external heating considered in Ref. [7]
are

ψ(ξ) = 0 , (11)

and
ψ(ξ) = 1 . (12)

There are still more types of ψ(ξ), in Ref. [9] we con-
sidered the quadratic external heating, i.e.

ψ(ξ) = φ2 , (13)

which can be taken as a resonant forcing. There more new
type structures, which are different from those obtained
in Ref. [7], were derived. So we can say that different ex-
ternal forcing will lead to different structures of equatorial
envelope Rossby waves.

In this paper, we will introduce a generalized external
heating to further discuss the influence of different exter-
nal heating on the structures of the equatorial envelope
Rossby wave.

2 Structures to NLS Equation with a Gener-
alized External Heating Source
The generalized external forcing is taken as a finite ex-

pansion of φ and the highest degree of φ is no more than
the degree in Eq. (9), i.e.

ψ(ξ) = d0 + d1φ+ d2φ
2 + d3φ

3 , (14)

then equation (9) is rewritten as

d2φ

dξ2
= b0 + b1φ+ b2φ

2 + b3φ
3 (15)

with

b0 =
ηd0

αs2
, b1 =

γ + ηd1

αs2
,

b2 =
ηd2

αs2
, b3 =

ηd3 − δ

αs2
. (16)

Obviously, d0 = d1 = d2 = d3 = 0 and d1 = d2 =
d3 = 0, d0 6= 0 are the two cases we considered in Ref. [7],
while d0 = d1 = d3 = 0, d2 6= 0 is the case we considered
in Ref. [9]. Actually, d2 = d3 = 0, d0 6= 0, d1 6= 0, and
d0 = d2 = d3 = 0, d1 6= 0 are similar to the two cases we
considered in Ref. [7], while d0 = d3 = 0, d1 6= 0, d2 6= 0
and d0 = 0, d1 6= 0, d2 6= 0, d3 6= 0 are similar to the case
we considered in Ref. [9]. So in the following we consider
the case with d0 6= 0.

Equation (15) is just a kind of elliptic equation, which
cannot be easily solved directly. In order to solve equation
of this form, certain transformation must be introduced,
just like Legendre’s transformation. Here the transforma-
tion we introduce is of the following form,

φ(ξ) =
1

c0 + c1ϕ2
, c1 6= 0 , (17)

then

φ′ = − 2c1ϕϕ′

(c0 + c1ϕ2)2
, (18)

φ′′ =
8c21ϕ

2ϕ′2 − 2c1(c0 + c1ϕ
2)(ϕϕ′′ + ϕ′2)

(c0 + c1ϕ2)3
. (19)

In order to reach reasonable results, ϕ must satisfy

ϕ′2 = a+ bϕ2 + cϕ4 , (20)

i.e.
ϕ′′ = bϕ+ 2cϕ3 . (21)

Combining Eqs. (17), (20), and (21) with Eq. (15)
yields

− 2ac0c1 = b0c
3
0 + b1c

2
0 + b2c0 + b3 ,

6ac21 − 4bc0c1 = 3b0c20c1 + 2b1c0c1 + b2c1 ,

4bc21 − 6cc0c1 = 3b0c0c21 + b1c
2
1 ,

2cc21 = b0c
3
1 , (22)

from which we have

c0 =
4b− b1

6b0
, c1 =

2c
6b0

(23)

with constraints

144ac = (4b− b1)2 + 4(2b+ b1)(4b− b1) + 12b0b2 , (24)

144ac(4b− b1) + (4b− b1)3 + 6b1(4b− b1)2

+ 36b0b2(4b− b1) + 216b20b3 = 0 . (25)

Equation (20) or equation (21) has many more kinds
of solutions, we will show some next expressed in terms of
different Jacobi elliptic functions.[10]

(i) If a = 1, b = −(1 + m2), and c = m2, then the
solution is

ϕ1 = sn(ξ,m) , (26)

φ1 =
6b0

bm + 12m2sn2(ξ,m)
, bm = −4(1 +m2)− b1 (27)

with the constraints

3b2m + 24(1 +m2)bm − 12b0b2 + 144m2 = 0 , (28)

b3m + 6b1b2m + (36b0b2 + 144m2)bm + 216b20b3 = 0 , (29)

where 0 ≤ m ≤ 1, and is called modulus of Jacobi el-
liptic functions,[10−14] and sn(ξ,m) is Jacobi elliptic sine
function.[10−14]

(ii) If a = 1 −m2, b = 2m2 − 1, and c = −m2, then
the solution is

ϕ2 = cn(ξ,m) , (30)

φ2 =
6b0

bm − 12m2cn2(ξ,m)
, bm = 4(2m2 − 1)− b1 (31)

with the constraints

144m2(1−m2)− 3b2m + 24(2m2− 1)bm + 12b0b2 = 0 , (32)

b3m+6b1b2m+[36b0b2−144m2(1−m2)]bm+216b20b3 = 0, (33)

where cn(ξ,m) is Jacobi elliptic cosine function.[10−14]

(iii) If a = 1 −m2, b = 2 −m2, and c = −1, then the
solution is

ϕ3 = dn(ξ,m) , (34)
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φ3 =
6b0

bm − 12 dn2(ξ,m)
, bm = 4(2−m2)− b1 (35)

with the constraints

144(1−m2)− 3b2m + 24(2−m2)bm + 12b0b2 = 0 , (36)

b3m +6b1b2m + [36b0b2− 144(1−m2)]bm +216b20b3 =0 , (37)

where dn(ξ,m) is Jacobi elliptic function of the third
kind.[10−14]

(iv) If a = m2, b = −(1 + m2), and c = 1, then the
solution is

ϕ4 = ns(ξ,m) ≡ 1
sn(ξ,m)

, (38)

φ4 =
6b0

bm + 12ns2(ξ,m)
, bm = −4(1 +m2)− b1 , (39)

with the constraints

144m2 = −3b2m − 24(1 +m2)bm + 12b0b2 , (40)

b3m + 6b1b2m + (36b0b2 + 144m2)bm + 216b20b3 = 0 . (41)

(v) If a = −m2, b = 2m2 − 1, and c = 1 −m2, then
the solution is

ϕ5 = nc(ξ,m) ≡ 1
cn(ξ,m)

, (42)

φ5 =
6b0

bm + 12(1−m2)nc2(ξ,m)
,

bm = 4(2m2 − 1)− b1 (43)

with the constraints

144m2(1−m2)− 3b2m + 24(2m2− 1)bm + 12b0b2 = 0 , (44)

b3m+6b1b2m+[36b0b2−144m2(1−m2)]bm+216b20b3 = 0 .(45)

(vi) If a = −1, b = 2 −m2, and c = m2 − 1, then the
solution is

ϕ6 = nd(ξ,m) ≡ 1
dn(ξ,m)

, (46)

φ6 =
6b0

bm + 12(m2 − 1)nd2(ξ,m)
,

bm = 4(2−m2)− b1 (47)

with the constraints

144(m2 − 1)− 3b2m + 24(2−m2)bm + 12b0b2 = 0 , (48)

b3m +6b1b2m +[36b0b2−144(m2−1)]bm +216b20b3 = 0 .(49)

(vii) If a = 1, b = 2 −m2, and c = 1 −m2, then the
solution is

ϕ7 = sc(ξ,m) ≡ sn(ξ,m)
cn(ξ,m)

, (50)

φ7 =
6b0

bm + 12(1−m2)sc2(ξ,m)
, bm = 4(2−m2)−b1(51)

with the constraints

144(1−m2) = −3b2m + 24(2−m2)bm + 12b0b2 , (52)

b3m +6b1b2m +[36b0b2 +144(1−m2)]bm +216b20b3 = 0 .(53)

(viii) If a = 1, b = 2m2 − 1, and c = (m2 − 1)m2, then
the solution is

ϕ8 = sd(ξ,m) ≡ sn(ξ,m)
dn(ξ,m)

, (54)

φ8 =
6b0

bm + 12(m2 − 1)m2sd2(ξ,m)
,

bm = 4(2m2 − 1)− b1 (55)

with the constraints

144(m2 − 1)m2 = −3b2m + 24(2m2 − 1)bm + 12b0b2 , (56)

b3m+6b1b2m+[36b0b2+144(m2− 1)m2]bm+216b20b3 = 0.(57)

(ix) If a = 1 −m2, b = 2 −m2, and c = 1, then the
solution is

ϕ9 = cs(ξ,m) ≡ cn(ξ,m)
sn(ξ,m)

, (58)

φ9 =
6b0

bm + 12cs2(ξ,m)
, bm = 4(2−m2)− b1 (59)

with the constraints

144(1−m2) = −3b2m + 24(2−m2)bm + 12b0b2 , (60)

b3m+6b1b2m+[36b0b2+144(1−m2)]bm+216b20b3 = 0 .(61)

(x) If a = 1, b = −(1 + m2), and c = m2, then the
solution is

ϕ10 = cd(ξ,m) ≡ cn(ξ,m)
dn(ξ,m)

, (62)

φ10 =
6b0

bm + 12m2cd2(ξ,m)
, bm = −4(1 +m2)− b1 (63)

with the constraints

144m2 = −3b2m − 24(1 +m2)bm + 12b0b2 , (64)

b3m + 6b1b2m + (36b0b2 + 144m2)bm + 216b20b3 = 0 . (65)

(xi) If a = m2(m2 − 1), b = 2m2 − 1, and c = 1, then
the solution is

ϕ11 = ds(ξ,m) ≡ dn(ξ,m)
sn(ξ,m)

, (66)

φ11 =
6b0

bm + 12ds2(ξ,m)
, bm = 4(2m2 − 1)− b1 (67)

with the constraints

144m2(m2 − 1) = −3b2m + 24(2m2 − 1)bm + 12b0b2 , (68)

b3m+6b1b2m+[36b0b2 +144m2(m2−1)]bm+216b20b3 = 0.(69)

(xii) If a = m2, b = −(1 + m2), and c = 1, then the
solution is

ϕ12 = dc(ξ,m) ≡ dn(ξ,m)
cn(ξ,m)

, (70)

φ12 =
6b0

bm + 12dc2(ξ,m)
, bm = −4(1 +m2)− b1 (71)

with the constraints

144m2 = −3b2m − 24(1 +m2)bm + 12b0b2 , (72)

b3m + 6b1b2m + (36b0b2 + 144m2)bm + 216b20b3 = 0 . (73)
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There still exist many other kinds of solutions in terms
of Jacobi elliptic functions,[15−17] which we do not show
here. It is known that when m → 1, sn(ξ,m) → tanh ξ,
cn(ξ,m) → sech ξ, dn(ξ,m) → sech ξ and when m → 0,
sn(ξ,m) → sin ξ, cn(ξ,m) → cos ξ, so we also can derive
solutions expressed in terms of hyperbolic functions and
trigonometric functions.

3 Conclusion and Discussion
A simple shallow-water model with influence of dia-

batic heating on a β-plane is applied to investigate the
nonlinear equatorial Rossby waves in a shear flow. By the
asymptotic method of multiple scales, the cubic nonlin-
ear Schrödinger equation with an external heating source
is derived for large amplitude equatorial envelope Rossby
wave in a shear flow.[7] And then various periodic struc-
tures for these equatorial envelope Rossby waves are ob-
tained with the help of Jacobi elliptic functions and ellip-
tic equation. It is shown that the results are different for
equatorial envelope Rossby waves without a source and
with a phase-locked diabatic heating source. They have
different structures due to the phase-locked diabatic heat-
ing source, and the phase-locked diabatic heating source
plays an important role in forming periodic structures of
rational form. Of course, these periodic structures con-

tain solitons, solitary waves, and singular structures, and
they also have their different practical applications in ex-
plaining atmospheric events. Moreover, in Ref. [9], we
considered another special case of external heating and
found some new exact results.

Here we can see the external forcing plays an impor-
tant role in two aspects. The first one is the basic state
d0 or b0, which is in proportion to the external strength.
This results in different structures for equatorial envelope
Rossby wave, obviously the strength of equatorial enve-
lope Rossby wave depend on d0 or b0. And the second
one is the modulation of b1, b2, and b3, which also leads to
different structures for equatorial envelope Rossby wave.
Moreover, the external heating results in structures for
equatorial envelope Rossby wave of rational form, for ex-
ample, from φ1 to φ12. Different from the results obtained
in Ref. [7], here the solutions of rational form depends on
the constraints composed of b0, b1, b2, b3. So we can say
that different types of external heating will lead to differ-
ent structures for equatorial envelope Rossby wave.

It needs more further research for more various heating
sources, for this effort provides a better understanding of
function from external heating sources and their impacts
on the equatorial Rossby waves and climate changes.
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