
Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 604–606
c© International Academic Publishers Vol. 43, No. 4, April 15, 2005

Vortex of Fluid Field as Viewed from Curvature∗
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Abstract The vortex is a common phenomenon in fluid field. In this paper, vortex can be represented by curvature
c, which varies with arc length s. The variance of point (x, y) with arc length in stream line satisfies a 2-order variable-
coefficient linear ordinary differential equation. The type vortex can be analyzed qualitatively by this ordinary differential
equation.
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1 Introduction
The simple method analyzing complex fluid field is to

divide fluid field into different geometry topological types.
Topological fluid dynamics can be applied to fluid me-
chanics and magnetic fluid mechanics.[1,2] Geometrically,
the center point of 2-D fluid field denotes the circular eddy
fluid field, the focus point denotes spiral fluid field,[3] the
saddle point denotes saddle fluid field, for example funnel
structure of tornado under storm cloud layer in (x, z)-
plane is a saddle fluid field,[4] the saddle-focus point in
3-D fluid field denotes updraft motion due to convergence
in atmospheric lower level and divergence in atmospheric
upper level.[5] This analysis methods reduce complex fluid
field structure to simple geometry-topological representa-
tion. In the book “A new kind of science”, the well-known
specialist of cellular automata S. Wolfram[6] proposed that
the simple curvature c(s) which varies with arc length s

can denote fairly complicated fluid field shapes. The cur-
vature c(s) can also denote the fold phenomena in nonlin-
ear science. In this paper, from common circular vortex,
spiral vortex, to Karman vortex street fluid field, we do
not compute the stream line by curvature c(s) but an-
alyze qualitatively ordinary differential equation which is
related to curvature c(s). The vortex type can be analyzed
from physical view.

2 Curvature and Common Vortex
Mathematically, the curvature c of a curve in a plane

is defined as derivative of tangent direction with respect
to arc length s

c ≡ dα

ds
, (1)

where α is the angle between the tangent of the curve and
x axis, while s is the arc length. Generally, if the curve is

counter-clockwise rotation, α increases with s, c > 0. If
the curve is clockwise rotation, α decreases with s, c < 0.

The reciprocal of curvature c is called curvature radius.
The variation of curvature implies the variance of crooked
degree for a curve. When the curve is much straight,
the curvature radius is much larger and the curvature is
smaller. The smaller the curvature radius, the larger the
curvature, the larger crooked degree for a curve. If curva-
ture c(x) of a curve y(x) is given, in order to determine
the curve y(x), it is necessary to seek a 2-order nonlinear
ordinary differential equation, y′′ − c(x)(1 + y′2)3/2 = 0.
It is very difficult. Similarly, if c(s) is given, the curve
x(s) and y(s) satisfy a similar ordinary differential equa-
tion. So, Wolfram draw out many complex curve with a
computer.

However, from the point of physical view, the curva-
ture in a plane can be taken as stream line, the structure
of vortex can be obtained from variation of curvature c(s).
Figure 1 shows three common vortex stream lines.

From Fig. 1 it is obvious that the variation of curvature
c with arc length s is very simple. In Fig. 1(a), the curva-
ture radius is a constant (for example, equal to 1), so the
curvature equates also to 1. The arrow in Fig. 1 denotes
the increase of arc length. In Fig. 1(b), curvature radius
decreases (or increases) with increase of arc length. For ex-
ample, the form of curvature is c(s) = s or c(s) = 1/s. In
Fig. 1(c), the variation of curvature jumps between clock-
wise rotation and counter clockwise rotation. That is,
the signs of curvature change at intervals. The transition
points between clockwise rotation and counter clockwise
rotation are turning points (I1, I2, . . . points in Fig. 1(c)).
Hence, c(s) = 0 and c′(s) 6= 0 in turning points. So the
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curvature c(s) of Fig. 1(c) takes oscillating form, such as
c(s) = sins, cos s, . . .

Fig. 1 Three typical curve shapes, (a) circular vortex,
(b) spiral vortex, and (c) Karman vortex street.

3 The Differential Equation of dx/ds and
dy/ds

As stated in the former section, if c(s) is given, it is
very difficult to seek the analytical form of the curve (or
stream line). We use the variation of point (x, y) with arc
length s in the stream line,[7]

p =
dx

ds
= cos α , q =

dy

ds
= sinα . (2)

Obviously, the first and second derivatives of Eq. (2)
with respect to arc length s yield

dp

ds
=

d2x

ds2
= sinα

dα

ds
= −c(s)q ,

dq

ds
=

d2y

ds2
= cos α

dα

ds
= c(s)p , (3)

d2p

ds2
= −c′(s)q − c(s)

dq

ds
=

c′(s)
c(s)

dp

ds
− c2(s)p ,

d2q

ds2
= c′(s)p− c(s)

dp

ds
=

c′(s)
c(s)

dq

ds
− c2(s)q . (4)

Equation (4) shows that p(s) and q(s) satisfy the fol-
lowing 2-order ordinary differential equation with variable
coefficients

d2z

ds2
+ a(s)

dz

ds
+ b(s)z = 0 , (5)

where

a(s) = −c′(s)
c(s)

, b(s) = c2(s) . (6)

The physical meaning of Eq. (5) is that the three
terms on the left-hand side denote acceleration, damp-
ing force, and restoring force,[8−11] respectively. a(s) and
b(s) in Eq. (6) denote damping coefficient and restoring
force coefficient. Though we do not find the representa-
tion of stream line x(s) and y(s), we can analyze Eq. (5)
qualitatively to determine the type of stream line from
geometry.[12]

4 Qualitative Analysis of Vortex Structure
For circular vortex in Fig. 1(a), curvature c(s) is 1,

from Eq. (6), we obtain a = 0 and b = 1, so equation (5)
reduces to

[z(s)]′′ + z(s) = 0 . (7)

Equation (7) is an oscillation equation without damp-
ing force and positive restoring force. The equilibrium
point (0, 0) in phase plane (dz/ds, d2z/ds2) is a center
point,[8] as point A shown in Fig. 1(a). Hence, the stream
line around point A is a circular vortex. That is to say,
a vortex, whose curvature is constant is a circular vortex
structure.

For the spiral vortex in Fig. 1(b), the curvature is

c(s) = s , and c(s) =
1
s

, (8)

respectively.
Hence a(s) and b(s) are

a(s) = −1
s
, b(s) = s2 ; a(s) =

1
s

, b(s) =
1
s2

, (9)

respectively.
Equation (8) shows that the curvature c(s) of point B1

and point B2 in Fig. 1(b) are very large, for point B1 there
is s → ∞, c(s) → ∞, and for point B2 there is s → 0,
c(s)→∞. And the relative ratio between damping force
and restoring force is

a2 − 4b =
1− 4s4

s2
when s→∞ ,

a2 − 4b = − 3
s2

when s→ 0 . (10)

According to qualitative theory of differential equa-
tion,[9] equation (10) shows that the equilibrium points B1

and B2 in Fig. 1(b) are of focus type. Hence the stream
line of curvature (8) takes spiral structure.

For Karman vortex street in Fig. 1(c), the curvature is

c(s) = sin s . (11)

At the points I1, I2, . . . of Fig. 1(c), s = 0, π, 2π, . . .,
so, c(s) = 0 and c′(s) = 1 6= 0. They are turning points.
In Eq. (6) a = 0 and b = 1. At this moment, equation
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(5) is an oscillating equation without damping force. The
equilibrium states are center point. So the stream line
around these points has a closed form such as circular
vortex. When these points are approached, the damping
coefficient jumps between positive and negative. Hence
the stream line of Fig. 1(c) jumps between counter clock-
wise and clockwise.

Fig. 2 (a) Another Karman vortex street; (b) The po-
sition of eddy center.

In Ref. [6], Wolfram draw another Karman vortex

street, where the eddy continuously decreases, as shown
in Fig. 2(a). The curvature of this eddy is

c(s) = s sin s . (12)

At this moment, the coefficients of Eq. (5) are

a(s) = −1
s
− cot s ; b(s) = s2 sin2 s . (13)

As stated above, the place where Karman vortex street
exists is a(s) = 0, that is the crossover point for function
1/s and function −cot s, as shown in Fig. 2(b).

From Fig. 2(b) it is obvious that the arc distance be-
tween two eddies decreases with the increase of arc length
s.

5 Conclusion
The vortex is a common phenomenon in fluid field. In

this paper, vortex is represented by curvature c, which
varies with arc length s. The variance of point (x, y)
with arc length in stream line satisfies a 2-order variable-
coefficient linear ordinary differential equation. This or-
dinary differential equation is applied to analyze quali-
tatively the type vortex, from common circular vortex,
spiral vortex to Karman vortex street etc. fluid field. We
do not compute the stream line from curvature c(s) but
analyze qualitatively ordinary differential equation, which
is related to curvature c(s) to derive the vortex type from
physical view.
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