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• No significant scaling range for original stationary records.
• Nonlinear correlation is obvious in increment records for both cases.
• Two scaling ranges in both magnitude and sign fluctuations exist with larger lag.
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a b s t r a c t

We study the scaling properties of multi-scale increment series from the stationary and
non-stationary vertical velocity records by the detrended fluctuation analysis (DFA) and
series decomposition methods, and show the impact of non-stationarity on the magnitude
and sign scaling properties. Firstly, we show it is difficult to define a significant scaling
range for stationary records themselves. Secondly, for increment series with lag one, the
nonlinear correlation found in magnitude fluctuation (i.e. volatility fluctuation) is obvious
for both cases. And over the smaller scale range, the linear correlation found usually in the
sign series is the same for both cases. However, over the larger scale range, the difference
is sharp and marked nonlinear correlation is also incorporated for the non-stationary sign
series. Thirdly, with the lags in increment increasing, there exist two scaling ranges in both
themagnitude and sign fluctuations. The nonlinear correlation in themagnitude series over
both small and large scale ranges decreases with the lags increasing. For the sign series,
the linear correlation is dominant over both small and large scale ranges for stationary
case; however, the nonlinear correlation can be found over the large scale ranges for non-
stationary case and will decrease with lags increasing. The nonlinear correlation found in
the sign series over large-scale range is resulted from the modulation of the large scale
structures found in the non-stationary data, which will incorporate parts of the magnitude
information into the sign series.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A broad class of physical and geophysical systems exhibits complex dynamics, which is associated with the presence of
many components interacting over a wide range of time or space scales. These often-competing interactions may generate
an output signal with fluctuations that appear ‘‘noisy’’ and ‘‘erratic’’ but reveal scale-invariant structure [1]. To address
this problem, one of the most commonly used methods, detrended fluctuation analysis (DFA) was developed to accurately
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quantify long-range correlations embedded in time series through their scaling exponents [2,3]. Long-range correlations are
usually characterized by scaling lawswhere the scaling exponents quantify the strength of these correlations [4]. It has been
successfully applied to diverse fields such as DNA sequences [5], heart rate dynamics [6], neuron spiking [7], human gait [8],
long-time weather records [9–11], geology [12], cloud structure [13], ethnology [14], economic time series [15], and solid
state physics [16].

Some previous studies [17–19] have investigated the correlation of wind velocity records collected within the
atmospheric boundary layer. Carefully inspecting the results given by these authors, it can be easily found that there is no
dominant scaling range from the original wind velocity records [17,18], so the fitted exponents over an insignificant scaling
range are with great uncertainty. Actually, we cannot find a significant scaling range for stationary vertical wind velocity
records. The significant scaling range exists in DFA results of the volatility series (i.e. magnitude series of one step ahead
velocity increment) of wind velocity series collected in the atmospheric boundary layer [19]. Govindan and Kantz reported
the volatility scaling results from volatility series and found that nonlinear correlation does not necessarily imply multi-
fractality. However, there still exist two problems unresolved. The first one is how much the results will be changed when
lags in the velocity increment increase, since the multi-scale lags have been often used in the structure function analysis of
turbulent wind velocity. The second one is how to quantify the effect resulted from the non-stationarity found in the wind
velocity series collected in the atmospheric boundary layer, especially its impact on the nonlinear correlation.

The motions within the atmospheric boundary layer are inherently non-stationary. Non-stationarity usually means the
average, standard deviation, and higher moments or the correlation functions are not invariant under time translation [20].
As an important aspect of complex variability, it can often be associatedwith different trends in the record or heterogeneous
segments (patches) with different local statistical properties [20]. Turbulence series collected in the atmospheric surface
layer over land may often be non-stationary. It has been found that a stationarity test shows that about 40% of the
turbulent heat fluxes at Summit, Greenland are classified as non-stationary [21]. Mahrt and Thomas examined the
relationship of turbulence to the non-stationary wind and stratification, and found that the turbulence is simultaneously
generated by different non-stationary mechanisms [22]. Using telegraph approximation [23,24]), we have found that non-
stationary records possess different cluster and intermittency properties from those of its stationary counterparts [25]. Other
techniques for detection of correlations like the autocorrelation function and the power spectrum are not suited for non-
stationary time series. The effects of non-stationarity cannot be quantified by the probability density function (PDF) and the
spectral analysis of the original series [25]. However, the PDF of the multi-scale wind velocity increments shows different
features for stationary and non-stationary series and the differences can be quantified by multi-scale entropy analysis [26].
Since one advantage of the DFA method is to avoid spurious detection of correlations caused by the non-stationarity in
the series, how to use DFA to quantify the effect that resulted from the non-stationarity found in the wind velocity series
collected in the atmospheric boundary layer, especially its impact on the nonlinear correlation, deserves further studies.

Firstly, we use the space time-indexmethod (STI) to classify different vertical velocity records as two kinds, stationary or
non-stationary. The STI is a graphical method, and can be effectively used to detect dynamical non-stationarity in time
series [27]. Detailed descriptions of the STI method can be found in Refs. [28,29] and are not repeated here. Secondly,
since the observable variables in the output of natural systems at each moment are the product of its magnitude and sign
[30,1,6,31–36], we focus on the sign andmagnitude series of the velocity increment with lag one and obtain the correlations
within significant scaling range for both stationary and non-stationary series. Thirdly, we confirm that different nonlinearity
correlations exist in stationary and non-stationary series using the phase randomized surrogate method (PRS, [37]). Lastly,
the magnitude and sign fluctuations of multi-scale increment from vertical velocity records are investigated to quantify the
correlation variation with lags increasing.

The rest of the paper is organized as follows. In Section 2, we will make a short introduction of the analysis methods
and the data sets used in this paper. Results for the magnitude and sign scaling from multi-scaled increment of stationary
and non-stationary turbulent velocity series are provided in Section 3. In Section 4, we make a brief discussion and some
conclusions are summarized.

2. Data and methodology

2.1. Data

In this paper, atmospheric boundary-layer turbulence records collected during the experiment in Huaihe River Basin
(HUBEX) between June 5 and June 22 in 1998 are used in the analysis. Huaihe River basin is situated between Yangtze
River and Yellow River with a total area of 270,000 km2. It represents the typical climate condition in the East Asia monsoon
region, and effects of human activity are relatively slight. The observation sitewas in the yard of the ShouxianMeteorological
Observatory in Anhui province, People’s Republic of China and is located on the western edge of a large rice field. The
yard was about 200 m long in the north–south direction. The measurement height was set as 4 m above ground, a three-
dimensional sonic anemometer (SAT-211/3 K, sample rate 20 Hz, sound path 0.15 m) was used to measure wind velocity
components and temperature, and each hour sampling will be taken as one record (detailed information can be found
in the Refs. [38,39]). And this data set has been applied to analyze the characteristics of turbulence in the atmospheric
boundary-layer, and nonlinear features have been derived [40,38,39,41]. Typical parts of records can be found in Fig. 1,
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Fig. 1. Segments of the normalized (subtracting the mean and divide by the standard deviation) original stationary and non-stationary vertical velocity
series, with normalized white noise for reference.
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Fig. 2. The velocity increment series, magnitude series and sign series for (a) stationary and (b) non-stationary vertical velocity series.

where stationary and non-stationary records show different features, especially there are dominant larger scale structures
in the non-stationary record, see Fig. 1(c).

For the chosen stationary and non-stationary series V ′

i in Fig. 1(b) and (c), we calculate the multi-scale increment series
∆V = V ′ (i + n) − V ′ (i) obtained from records of velocity fluctuations V ′ (i), where i indexes each velocity fluctuation and
n = 2h stands for multi-scale time lags with h = 0, 1, 5, 10. Then we decompose the increment series into a magnitude
series |∆V | and a sign series sign(∆V ): ∆V = sign (∆V ) ∗ |∆V |; for n = 1 the magnitude series is also called the volatility
series. For n = 20

= 1 the increment series ∆V , the magnitude series |∆V | and the sign series sign(∆V ) are shown in Fig. 2
for (a) stationary and (b) non-stationary respectively.

2.2. Methodology

2.2.1. Detrended fluctuation analysis method (DFA)
DFA involves the following steps: firstly, consider a fluctuating record xi (i = 1, 2, 3 . . .N). Calculate the random walk

profile by integrating the signal, Y (i) =
i

k=1 (xi − ⟨x⟩) , where ⟨x⟩ is the mean of xi. Secondly, divide the profile into Ns
non-overlapping boxes of equal length s, where Ns = [N/s]. The same procedure is repeated from the other end of the
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record since the length of the record is not always a multiple of s, and we get 2N s boxes altogether. In each box of length s,
the local trend was calculated by fitting the data using a polynomial pkv of order k. Thirdly, we detrend the integrated time
series Y (i), by subtracting the local trend pkv, where v = 1, 2, . . . , 2 Ns, Ys = Y (i) − pkv and calculate the variance function

F 2
s (v, s) = ⟨Y 2

s (i)⟩ =
1
s

s
i=1

Y 2
s [(v − 1) s + i] (1)

in each box. The root-mean-square fluctuation of this integrated and detrended time series F 2
s (v, s) is calculated by

F (s) =


1

2Ns

2Ns
v=1 F

2
s (v)

1/2
. For the case of long-term power-law correlations, F (s) will increase with the increase of

s, as a power law F (s) ∼ sα . For the type of uncorrelated data, the integrated value Y (i) corresponds to a random walk;
and therefore α = 0.5 [2]. The α greater than 0.5 and less than or equal to 1.0 indicates persistent long-term power-law
correlations such that a large (compared to the average) value of xi is more likely to be followed by large xi+1 and vice versa
[42]. In contrast, 0 < α < 0.5 indicates a different type of power-law correlation such that large and small values of the
time series are more likely to alternate. A special case of α = 1 corresponds to 1/f noise. For α > 1, correlations exist but
cease to be of a power-law form; α = 1.5 indicates Brown noise, the integration of white noise. Notice the relationship
between the DFA exponent α and the spectrum exponent is β = 2α − 1, and the connection DFA exponent α with the
autocorrelation function exponent γ is γ = 2 (1 − α) [9].

2.2.2. Phase-randomized surrogate method (PRS)
In order to confirm the nonlinearity in the wind velocity magnitude and sign series, we perform the phase-randomized

surrogate method (PRS) for the increment series [37]. After PRS, both the long-range power-law autocorrelations and the
long-range cross-correlation function vanish [43]. PRS involves the following steps: firstlyweperforma Fourier transformon
a velocity fluctuation increment time series, preserving the amplitudes of the Fourier transform but randomizing the Fourier
phases. Thenwe perform an inverse Fourier transform to create a surrogate series. This procedure eliminates nonlinearities,
preserving only the linear features (i.e., two-point correlations) of the original time series [1]. After PRS, we study the long-
term correlations in magnitude and sign series of the surrogated series by using DFA to calculate the scaling exponent
αPRS. Since phase-randomized surrogate destroys the nonlinear correlations, the scaling behavior will change after PRS if
nonlinearity exists in the considered magnitude or sign series. We define ∆α = α − αPRS as the change of scaling exponent
after PRS to quantify the strength of nonlinear intensity.

3. Results

3.1. Non-stationary characteristics and scaling exponents

First of all, we can see the obvious difference between the stationary and non-stationary turbulent vertical wind velocity
records from the observational series directly, see Fig. 1. There is more dominant large scale structures in the non-stationary
ones and these kinds of large scale eddies can also be found in their increment, magnitude and sign series as shown in Fig. 2.
The other descriptive difference between two groups is that there are more large fluctuations in the non-stationary wind
velocity increment, see Fig. 2(b).

Fig. 3 shows the scaling behavior of the stationary andnon-stationary verticalwind velocity records themselves in log–log
plot, with white noise (α = 0.5) for reference. The log–log plot for the stationary series is not linear but fitted by a parabola
function log F (s) ∼ −0.24(logs)2+2.14logs − 3.36. The slope α of the fluctuation functions changes gradually with
window size for the stationary series. There is no significant scaling range for the stationary series. For the non-stationary
series the scaling region is partitioned into two regions around s = sx. In the smaller range s < sx, the scaling exponent
is 1.45, and in the larger scaling range s > sx the scaling exponent is 0.89. These represent what is called ‘‘local scaling
exponents’’ [17]. Thus, the ‘‘crossover’’ from one scaling exponent (1.45) to the other (0.89) is seen to occur approximately
at a time scale s = sx ≈ 30 s. A crossover usually arises due to changes in the correlation properties of the signal at different
scales [44]. At short time scales (s < 30 s), the data exhibits behavior similar to Brown noise (α = 1.45), whereas for
longer time scales (s > 30 s) one observes persistent long-range correlations (α = 0.89). After shuffling the stationary and
non-stationary time series, all the scaling exponents α drop to 0.5, same as those of white noise.

3.2. Correlation analysis of magnitude and sign series

The comparative scaling behaviors of magnitude series (volatility series) are shown for stationary and non-stationary
vertical velocity series in Fig. 4(a). Contrary to scaling analysis of the velocity records themselves, there exists a wider
significant scaling range for both stationary and non-stationary cases. Previous studies have demonstrated that information
about nonlinear properties of flow dynamics can be quantified by long-range power-law correlation in magnitude of the
increments [1,31], so the different magnitude scaling exponents exhibit different nonlinear dynamics in the two kinds of
velocity time series. For the stationary, the scaling exponent is 0.77 within the whole range, while the scaling exponent
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Fig. 4. The DFA results for the stationary and non-stationary increment velocity traces as well as their phase randomized surrogate counterparts, (a) for
the magnitude series, (b) for the sign series.

changes from α1 = 0.70 to α2 = 0.93 as the time scale increases and the crossover happens at a time scale s = sx ≈ 75 s
for the non-stationary one. For both stationary and non-stationary cases, there are predominant nonlinear correlations. Our
results for stationary series are consistent with results from Govindan and Kantz, who have showed wind speed volatility is
long-range correlated with an exponent α = 0.7±0.04within a range of 2min to 1.5 h [19]. However, the crossover shown
in Fig. 4(a) for the non-stationary series is first discovered here. For convenience, we define α1 as the scaling exponent over
the small scaling range s < sx, and α2 as the scaling exponent over the larger scaling range s > sx, regardless of the value of
the crossover sx, see Table 1.

Fig. 4(b) shows the different scaling behaviors of sign series for stationary and non-stationary vertical velocity series.
Contrasted with long-range positive correlations in themagnitude series at all scales in Fig. 4(a), anti-correlations (Fig. 4(b))
are found in the sign time series at small scales with α around 0.4 and long-range positive correlations (α = 0.79)
occur in the sign series at large scales just for non-stationary cases. Previous studies have shown that the sign series from
the increments of the original signal contain linear correlation information about the underlying dynamics [1]. The anti-
correlated behavior of sign series at small scales reflects that large and small values of the original time series are more
likely to alternate. However, at large scales the long-range positive correlations indicate that large and small values of the
original time series are more likely to clustered for the non-stationary cases; this is a significant difference between these
two types of time series.

Since phase-randomized surrogate destroys the nonlinear correlations, the scaling behavior will change after PRS if
nonlinearity exists in the considered time series. Ashkenazy has shown the sign series aremainly related to linear properties
of the original series [1,31]. Here, for the considered sign series of non-stationary traces, the scaling exponent changes from
0.79 to 0.48 after PRS (∆α = 0.31 see Table 1). That is to say the sign series show clustering property and also contain
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Table 1
Themagnitude and sign scaling exponents for themulti-scale increment of stationary (STA) and non-stationary (NON) vertical velocity series.
We define ∆α as the change of scaling exponent after PRS, α1 as the scaling exponent over the small scale range s < sx , and α2 as the scaling
exponent over the large-scale range s > sx , regardless of the value of the crossover sx .

Time series Scale factor Magnitude Sign
α1 α2 α1 α2

Origin PRS △α1 Origin PRS △α2 Origin PRS △α1 Origin PRS △α2

STA

h = 0 0.77 0.50 0.27 0.77 0.50 0.27 0.43 0.44 −0.01 0.54 0.54 0
h = 1 0.76 0.52 0.24 0.76 0.52 0.24 0.36 0.36 0 0.53 0.53 0
h = 5 0.81 0.75 0.06 0.67 0.56 0.11 1.1 1.1 0 0.24 0.23 0.01
h = 10 0.80 0.75 0.05 0.61 0.52 0.09 0.09 0.09 0 0.71 0.71 0

NON

h =0 0.70 0.50 0.20 0.93 0.50 0.43 0.44 0.43 0.01 0.79 0.48 0.31
h = 1 0.72 0.52 0.20 0.93 0.52 0.41 0.40 0.38 0.02 0.69 0.50 0.19
h = 5 0.79 0.78 0.01 0.84 0.56 0.28 1.1 1.1 0 0.33 0.25 0.08
h = 10 0.91 0.91 0 0.79 0.55 0.24 0.96 0.96 0 0.85 0.85 0

information about nonlinear properties just as the magnitude series. It is not difficult to understand that the clustering
of the same sign and clustering of large and small magnitude values appear simultaneously (Fig. 2(b)), as there are much
more large-scale structures in the non-stationary time series, such that sign time series show evidently different nonlinear
correlation properties between the stationary and non-stationary time series at large scales.

3.3. Correlations in multi-scale velocity increment

Multi-scale entropy analyses (MSE) have been used to quantify the differences between stationary and non-stationary
traces [26]. Since different multi-scale increments can differentiate the different size eddy motions in the atmospheric
surface layer [45], how the magnitude and sign correlations change with increment lags increasing for both stationary and
non-stationary velocity time series deserves our further investigation. Here for scale factor h = 1, 5, 10, Fig. 5 showshow the
magnitude and sign correlations change with changing h. For themagnitude series (Fig. 5(a)) and sign series (Fig. 5(b)), with
the increment scale factor increasing, we can see the difference between the stationary and non-stationary series becomes
smaller in accordancewithmulti-scale entropy analysis [26]; the nonlinearity if exists (∆α > 0) decreases in themagnitude
and sign time series of multi-scale velocity increment, diminishing even to zero (∆α = 0) as shown in Table 1. The results
show that the nonlinear correlation decreases (∆α decreasing) and the effects of non-stationarity on magnitude and sign
scaling weaken as increment scale factor is increasing.

4. Discussions and conclusion

In this paper, we study the magnitude and sign scaling properties of multi-scale increment series from stationary and
non-stationary vertical velocity records. With the help of series decomposition, we show the effect of non-stationarity on
the magnitude and sign scaling properties of multi-scale velocity increment series.

Firstly, we show it is difficult to find a significant scaling range for stationary vertical velocity records themselves. In
the log–log plot, the fluctuation function varies with window scale as a parabola function, so the fitting exponents over an
insignificant scaling range are with great uncertainty. And there are two scaling ranges with different scaling exponents for
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the original non-stationary data. Over the smaller scale range s < sx, the scaling exponent is 1.45, and within the larger
scale range s > sx the value of the scaling exponent is 0.89. Previous studies [17–19] on the original wind velocity records
directly do not distinguish the stationary velocity records from the non-stationary ones, their results may be a mixed one
from both cases. From their DFA results [17,18], we cannot find a dominant scaling range which exceeds one decade. In fact,
they are more close to the results as we show for the stationary records in Fig. 3.

Secondly, for the increment series with lag one, the magnitude and sign scaling take different behaviors between
stationary and non-stationary vertical velocity records. The nonlinear correlation found in magnitude fluctuations
(i.e. volatility fluctuations) is obvious for both stationary and non-stationary cases, and there is only one scaling range
which exceeds two decades for stationary case, see Fig. 4(a), but there are two scaling ranges over small and large scales
for non-stationary case, where the dominant scaling range exceeds more than one decade, see Fig. 4(b). Similar results
have been reported by Ref. [19], though they did not classify the type of the wind records. The linear correlation usually
assumed to be found in the sign series takes two scaling ranges over small and large scales for both stationary and non-
stationary cases. And over the smaller scale range, the linear correlation is the same for both stationary and non-stationary
cases. However, over the larger scale range, the difference is sharp between stationary and non-stationary cases. And it is
found that significant nonlinear correlation is also incorporated for the non-stationary case. Long-term correlation in the
magnitude series indicates that an increment with largemagnitude is more likely to be followed by an increment with large
magnitude. Anti-correlation in the sign series indicates that a positive increment is more likely to be followed by a negative
increment. Our result suggests that, in stationary time series a large increment in the positive direction is more likely to
be followed by a large increment in the negative direction, whereas by a large increment in the positive direction for the
non-stationary case at large scales.

Thirdly, with the lags in increment increasing, there exist two scaling ranges in both themagnitude and sign fluctuations
for both stationary and non-stationary cases. Formagnitude fluctuations, the nonlinear correlation over both small and large
scale ranges will decrease with the lags increasing. For the sign series, the linear correlation is dominant over both small
and large scale ranges for stationary case; the linear correlation is also dominant over small scale ranges for non-stationary
case, the nonlinear correlation can be found over the large scale range for non-stationary case and will decrease with lags
increasing. The nonlinear correlation found in the sign series over large scale range is resulted from the modulation of the
large scale structures found in the non-stationary cases [26], which will incorporate parts of magnitude information into
the sign series.
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