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Abstract The new rational form solutions to the elliptic equation are shown, and then these solutions to the elliptic
equation are taken as a transformation and applied to solve nonlinear coupled wave equations. It is shown that more
novel kinds of solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form,

and so on.
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1 Introduction

We have taken elliptic equation as an intermediate
transformation to solve nonlinear wave equations,* 3! and
obtained many periodic solutions and solitary wave solu-
tions. However, there are still more researches to do to
find more solutions of different forms. In Ref. [4], we de-
rived periodic solutions of rational forms, which are due
to external forcing. It is an interesting issue to apply dif-
ferent methods to obtain this kind of solutions of rational
forms. In this paper, we will revisit the elliptic equation
methods,? and show that we can construct this kind
of solutions of rational forms just by the elliptic equation
methods.["2 All we can do is due to that there are more
kinds of solutions to elliptic equation. So first of all, let
us show more solutions to elliptic equation and constrain
that resulting in these solutions.

2 Novel Solutions to Elliptic Equation

In this paper, elliptic equation!® takes the following
form:

=4
y? =Y ay, (1)
=0

where y' = dy/d¢.
In Ref. [5], equation (1) is classified into four types, of
which the first one is

y'? = ap + asy® + agy?,

Qa4 7é 0, (2)
which has twelve basic solutions.®] These twelve solutions
have been applied as an intermediate transformation in
Refs. [1] ~ [3] to solve nonlinear systems directly or indi-
rectly. Many solutions have also been derived. Actually,
there are many other kinds of solutions to elliptic equation
(2), which are helpful to constructing more kinds of solu-
tions to nonlinear systems. Here we show ten additional
solutions of rational form to elliptic equation (2).

(i) If ap = (1 —m?)/4, ax = (1 +m?)/2, and ay =
(1—m?)/4, (where 0 < m < 1 is called modulus of Jacobi
elliptic functions, see Refs. [5] ~ [8]), then the solutions
to Eq. (2) are

_ cn (f?m) _ 1- SH(S,m)
M Taem  aem
_eem) _1+s(Em)
M aem O

where sn(§,m) and cn(€, m) are Jacobi elliptic sine func-
tion and cosine function, respectively (see Refs. [5] ~ [8]).

(i) If ap = —(1 —m?)/4, az = (1 +m?)/2, and
as = —(1 —m?)/4, then the solutions to Eq. (2) are

_dn(§,m)  1-—msn(,m)
Y2a =17 msn(é,m)  dn(&,m) (5)
and
~dn(¢,m) 14+ msn(E,m)
Y= msn(é,m)  dn(&,m) (6)

where dn(&, m) is Jacobi elliptic function of the third kind
(see Refs. [5] ~ [8]).
(iii) If ag = m?/4, ay = —(2 —m?)/2, and a4 = m?/4,
then the solutions to Eq. (2) are
_ msn(§,m)  1—dn(§,m)
Y= T dn(e,m)

(7)

msn(&,m)

and

msn(&,m) 1+dn(&,m)
Ysb = =

1—dn(&,m) ®)

msn(§, m)
(iv) If ag = 1/4, ag = (1 —2m?)/2, and aq = 1/4, then
the solutions to Eq. (2) are
sn(¢, m)

B ~ 1—cn(§,m)
~ 1+4ecn(g,m)

sn(§,m)

(9)

Y4a
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and J2=n2 .
Yap = Sn(§7 m) — 1 + Cn(f? m) (10) = U(y) = Z dj2y]2 ) (20)
T cn(&,m) sn(§, m) J2=0
(v) If ag = 1/4, a3 = —(2 — m?)/2, and ay = m*/4, where y satisfies the elliptic equation (1), then
then the solutions to Eq. (2) are a1 3as
sn(€,m) 1) "= 5 tayt 7:92 +2a4y° (21a)
Ysa = 7T 3 7
d Hdn&m) y" = (a2 + 3asy + 6asy®)y’ (21b)
an
Ysp = sn(§,m) (12) There n in Eq. (20) can be determined by the partial bal-
1 —dn(§m) ance between the highest order derivative terms and the

Moreover, it is known that when m — 1, sn(§,m
tanh¢, en(€,m) — sech&, dn(§,m) — sech&; and when
m — 0, sn(§,m) — sin¢&, cn(,m) — cos&. So we also
can get more kinds of solutions of rational form expressed
in terms of hyperbolic functions and trigonometric func-
tions.

(vi) If ap = 1/4, az = 1/2, and a4 = 1/4 with m = 0,
then the solutions to Eq. (2) are

sin(€)

) —

Y6a = m ; (13)
and )
o = (14)

(vii) If ap = 1/4, a2 = —1/2, and a4 = 1/4 with m = 1,
then the solutions to Eq. (2) are

_ tanh(§)
Y10 = 1 sech €’ (15)
. tanh(¢)
an
Y0 = T sech )" (16)

These fourteen solutions are novel to Eq. (2), which are
not shown in Refs. [1] ~ [3], and [5]. So based on the above
results, we can derive new rational solutions to nonlinear
systems. In the next sections, we will show their applica-
tions to some coupled nonlinear wave equations.

3 Coupled mKdV Equations

We here consider coupled mKdV equations of the fol-
lowing form,?!

g + auuy + Bugey + covy =0, (17a)
v + Yovg + d(uv), =0. (17b)
Seeking their solution in the following frame,
u=u(e), v=u(), E=z-ct, (1)
then we can get
—cu' + auu + pu" 4 cpv’ =0, (19a)
—cv' + v’ +6(uv) =0. (19b)

And then we suppose that equations (17) have the fol-
lowing solution:
Ji=n1

=u(y) = Z bj1yj1’

j1=0

highest degree nonlinear term in Eqgs. (17). Here we know
that the degrees of v and v are

O(u) =0(@y™) =m1, O(v)=0(y")=n2, (22)
and from Egs. (1) and (21), one has

O(?)=0(y") =4, O@F")=0@")=3,  (23)
and actually one can have

O(yDy=1+1. (24)

So one has

O(u)=n1, O(v)=nz, OF)=mn+1,

OW')=n1+2, Ou)=mn;+1. (25)

For coupled mKdV equations (17), we have ny = 1 and
ng = 1, so the ansatz solution of Eq. (20) can be rewritten

as
u="by+by, v=do+diy, b #0, dl;«éO (26)
Substituting Eq. (26) into Eq. (19) leads to
3ﬂa3 66a4
N 66@4
dl = :Fi 6ﬂa4 9
¥ Q@

3Ba3  2Bas 4dco . 38Bas «
do = — — + — . 27
’ dyay * ¥ oG Yo 60a4 27)

So if ag = 0, then

6
bo=0, by =404
a
6 2 46
di=F— ﬂa47 0= 5a2_%’ (28)
« v Y

and if taking the arbitrary constant a; = 0 then the trans-
formation (1) takes the form of Eq. (2).
combined with the rational solutions given in the above

These results

section can lead to more novel solutions to coupled mKdV

equations.
(i) If ap = (1 —m?)/4, aa = (1 + m?)/2, and a4 =
(1 —m?)/4, then the solutions to Eq. (17) are
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68a4 1 - m2 cn §,
— /- 2
« v= 1+sn §, (292)
2,8@2 4500 20 6ﬁa4 ﬁ(l +m 4500
v = - T\ =
Y v Y o v

68a4 | G(1—m?) cn(é,m
o o vy= 1—sn g’ (30&)
/| cen(§,m

2Bas  40co 20 68ay B(1 + m? 4500
vy = — Ty =
Y v ¥ o ¥ 1 —sn 57

(i) If ag = —(1 —m?)/4, az = (1 +m?)/2, and a4 = (1 - )/4 then the solutions to Eq. (17) are

65@4 /3 1 —m?2)
1
1+msn 5, (31a)
2Basy  40co 26 | 6Pay B(1+ m? 4500
U3 = - 2 :F Yy =
Y Y Y & Y

68a4 1308(1 — m?)
— 2
« v= 1—msn 5, ’ (322)
2Bas  40cy 20 60ay B(1 + m? 4500
v=T - F [y = \/
Y Y Y & Y

(iii) If ap = m?/4, az = —(2 —m?)/2, and a4 = 2/4 then the solutions to Eq. (17) are
/ 65@4 | 3Bm? msn({,m
s = 2a0 1+ dn( 57 (33a)
20a 46c 20 605a 27m2 4éc 26 36m? msn (&, m
vy = Paz 20:F7/_54y:_ﬁ( ) 20:|E7/_5 (€ ); (33D)
Y Y Y « gl v v 2a 1 +dn(§,m)
[ 68as / 3ﬁm2 msn (€, m
=44/ ——— 4
« v= 2a¢ 1 —dn( 5, (342)
_ 2Pay  4dco 20 | 6f0ay  B(2-— m2) 46cy 26 | 3PBm?2 msn (£, m)
T Ty T TV T YT v 2 TV T e T (e m) (340)

(iv) If ag = 1/4, az = (1 — 2m?)/2, and a4 = 1/4, then the solutions to Eq. (17) are

/ 6ﬁa4 / sn(&,m
_%1+cn f, (350)
_ 2Bay 45& 20 | 6Bas 5(1 —2m?) ~ 4bcg 25 | 3B sn(§m)
T v Ty a VT v 2 TV 2alren(Em)’ (350)

. 65@4 sn fa
_i\/_ a /7 V—Qal—cng, (36a)
_ 2Pay  4dco 26 68as ﬁ(l —2m?)  46cy 20 | 38 sn(&,m)

vg = N2 + SV y= y 42 jF 2a1 —cn(é,m) (36b)

(v) If ag = 1/4, as = —(2 — m?)/2, and ay = m*/4, then the solutions to Eq. (17) are just the same as Egs. (33)
and (34).
(vi) If ap = 1/4, a2 = 1/2, and a4 = 1/4 with m = 0, then the solutions to Eq. (17) are

68a4 sin (&
— 4/ + /_7 37
o a v= 201 4 cos(€ (372)

en(é,m
1+sn 5,

(29b)

and

(30b)

1—|—msn f, ) (31b)

and

1_msn 57 ot (32b)

and

and




238 FU Zun-Tao, LIN Guang-Xing, LIU Shi-Kuo, and LIU Shi-Da Vol. 44
2 49 26 | 6 45 20 | i
vy = 6a2 _ ‘2:0 = _ /Ba4y:ﬁ_ ;O :F 6M7 (37b)
Y v v o v 201+ cos(é)
and
65ay sin(§
=44/ -2 4 /_7
1o a 7T 2a1 — cos(€)’ (382)
2Bas  46cy 20 | 6Bay 8 4déco 26 | 38 sin(§)
= — —— F —\/— == F — 38b
e ERRY a YT T TV 2T cos(e) (350)
(vii) If ap = 1/4, ag = —1/2, and ay4 = 1/4 with m = 1, then the solutions to Eq. (17) are
[ 6Bay / tanh(¢
= :t —_——_— R —
i o v= 2a 1+ sech (392)
28a 4é¢ 26 65a 40c¢ 20 tanh
vn:—ﬁﬁf—79¢—4ﬁfﬂ4y:fﬁf—39¢ -25 _tenhld) (39b)
gl gl gl o 7Y vV 2al+sech(§)’
and
60ay tanh(¢
=4/ —— £y —— 4
2 « ¥= 2a 1- sech (402)
20a 46¢ 20 60a 46¢ 26 tanh
iy = Paz 20:‘:7 /_54y:_§_ 20:F | 38 () (40b)
ot ¥ ¥ ! Y 2ac1 —sech (§)
Actually, the above twelve sets of solutions have not been reported in literature.
4 System of Variant Boussinesq Equations dy =+2/ay, do=c+ as ) (45)
The system of variant Boussinesq equations reads
So if ag = 0, then
Hy+ (Hu)y + Uggy =0, (41a) as
by =—2a4, b1 =0, by=-—-—,
ur + Hy +uuy =0, (41b) 2
do =cC, d1 = :EQ\/a, (46)

which is a model for water waves, where u(z,t) is the ve-
locity and H(x,t) is the total depth.

We seek its travelling wave solutions in the following
frame:

u=u(§),
where ¢ is the wave velocity.
And then we suppose that equation (41) have the fol-
lowing solution:

H=H(), &=x-—ct, (42)

Ji=n1 J2=na2
=H y) = Z bj1y]1 , U= u(y) = Z djzyj2 ) (43
71=0 J2=0

where y satisfies the elliptic Eq. (1). There n in Eq. (43)
can be determined by the partial balance between the
highest order derivative terms and the highest degree non-
linear term in Eqgs. (41). For the system of variant Boussi-
nesq equations (41), we have ny = 2 and ns = 1, so the
ansatz solution of Eq. (43) can be rewritten as

H=by+biy+by®, u=do+dy,
by A0, di #0. (44)

Then substituting Eq. (44) into Eq. (42) and collecting the
each order of y yield the algebraic equations about coeffi-
cients b;(j = 0,1,2), d;(j = 0,1), and a;(i = 0,1,2,3,4),
we have

by =

bQ = *2044 ) —as,

1 ca
bo=—5as+ 5]

2,/0,4 ’

and if taking the arbitrary constant a; = 0 then the trans-
formation (1) takes the form of Eq. (2). Obviously, the
above solutions require constraint a4 > 0, so the solutions
have the following ten sets.

(i) If ag = (1 —m?)/4, aa = (1 +m?)/2, and ay =

(1 —m?)/4, then the solutions to Eq. (41) are
cn(é,m

up =cE2y/agy=ct 1 1+sn(€, m)’ (47a)

Cm o Lim (L-mda(Em)
iy = -5 20y = —— 2L +sn(E, m)2 (47b)
and
ug =cE2y/agy =ct 1 en(&,m (48a)

1 - sn({“, m)’

_az 2__1—|—m2_(1—m)cn (&,m)
Hy = 5 2a4y° = 1 2 —sn(e, m)? .(48b)

(i) If ag = m?/4, ag = —(2 — m?)/2, and ay = m?/4,
then the solutions to Eq. (41) are

m?2sn(€,m)

=c*2 =ct ——= 4

us =cE2y/agy =c T+ dn(e,m)’ (49a)
as 5 2—m? misn?(&,m)

= = = _ - (4
Hs = =% — 204y 4 911 + dn(€, m)]2 (49b)
and

2

u4:c:|:2\/@y:c:|:M (50a)

1—dn(&,m)’
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H4:—a—2—2a4y . 2—m? B m?*sn?(&,m) . (50b) vy + QUgy + Buv = 0. (57Db)
2 4 2-dugm)P We solve Eqs. (57) in the following frame:
(iii) If ap = 1/4, as = (1—2m?)/2, and aq = 1/4, then ¢ soTve Bds A9 I Hhe JoTowing framme:
the solutions to Eq. (41) are u=u(), v=¢@Ee* ) E=plz—cgt). (58)
us = c 4 2/agy = c + : Jsrn(f’(;n) 7 (51a)  Substituting Eq. (58) into Egs. (57) leads to
cn(é,m
2 2 p(c; — " + fou—~¢* =0, (59a)
- %2 _, _ 1-2m sn?({,m) S1b
i T S renEmpE O ap?e” +ipQak — cg)d' + (w — ak?) + Bup=0. (59b)
and (6m) Setting ¢, = 20k, w — ak? = —4§, then one has
sn(&,m
Uo = eE/ay = ek T ey (522) W 4 fru = =0, (60a)
1 — 2m? 2 "= 019+ Brugp =0, 60b
Hy= -2 gqyp= 1720 sw0&m) g R (60)
2 4 2[1 —en(&, m)] where
(iv) If ag = 1/4, aa = —(2 — m?)/2, and ay = m*/4, 2 ~
then the solutions to Eq. (41) are just the same as h==5 3 N= 535 3
p (Cg - CO) p (Cg - CO)
Egs. (49) and (50).
(v) If agp = 1/4, ay = 1/2, and ay = 1/4 with m = 0, 5= =0 (61)
then the solutions to Eq. (41) are ap?’ ap?

w:cﬂmyzcim7 (53a)

H, = —‘;i — 2ay? = le - 2[1841:1255()5)]2 . (53b)
and

ugzc:t2\/c74y:c:t1iir;$)(§), (54a)

Hg:—C;—Q—2a4y ——i—m; (54b)

(vi)If ap = 1/4, aa = —1/2, and a4 = 1/4 with m = 1,
then the solutions to Eq. (41) are

B B tanh(€)
u9_6i2\/ay_6i71+sech(§)’ (55a)

a 1 tanh?(¢)
Hy = =% = 204" = | = M tsech@pF 0P

and

- — ey tnB(E)

ulo—ciQ\/@y—cil_SeCh(g), (56a)
2

Hyp = _% — 2a4y° = 1__ tenh () (56b)

4 2[1 —sech (§)]?
5 Coupled Nonlinear Klein—Gordon
Schrodinger Equations
Coupled nonlinear Klein—Gordon Schrodinger equa-
tions[? reads

Similarly, we assume that the solutions of Egs. (60)
take the form of Eq. (43), and then get nqy = ny = 2 for
Egs. (60), i.e.

w="by+biy+boy?, ¢=do+diy+day®,
b2 7é 0, d2 7& 0,

where y satisfies elliptic equation (1). Then substituting

(62)

Eq. (62) into Egs. (60) leads to
by = 6;14 by = 3513
b= 5 {5l+ﬁ+zii— ag}, (63)
and
dgzii\/%, dlziix/%,
dozi\/%m[Qg—&—J;l :Zﬂ (64)
If ag = 0, then by :d1 =a; =0 and
bo = 51 [51 + ﬁ — 2a2]
do = iﬁ [2a2 + J;l} (65)

then the transformation takes the form of Eq. (2). Simi-
larly, we can derive some rational solutions to Egs. (57),

Upy — Cogy + fou —[v|> =0, (57a)  too.
|
(i) If ap = (1 — m2)/4 az = (1 +m?)/2, and aq = (1 —m?)/4, then the solutions to Eq. (57) are
bil bag o bil 2 3(1-m?) cn®(§ m)
—2a,) — 4 11— _
T E (51 +5 — 20) aY " h (51 ) ) 261 [1+sn(Em)? (662)
1 fi 604 91 ithw—wt)
V] = |£——=(2a2 + + ——y e\
' { \/*51’)’1( *T 2 3 \/*5171y }
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_ 1 2 ﬁ 3(1 — m2) CDQ(f, m) i(kz—wt) .
B {i\/—ﬁl’h (1 S ) - 2v=0im [1+ Sn(f,m)P}e 7 (66)
and
1 h 6as o f 3(1—m?) cn®(¢m)
e E((Sl Ty ag) Y T h (61 R ) 280 [L-sn(Em)2’ (672)
_ 1 é bay 2| Ji(kz—wt)
v = [ (e 5) = e
_ 1 2 fl 3(1 — m2) cn’ (67 m) i(kz—wt)
= s ) S5 S T (670)
(ii) If ap = —(1 — m?)/4, as = (1 +m?)/2, and ay = —(1 — m?)/4, then the solutions to Eq. (57) are
1 bil 6ay 2 fi 2 3(1 —m2) dn2(§,m)
=g (0 g 2] - G = (b g 1) ¢ (68
_ 1 fl bay 2| Ji(kz—wt)
o= [y e 5) = e
_ 1 2 fl 3(1 — m2) dHQ(S? m) i(kz—wt) .
B {i V—>bim (1 e 7) 2v=Fim [1+msn(E, m)}z}e ’ (68)
and
o1 bil Gay 2 = fi 3(1—m?)  dn’*(¢m)
e E(él - 2 2a2) 51 ﬂl (61 N ) * 261 [1 —msn(§,m)]?’ (692)
_ 1 f1 bay 2| Ji(kz—wt)
w= [ (e 3) = e
_ 1 2 N1 3(1—m?) dnz(f» m) i(kz—wt)
= {iﬁfml (1rm®+5) NS T msn(f,m)P]e (69b)
(iii) If ag = m?/4, az = —(2 —m?)/2, and a4 = 2/4 then the solutions to Eq. (57) are
f1 6ay 2 = J1 3m? m?sn?(¢,m)
us = o (51+—72 ) 5V =5 (51+—+2f ) 26; [1+dn(&,m))2’ (70a)
_ 1 fl 6ay 2| Ji(kz—wt)
o = [y (e 3) = e
_ 1 fl 3m? m?sn (fa ) (kz—wt) . 70b
_[i\/Tm( 2 )iw—ﬁﬁl [1 4 dn(é, )]2]6 : (70b)
and
_ 1 fi 6ay ) = N1 2\ _ 3m? m?sn*(¢,m)
UG—E(51+?_2‘12) 51 ﬁ1 (51+ 9 +2-m ) - 25 [1—dn(&,m)’ (71a)
_ 1 fi bay 2| Li(kz—wt)
o = [y (e 9+ e
_ 1 fl Sm m Sn (57 ) i(kz—wt) 71b
[iv—ﬁﬂﬁ( 2t ) 2y/=Pim [1 —dn(§, m)]? }e . (710)
(iv) If ap = 1/4, a2 = (1 — 2m?)/2, and a4 = 1/4, then the solutions to Eq. (57) are
1 bil 6ay )P = bil 2 3 sn*(¢,m)
Uy = E(61+?_2a2) ﬂl ,61 ((514—* 1+2m ) _Tﬂl—[lJrcn(f,m)]Q R (72&)
_ 1 é 6(14 i(kz—wt)
= [ (e ) = e
_ 1 _ 2 ﬁ 3 sn2(§, m) i(kz—wt) .
B S i G B et v v (72b)
and
1 fi as o fi 2 3 sn*(§,m)
U8—E((51+?—2a2)—ay ﬂ1(51+§—1+2m)_7ﬁ1w7 (73&)
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fl 6ay i(kx—w
2) yQ}e(k., t)

1
vg = [ii (2a2 n
—Bim

vV=0im

= [i%m (1-2m” + %) * 2\/5)571% fl fnjﬁfﬂﬂz]ei(’”m ’ (73b)
(v) If ag = 1/4, ay = —(2 — m?)/2, and as = m*/4, then the solutions to Eq. (57) are just the same as Eqs. (70)
and(g)l)lf ag =1/4, ay = 1/2, and ay = 1/4 with m = 0, then the solutions to Eq. (57) are
wo= 3 (ot o daa) Sty (5 D) - B (11a)
vy = [iﬁ (202 + %) + %yﬂ ei(ke—wt)
-
= [i\/%m(l + J;l) * 2%—367171 f ftoifé)]z}ei(k“t) ; (74b)
and
wo=5-(0+5 EON A GRS 51)- 2%1[1 Siﬁi%}?’ (75
V1o = [iﬁ(mz n J;l) + E%myﬂei(’”*m)
L (D) e s

(vii) If ap = 1/4, ag = —1/2, and a4 = 1/4 with m = 1, then the solutions to Eq. (57) are

2
(51+f1 2a2)—6ﬂy2 ﬂ1(51+ﬁ+1) 3 tanh (§) (768)

"h A 201 [1 + sech ()2
o= e (4 ) e
>
- [iﬁ (-1+ %) + 2\/—3Tm fl f:,lehch(%]z}ei(kx_wt) 3 (76D)
and
Uy = 5—(51+f 2@)_%2 61(51+ﬁ+1> ;ﬁlm (772)
o= lemi o B e
[ ﬂm ( b %) = 2\/—3Tm [1 t_age}i(fi)p}e“k”” : (77b)

6 Conclusion

In this paper, we consider elliptic equation as a transformation to solve nonlinear wave equations. More kinds
of solutions can be obtained since there are more new solutions to elliptic equation, including periodic solutions of
rational forms and solitary wave solutions constructed in terms of hyperbolic functions of rational forms. Applying
transformation (1) to some coupled nonlinear wave equations, we obtained solutions that have not been obtained by
the sine-cosine method,['% the homogeneous balance method,[®'!) the hyperbolic function expansion method,['2:13]
the Jacobi elliptic function expansion method,*'®! the nonlinear transformation method,[!%17) the trial function
method,'819] or others.[2%! So more applications of novel solutions of elliptic equation to solve other nonlinear systems
are also applicable and deserved.
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