粒子物理 8. 正负电子湮没过程

QED计算

How to calculate a cross section using QED (e.g. $e^+e^- \rightarrow \mu^+\mu^-$):

1 Draw all possible Feynman Diagrams

For $e^+e^- \rightarrow \mu^+\mu^-$ there is just one lowest order diagram

 $M \propto e^2 \propto \alpha_{em}$

+ many second order diagrams + ...

2 For each diagram calculate the matrix element using Feynman rules

QED计算

⁽³⁾ Sum the individual matrix elements (i.e. sum the amplitudes) $M_{fi} = M_1 + M_2 + M_3 +$

and then square $|M_{fi}|^2 = (M_1 + M_2 + M_3 +)(M_1^* + M_2^* + M_3^* +)$

• this gives the full perturbation expansion in $lpha_{em}$

Note: summing amplitudes therefore different diagrams for the same final state can interfere either positively or negatively!

• For QED $\alpha_{em} \sim 1/137$ the lowest order diagram dominates and for most purposes it is sufficient to neglect higher order diagrams.

Calculate decay rate/cross section using formulae introduced before

•e.g. for a decay
$$\Gamma = \frac{p^*}{32\pi^2 m_a^2} \int |M_{fi}|^2 \mathrm{d}\Omega$$

•For scattering in the centre-of-mass frame

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega^*} = \frac{1}{64\pi^2 s} \frac{|\vec{p}_f^*|}{|\vec{p}_i^*|} |M_{fi}|^2 \tag{1}$$

•For scattering in lab. frame (neglecting mass of scattered particle)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \left(\frac{E_3}{ME_1}\right)^2 |M_{fi}|^2$$

Electron Positron Annihilation

★Consider the process: $e^+e^- \rightarrow \mu^+\mu^-$

 Work in C.o.M. frame (this is appropriate for most e⁺e⁻ colliders).

$$p_1 = (E, 0, 0, p)$$
 $p_2 = (E, 0, 0, -p)$
 $p_3 = (E, \vec{p}_f)$ $p_4 = (E, -\vec{p}_f)$

Only consider the lowest order Feynman diagram:

Feynman rules give:

$$-iM = [\overline{v}(p_2)ie\gamma^{\mu}u(p_1)] \frac{-ig_{\mu\nu}}{q^2} [\overline{u}(p_3)ie\gamma^{\nu}v(p_4)]$$

- **NOTE:** Incoming anti-particle \overline{v}
 - Incoming particle *u*
 - Adjoint spinor written first

• In the C.o.M. frame have

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2 s} \frac{|\vec{p}_f|}{|\vec{p}_i|} |M_{fi}|^2 \qquad \text{with} \qquad s = (p_1 + p_2)^2 = (E + E)^2 = 4E^2$$

Electron and Muon Currents

• Here
$$q^2 = (p_1 + p_2)^2 = s$$
 and matrix element
 $-iM = [\overline{v}(p_2)ie\gamma^{\mu}u(p_1)]\frac{-ig_{\mu\nu}}{q^2}[\overline{u}(p_3)ie\gamma^{\nu}v(p_4)]$
 $\longrightarrow M = -\frac{e^2}{s}g_{\mu\nu}[\overline{v}(p_2)\gamma^{\mu}u(p_1)][\overline{u}(p_3)\gamma^{\nu}v(p_4)]$

We have introduced the four-vector current

$$j^{\mu} = \overline{\psi} \gamma^{\mu} \psi$$

which has same form as the two terms in $[\ \dots\]$ in the matrix element

• The matrix element can be written in terms of the electron and muon currents

$$j_e)^{\mu} = \overline{\nu}(p_2)\gamma^{\mu}u(p_1) \quad \text{and} \quad (j_{\mu})^{\nu} = \overline{u}(p_3)\gamma^{\nu}\nu(p_4)$$

$$M = -\frac{e^2}{s}g_{\mu\nu}(j_e)^{\mu}(j_{\mu})^{\nu}$$

$$M = -\frac{e^2}{s}j_e \cdot j_{\mu}$$

Matrix element is a four-vector scalar product – confirming it is Lorentz Invariant

Spin in e⁺e⁻ Annihilation

- In general the electron and positron will not be polarized, i.e. there will be equal numbers of positive and negative helicity states
- There are four possible combinations of spins in the initial state !

$$e^{-} \xrightarrow{\bullet} e^{+} e^{+} e^{-} \xrightarrow{\bullet} e^{+} e^{+} e^{-} \xrightarrow{\bullet} e^{+} e^{-} e^{+} e$$

- Similarly there are four possible helicity combinations in the final state
- In total there are 16 combinations e.g. $RL \rightarrow RR$, $RL \rightarrow RL$,
- To account for these states we need to sum over all 16 possible helicity combinations and then average over the number of <u>initial</u> helicity states:

$$\langle |M|^2 \rangle = \frac{1}{4} \sum_{\text{spins}} |M_i|^2 = \frac{1}{4} \left(|M_{LL \to LL}|^2 + |M_{LL \to LR}|^2 + \dots \right)$$

★ i.e. need to evaluate:

$$M = -\frac{e^2}{s} j_e \cdot j_\mu$$

for all 16 helicity combinations !

★ Fortunately, in the limit $E \gg m_{\mu}$ only 4 helicity combinations give non-zero matrix elements – we will see that this is an important feature of QED/QCD

• In the C.o.M. frame in the limit $E \gg m$

$$p_1 = (E, 0, 0, E); \quad p_2 = (E, 0, 0, -E);$$

$$p_3 = (E, E \sin \theta, 0, E \cos \theta);$$

$$p_4 = (E, -\sin \theta, 0, -E \cos \theta)$$

• Left- and right-handed helicity spinors (handout 3) for particles/anti-particles are:

$$u_{\uparrow} = N \begin{pmatrix} c \\ e^{i\phi}s \\ \frac{|\vec{p}|}{E+m}c \\ \frac{|\vec{p}|}{E+m}e^{i\phi}s \end{pmatrix} \quad u_{\downarrow} = N \begin{pmatrix} -s \\ e^{i\phi}c \\ \frac{|\vec{p}|}{E+m}s \\ -\frac{|\vec{p}|}{E+m}e^{i\phi}c \end{pmatrix} \quad v_{\uparrow} = N \begin{pmatrix} \frac{|\vec{p}|}{E+m}s \\ -\frac{|\vec{p}|}{E+m}e^{i\phi}s \\ e^{i\phi}c \end{pmatrix} \quad v_{\downarrow} = N \begin{pmatrix} \frac{|\vec{p}|}{E+m}c \\ \frac{|\vec{p}|}{E+m}e^{i\phi}s \\ e^{i\phi}s \end{pmatrix}$$
where $s = \sin\frac{\theta}{2}$; $c = \cos\frac{\theta}{2}$ and $N = \sqrt{E+m}$

• In the limit $E \gg m$ these become:

$$u_{\uparrow} = \sqrt{E} \begin{pmatrix} c \\ se^{i\phi} \\ c \\ se^{i\phi} \end{pmatrix}; \ u_{\downarrow} = \sqrt{E} \begin{pmatrix} -s \\ ce^{i\phi} \\ s \\ -ce^{i\phi} \end{pmatrix}; \ v_{\uparrow} = \sqrt{E} \begin{pmatrix} s \\ -ce^{i\phi} \\ -s \\ ce^{i\phi} \end{pmatrix}; \ v_{\downarrow} = \sqrt{E} \begin{pmatrix} c \\ se^{i\phi} \\ c \\ se^{i\phi} \end{pmatrix}$$

• The initial-state electron can either be in a left- or right-handed helicity state

$$u_{\uparrow}(p_1) = \sqrt{E} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}; \ u_{\downarrow}(p_1) = \sqrt{E} \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix};$$

• For the initial state positron $(\theta = \pi)$ can have either:

$$v_{\uparrow}(p_2) = \sqrt{E} \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}; v_{\downarrow}(p_2) = \sqrt{E} \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}$$

• Similarly for the final state μ^- which has polar angle θ and choosing $\phi = 0$

$$u_{\uparrow}(p_3) = \sqrt{E} \begin{pmatrix} c \\ s \\ c \\ s \end{pmatrix}; \ u_{\downarrow}(p_3) = \sqrt{E} \begin{pmatrix} -s \\ c \\ s \\ -c \end{pmatrix};$$

• And for the final state μ^+ replacing $\theta \to \pi - \theta; \phi \to \pi$ obtain

$$v_{\uparrow}(p_4) = \sqrt{E} \begin{pmatrix} c \\ s \\ -c \\ -s \end{pmatrix}; \quad v_{\downarrow}(p_4) = \sqrt{E} \begin{pmatrix} s \\ -c \\ s \\ -c \end{pmatrix}; \quad \begin{cases} \text{using} & \sin\left(\frac{\pi - \theta}{2}\right) = \cos\frac{\theta}{2} \\ & \cos\left(\frac{\pi - \theta}{2}\right) = \sin\frac{\theta}{2} \\ & e^{i\pi} = -1 \end{cases}$$

• Wish to calculate the matrix element $M = -\frac{e^2}{s} j_e \cdot j_\mu$

 \star first consider the muon current j_{μ} for 4 possible helicity combinations

The Muon Current

- Want to evaluate $(j_{\mu})^{\nu} = \overline{u}(p_3)\gamma^{\nu}v(p_4)$ for all four helicity combinations
- For arbitrary spinors ψ , ϕ with it is straightforward to show that the components of $\overline{\psi}\gamma^{\mu}\phi$ are

$$\overline{\psi}\gamma^{0}\phi = \psi^{\dagger}\gamma^{0}\gamma^{0}\phi = \psi_{1}^{*}\phi_{1} + \psi_{2}^{*}\phi_{2} + \psi_{3}^{*}\phi_{3} + \psi_{4}^{*}\phi_{4}$$
(3)

$$\bar{\nu}\gamma^{1}\phi = \psi^{\dagger}\gamma^{0}\gamma^{1}\phi = \psi_{1}^{*}\phi_{4} + \psi_{2}^{*}\phi_{3} + \psi_{3}^{*}\phi_{2} + \psi_{4}^{*}\phi_{1}$$
(4)

$$\overline{\psi}\gamma^{2}\phi = \psi^{\dagger}\gamma^{0}\gamma^{2}\phi = -i(\psi_{1}^{*}\phi_{4} - \psi_{2}^{*}\phi_{3} + \psi_{3}^{*}\phi_{2} - \psi_{4}^{*}\phi_{1})$$
(5)

$$\overline{\psi}\gamma^{3}\phi = \psi^{\dagger}\gamma^{0}\gamma^{3}\phi = \psi_{1}^{*}\phi_{3} - \psi_{2}^{*}\phi_{4} + \psi_{3}^{*}\phi_{1} - \psi_{4}^{*}\phi_{2}$$
(6)

- Consider the $\mu_R^-\mu_L^+\,$ combination using $\psi=u_{\uparrow}\,\,\phi=v_{\downarrow}$

with
$$v_{\downarrow} = \sqrt{E} \begin{pmatrix} s \\ -c \\ s \\ -c \end{pmatrix}; u_{\uparrow} = \sqrt{E} \begin{pmatrix} c \\ s \\ c \\ s \end{pmatrix};$$

 $\overline{u}_{\uparrow}(p_3)\gamma^0 v_{\downarrow}(p_4) = E(cs - sc + cs - sc) = 0$
 $\overline{u}_{\uparrow}(p_3)\gamma^1 v_{\downarrow}(p_4) = E(-c^2 + s^2 - c^2 + s^2) = 2E(s^2 - c^2) = -2E\cos\theta$
 $\overline{u}_{\uparrow}(p_3)\gamma^2 v_{\downarrow}(p_4) = -iE(-c^2 - s^2 - c^2 - s^2) = 2iE$
 $\overline{u}_{\uparrow}(p_3)\gamma^3 v_{\downarrow}(p_4) = E(cs + sc + cs + sc) = 4Esc = 2E\sin\theta$

- Hence the four-vector muon current for the RL combination is $\overline{u}_{\uparrow}(p_3)\gamma^{\nu}v_{\downarrow}(p_4) = 2E(0, -\cos\theta, i, \sin\theta)$
- The results for the 4 helicity combinations (obtained in the same manner) are:

\star IN THE LIMIT $E \gg m$ only two helicity combinations are non-zero !

- This is an important feature of QED. It applies equally to QCD.
- In the Weak interaction only one helicity combination contributes.
- The origin of this will be discussed in the last part of this lecture
- But as a consequence of the 16 possible helicity combinations only four given non-zero matrix elements

Electron Positron Annihilation cont.

★ For $e^+e^- \rightarrow$ $\mu^+\mu^-$ now only have to consider the 4 matrix elements: e^+ e^+ M_{RR} ee- μ^+ μ^+ μ- M_{LR} e e^+ e^+ e- μ^+ μ^+

• Previously we derived the muon currents for the allowed helicities:

$$\mu^{+} = \mu^{-} \qquad \mu^{-} = \mu^{-} \qquad \mu^{-} \mu^{+} : \qquad \overline{u}_{\uparrow}(p_{3})\gamma^{\nu}v_{\downarrow}(p_{4}) = 2E(0, -\cos\theta, i, \sin\theta)$$

$$\mu^{+} = \mu^{-} \mu^{+} : \qquad \overline{u}_{\downarrow}(p_{3})\gamma^{\nu}v_{\uparrow}(p_{4}) = 2E(0, -\cos\theta, -i, \sin\theta)$$

Now need to consider the electron current

The Electron Current

• The incoming electron and positron spinors (L and R helicities) are:

$$u_{\uparrow} = \sqrt{E} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}; \ u_{\downarrow} = \sqrt{E} \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix}; \quad v_{\uparrow} = \sqrt{E} \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}; \ v_{\downarrow} = \sqrt{E} \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}$$

• The electron current can either be obtained from equations (3)-(6) as before or it can be obtained directly from the expressions for the muon current.

$$(j_e)^{\mu} = \overline{\nu}(p_2)\gamma^{\mu}u(p_1) \qquad (j_{\mu})^{\mu} = \overline{u}(p_3)\gamma^{\mu}\nu(p_4)$$

• Taking the Hermitian conjugate of the muon current gives

• Taking the complex conjugate of the muon currents for the two non-zero helicity configurations:

$$\overline{v}_{\downarrow}(p_4)\gamma^{\mu}u_{\uparrow}(p_3) = \left[\overline{u}_{\uparrow}(p_3)\gamma^{\nu}v_{\downarrow}(p_4)\right]^* = 2E(0, -\cos\theta, -i, \sin\theta)$$

$$\overline{v}_{\uparrow}(p_4)\gamma^{\mu}u_{\downarrow}(p_3) = \left[\overline{u}_{\downarrow}(p_3)\gamma^{\nu}v_{\uparrow}(p_4)\right]^* = 2E(0, -\cos\theta, i, \sin\theta)$$

To obtain the electron currents we simply need to set $\theta = 0$

Matrix Element Calculation

• We can now calculate $M = -\frac{e^2}{s} j_e \cdot j_\mu$ for the four possible helicity combinations. e.g. the matrix element for $e_R^- e_L^+ \to \mu_R^- \mu_L^+$ which will denote M_{RR} $e^- \qquad \mu^ \mu^+ \qquad e^+$ $\mu^+ \qquad e^+$ $\mu^+ \qquad e^+$ $\mu^+ \qquad e^ \mu^ \mu^-$

★ Using:
$$e_R^- e_L^+$$
: $(j_e)^\mu = \overline{v}_{\downarrow}(p_2)\gamma^\mu u_{\uparrow}(p_1) = 2E(0, -1, -i, 0)$
 $\mu_R^- \mu_L^+$: $(j_\mu)^\nu = \overline{u}_{\uparrow}(p_3)\gamma^\nu v_{\downarrow}(p_4) = 2E(0, -\cos\theta, i, \sin\theta)$
gives $M_{RR} = -\frac{e^2}{s} [2E(0, -1, -i, 0)] \cdot [2E(0, -\cos\theta, i, \sin\theta)]$
 $= -e^2(1 + \cos\theta)$
 $= -4\pi\alpha(1 + \cos\theta)$ where $\alpha = e^2/4\pi \approx 1/137$

Similarly

$$|M_{RR}|^{2} = |M_{LL}|^{2} = (4\pi\alpha)^{2}(1+\cos\theta)^{2}$$
$$|M_{RL}|^{2} = |M_{LR}|^{2} = (4\pi\alpha)^{2}(1-\cos\theta)^{2}$$

 Assuming that the incoming electrons and positrons are unpolarized, all 4 possible initial helicity states are equally likely.

Differential Cross Section

•The cross section is obtained by averaging over the initial spin states and summing over the final spin states:

$$\frac{d\sigma}{d\Omega} = \frac{1}{4} \times \frac{1}{64\pi^2 s} (|M_{RR}|^2 + |M_{RL}|^2 + |M_{LR}|^2 + |M_{LL}|)$$

$$= \frac{(4\pi\alpha)^2}{256\pi^2 s} (2(1+\cos\theta)^2 + 2(1-\cos\theta)^2)$$

$$\implies \frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} (1+\cos^2\theta)$$
Example:
$$e^+e^- \rightarrow \mu^+\mu^-$$

$$\sqrt{s} = 29 \text{ GeV}$$

$$\implies \frac{\sigma}{0} = \frac{\sigma^2}{50} = \frac{\sigma^2$$

• The total cross section is obtained by integrating over $heta, \phi$ using

$$\int (1+\cos^2\theta) d\Omega = 2\pi \int_{-1}^{+1} (1+\cos^2\theta) d\cos\theta = \frac{16\pi}{3}$$

giving the QED total cross-section for the process $e^+e^- \rightarrow \mu^+\mu^-$

$$\sigma = \frac{4\pi\alpha^2}{3s}$$

★ Lowest order cross section calculation provides a good description of the data !

This is an impressive result. From first principles we have arrived at an expression for the electron-positron annihilation cross section which is good to 1%

Spin Considerations $(E \gg m)$

- ★The angular dependence of the QED electron-positron matrix elements can be understood in terms of angular momentum
- Because of the allowed helicity states, the electron and positron interact in a spin state with $S_z=\pm 1$, i.e. in a total spin 1 state aligned along the z axis: $|1,+1\rangle$ or $|1,-1\rangle$
- Similarly the muon and anti-muon are produced in a total spin 1 state aligned along an axis with polar angle $\pmb{\theta}$

- Hence $M_{\rm RR} \propto \langle \psi | 1, 1 \rangle$ where ψ corresponds to the spin state $|1, 1 \rangle_{\theta}$, of the muon pair.
- To evaluate this need to express $|1,1
 angle_{ heta}$ in terms of eigenstates c S_z
- In the appendix (and also in IB QM) it is shown that:

$$|1,1\rangle_{\theta} = \frac{1}{2}(1-\cos\theta)|1,-1\rangle + \frac{1}{\sqrt{2}}\sin\theta|1,0\rangle + \frac{1}{2}(1+\cos\theta)|1,+1\rangle$$

• Using the wave-function for a spin 1 state along an axis at angle $oldsymbol{ heta}$

$$\psi = |1,1\rangle_{\theta} = \frac{1}{2}(1 - \cos\theta)|1,-1\rangle + \frac{1}{\sqrt{2}}\sin\theta|1,0\rangle + \frac{1}{2}(1 + \cos\theta)|1,+1\rangle$$

can immediately understand the angular dependence

Lorentz Invariant form of Matrix Element

• Before concluding this discussion, note that the spin-averaged Matrix Element derived above is written in terms of the muon angle in the C.o.M. frame.

$$\langle |M_{fi}|^2 \rangle = \frac{1}{4} \times (|M_{RR}|^2 + |M_{RL}|^2 + |M_{LR}|^2 + |M_{LL}|)$$

$$= \frac{1}{4} e^4 (2(1 + \cos\theta)^2 + 2(1 - \cos\theta)^2)$$

$$= e^4 (1 + \cos^2\theta)$$

$$= e^4 (1 + \cos^2\theta)$$

$$= e^4 (1 + \cos^2\theta)$$

- The matrix element is Lorentz Invariant (scalar product of 4-vector currents) and it is desirable to write it in a frame-independent form, i.e. express in terms of Lorentz Invariant 4-vector scalar products
- In the C.o.M. $p_1 = (E, 0, 0, E)$ $p_2 = (E, 0, 0, -E)$ $p_3 = (E, E \sin \theta, 0, E \cos \theta)$ $p_4 = (E, -E \sin \theta, 0, -E \cos \theta)$ giving: $p_1 \cdot p_2 = 2E^2$; $p_1 \cdot p_3 = E^2(1 - \cos \theta)$; $p_1 \cdot p_4 = E^2(1 + \cos \theta)$
- Hence we can write

$$\langle |M_{fi}|^2 \rangle = 2e^4 \frac{(p_1.p_3)^2 + (p_1.p_4)^2}{(p_1.p_2)^2}$$

$$\equiv 2e^4\left(\frac{t^2+u^2}{s^2}\right)$$

★Valid in any frame !

CHIRALITY

• The helicity eigenstates for a particle/anti-particle for $E \gg m$ are:

$$u_{\uparrow} = \sqrt{E} \begin{pmatrix} c \\ se^{i\phi} \\ c \\ se^{i\phi} \end{pmatrix}; \ u_{\downarrow} = \sqrt{E} \begin{pmatrix} -s \\ ce^{i\phi} \\ s \\ -ce^{i\phi} \end{pmatrix}; \ v_{\uparrow} = \sqrt{E} \begin{pmatrix} s \\ -ce^{i\phi} \\ c \\ se^{i\phi} \end{pmatrix}; \ v_{\downarrow} = \sqrt{E} \begin{pmatrix} c \\ se^{i\phi} \\ c \\ se^{i\phi} \end{pmatrix}$$

where $s = \sin \frac{\theta}{2}$; $c = \cos \frac{\theta}{2}$

• Define the matrix

$$\gamma^{5} \equiv i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

In the limit E ≫ m the helicity states are also eigenstates of γ⁵
γ⁵u_↑ = +u_↑; γ⁵u_↓ = -u_↓; γ⁵v_↑ = -v_↑; γ⁵v_↓ = +v_↓
★ In general, define the eigenstates of γ⁵ as LEFT and RIGHT HANDED <u>CHIRAL</u> states u_R; u_L; v_R; v_L
i.e. γ⁵u_R = +u_R; γ⁵u_L = -u_L; γ⁵v_R = -v_R; γ⁵v_L = +v_L

• In the LIMIT $E \gg m$ (and ONLY IN THIS LIMIT):

$$u_R \equiv u_{\uparrow}; \quad u_L \equiv u_{\downarrow}; \quad v_R \equiv v_{\uparrow}; \quad v_L \equiv v_{\downarrow}$$
 22

★ This is a subtle but important point: in general the HELICITY and CHIRAL eigenstates are not the same. It is only in the ultra-relativistic limit that the chiral eigenstates correspond to the helicity eigenstates.

★ Chirality is an import concept in the structure of QED, and any interaction of the form $\bar{u}\gamma^{\nu}u$

- In general, the eigenstates of the chirality operator are: $\gamma^5 u_R = +u_R; \quad \gamma^5 u_L = -u_L; \quad \gamma^5 v_R = -v_R; \quad \gamma^5 v_L = +v_L$
- Define the projection operators:

$$P_R = \frac{1}{2}(1+\gamma^5);$$
 $P_L = \frac{1}{2}(1-\gamma^5)$

The projection operators, project out the chiral eigenstates

$$P_R u_R = u_R;$$
 $P_R u_L = 0;$ $P_L u_R = 0;$ $P_L u_L = u_L$
 $P_R v_R = 0;$ $P_R v_L = v_L;$ $P_L v_R = v_R;$ $P_L v_L = 0$

- Note P_R projects out right-handed particle states and left-handed anti-particle states
- We can then write any spinor in terms of it left and right-handed chiral components:

$$\boldsymbol{\psi} = \boldsymbol{\psi}_{R} + \boldsymbol{\psi}_{L} = \frac{1}{2}(1+\gamma^{5})\boldsymbol{\psi} + \frac{1}{2}(1-\gamma^{5})\boldsymbol{\psi}$$

Chirality in QED

• In QED the basic interaction between a fermion and photon is:

ieΨγ^μφ

Can decompose the spinors in terms of Left and Right-handed chiral components:

$$ie\overline{\psi}\gamma^{\mu}\phi = ie(\overline{\psi}_{L} + \overline{\psi}_{R})\gamma^{\mu}(\phi_{R} + \phi_{L})$$

$$= ie(\overline{\psi}_{R}\gamma^{\mu}\phi_{R} + \overline{\psi}_{R}\gamma^{\mu}\phi_{L} + \overline{\psi}_{L}\gamma^{\mu}\phi_{R} + \overline{\psi}_{L}\gamma^{\mu}\phi_{L})$$

• Using the properties of γ^5

(Q8 on examples sheet)

(Q9 on examples sheet)

$$(\gamma^5)^2 = 1; \quad \gamma^{5\dagger} = \gamma^5; \quad \gamma^5 \gamma^\mu = -\gamma^\mu \gamma^5$$

it is straightforward to show

$$\overline{\psi}_R \gamma^\mu \phi_L = 0; \quad \overline{\psi}_L \gamma^\mu \phi_R = 0$$

★ Hence only certain combinations of <u>chiral</u> eigenstates contribute to the interaction. This statement is ALWAYS true.

• For $E \gg m$, the chiral and helicity eigenstates are equivalent. This implies that for $E \gg m$ only certain helicity combinations contribute to the QED vertex ! This is why previously we found that for two of the four helicity combinations for the muon current were zero

Allowed QED Helicity Combinations

- In this limit, the only non-zero helicity combinations in QED are:

Summary

★ In the centre-of-mass frame the $e^+e^- \rightarrow \mu^+\mu^-$ differential cross-section is

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{4s}(1+\cos^2\theta)$$

NOTE: neglected masses of the muons, i.e. assumed $E \gg m_{\mu}$

★ In QED only certain combinations of LEFT- and RIGHT-HANDED CHIRAL states give non-zero matrix elements

★ CHIRAL states defined by chiral projection operators

$$P_R = \frac{1}{2}(1+\gamma^5);$$
 $P_L = \frac{1}{2}(1-\gamma^5)$

★ In limit $E \gg m$ the chiral eigenstates correspond to the HELICITY eigenstates and only certain HELICITY combinations give non-zero matrix elements

Appendix : Spin 1 Rotation Matrices

- Consider the spin-1 state with spin +1 along the axis defined by unit vector

 n = (sin θ, 0, cos θ)
 Spin state is an eigenstate of n.S with eigenvalue +1
 (n.S)|ψ⟩ = +1|ψ⟩

 Express in terms of linear combination of spin 1 states which are eigenstates
- Express in terms of linear combination of spin 1 states which are eigenstates of S_z

$$|\psi\rangle = \alpha |1,1\rangle + \beta |1,0\rangle + \gamma |1,-1\rangle$$

 $\alpha^2 + \beta^2 + \gamma^2 = 1$

with

• (A1) becomes

 $(\sin\theta S_x + \cos\theta S_z)(\alpha|1,1\rangle + \beta|1,0\rangle + \gamma|1,-1\rangle) = \alpha|1,1\rangle + \beta|1,0\rangle\gamma|1,-1\rangle \quad (A2)$

• Write S_x in terms of ladder operators $S_x = \frac{1}{2}(S_+ + S_-)$

where $S_+|1,1\rangle = 0$ $S_+|1,0\rangle = \sqrt{2}|1,1\rangle$ $S_+|1,-1\rangle = \sqrt{2}|1,0\rangle$ $S_-|1,1\rangle = \sqrt{2}|1,0\rangle$ $S_-|1,0\rangle = \sqrt{2}|1,-1\rangle$ $S_-|1,-1\rangle = 0$ from which we find

$$S_{x}|1,1\rangle = \frac{1}{\sqrt{2}}|1,0\rangle$$

$$S_{x}|1,0\rangle = \frac{1}{\sqrt{2}}(|1,1\rangle + |1,-1\rangle)$$

$$S_{x}|1,-1\rangle = \frac{1}{\sqrt{2}}|1,0\rangle$$

• (A2) becomes

$$\sin \theta \left[\frac{\alpha}{\sqrt{2}} |1,0\rangle + \frac{\beta}{\sqrt{2}} |1,-1\rangle + \frac{\beta}{\sqrt{2}} |1,1\rangle + \frac{\gamma}{\sqrt{2}} |1,0\rangle \right] + \alpha \cos \theta |1,1\rangle - \gamma \cos \theta |1,-1\rangle = \alpha |1,1\rangle + \beta |1,0\rangle \gamma |1,-1\rangle$$

• which gives
$$\beta \frac{\sin \theta}{\sqrt{2}} + \alpha \cos \theta = \alpha \\ (\alpha + \gamma) \frac{\sin \theta}{\sqrt{2}} = \beta \\ \beta \frac{\sin \theta}{\sqrt{2}} - \gamma \cos \theta = \gamma$$

• using $\alpha^2 + \beta^2 + \gamma^2 = 1$ the above equations yield

$$\alpha = \frac{1}{\sqrt{2}}(1 + \cos\theta)$$
 $\beta = \frac{1}{\sqrt{2}}\sin\theta$ $\gamma = \frac{1}{\sqrt{2}}(1 - \cos\theta)$

hence

$$\psi = \frac{1}{2}(1 - \cos\theta)|1, -1\rangle + \frac{1}{\sqrt{2}}\sin\theta|1, 0\rangle + \frac{1}{2}(1 + \cos\theta)|1, +1\rangle$$

• The coefficients α, β, γ are examples of what are known as quantum mechanical rotation matrices. The express how angular momentum eigenstate in a particular direction is expressed in terms of the eigenstates defined in a different direction

$$d^{j}_{m',m}(\boldsymbol{ heta})$$

• For spin-1 (j = 1) we have just shown that

$$d_{1,1}^{1}(\theta) = \frac{1}{2}(1 + \cos\theta) \quad d_{0,1}^{1}(\theta) = \frac{1}{\sqrt{2}}\sin\theta \quad d_{-1,1}^{1}(\theta) = \frac{1}{2}(1 - \cos\theta)$$

• For spin-1/2 it is straightforward to show

$$d_{\frac{1}{2},\frac{1}{2}}^{\frac{1}{2}}(\theta) = \cos\frac{\theta}{2} \qquad d_{-\frac{1}{2},\frac{1}{2}}^{\frac{1}{2}}(\theta) = \sin\frac{\theta}{2}$$